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Abstract

This study investigates the free vibration behaviors of functionally graded (FGM) plates
with a porous structure, resting on a Kerr-type elastic foundation, while accounting for
thermal effects and complex material property distributions. Within the framework of
higher-order shear deformation theory (HSDT), two novel shape functions are introduced
to accurately model transverse shear deformation across the plate thickness without em-
ploying shear correction factors. These functions are constructed to satisfy shear stress
boundary conditions and capture nonlinear effects induced by material gradation and
porosity. A variational formulation is developed to describe the dynamic response of FGM
plates in a thermo-mechanical environment, incorporating temperature-dependent material
properties and three porosity distributions: uniform, linear, and trigonometric. Numerical
solutions are obtained using in-house MATLAB codes, allowing complete control over
the formulation and interpretation of the results. The model is validated through detailed
comparisons with existing literature, demonstrating high accuracy. The findings reveal
that the porosity distribution pattern and gradient intensity significantly influence natural
frequencies and mode shapes. The trigonometric porosity distribution exhibits favorable
dynamic performance due to preserved stiffness in the surface regions. Additionally, the
Kerr-type elastic foundation enables fine tuning of the dynamic response, depending on
its specific parameters. The proposed approach provides a reliable and efficient tool for
analyzing FGM structures under complex loading conditions and lays the groundwork for
future extensions involving nonlinear, time-dependent, and multiphysics analyses.

Keywords: functionally graded materials; porous plates; free vibrations; elastic foundation;
thermo-mechanical loading

MSC: 74H45

1. Introduction

In modern engineering applications, especially under extreme thermo-mechanical
conditions, functionally graded materials (FGMs) offer an exceptionally effective solution
due to their ability to combine high thermal resistance with excellent mechanical strength.
FGMs were developed in Japan during the 1980s in response to the aerospace industry’s
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demand for advanced thermal protection systems. They were designed to eliminate dis-
continuities and mechanical weaknesses typical of conventional multilayer composites by
employing a continuous gradation of composition and functional properties throughout the
material volume [1]. Their initial application as thermal insulators in spacecraft highlighted
the fundamental advantage of FGMs: the ability to reduce thermally induced deformations
without the delamination issues commonly observed in traditional laminated composites.

Unlike multilayered structures, where interfacial regions often represent potential
zones of weakness, functionally graded materials enable a smooth and continuous transi-
tion of properties between different constituent phases—typically from ceramic to metal.
This gradation encompasses not only the material composition but also functional char-
acteristics, ensuring a uniform distribution of thermo-mechanical properties throughout
the entire volume. As a result, FGMs combine the excellent high-temperature resistance
typical of ceramics with the load-bearing capacity characteristic of metals. This unique
combination of properties makes them ideal for use in systems exposed to pronounced
temperature gradients, such as thermal barriers, aircraft engine components, nuclear reac-
tor elements, and other high-tech systems where reliability under extreme conditions is of
critical importance.

One of the most prominent contemporary directions in this field is the development
of functionally graded structures with controlled porosity, which enable spatial variation in
porosity within the material to optimize both mechanical and thermal performance [2,3].
Such structures allow for precise control of density and porosity levels, which is crucial for
applications in civil engineering, the automotive and aerospace industries and energy tech-
nologies [4]. In this context, FGMs represent a key solution for enhancing the performance
of components operating under extreme conditions [5]. Owing to the continuous varia-
tion in their microstructural and macroscopic properties throughout the volume, FGMs
enable optimized stress and temperature distributions, minimizing local concentrations
and enhancing structural integrity. These characteristics make them particularly suitable
for use in absorbers, supports, and other thermally loaded components of solar thermal
systems, where efficient heat transfer and mechanical stability are essential. As such, FGMs
are positioned as next-generation materials with significant potential to contribute to more
efficient and reliable utilization of solar energy in the energy infrastructure of the future.

In today’s energy landscape, renewable energy sources have become a critical com-
ponent of sustainable development strategies, primarily due to the urgent need to reduce
greenhouse gas emissions and gradually phase out fossil fuels in favor of cleaner alter-
natives, in line with the 2015 Paris Agreement on climate change. Among the various
renewable options, solar energy stands out as a promising resource with the potential
to significantly contribute to the global energy balance. Technological platforms for har-
nessing solar radiation are evolving along multiple lines, including photovoltaic systems
for direct conversion of sunlight into electricity, solar thermal systems for heat utiliza-
tion in heating and industrial processes, and concentrated solar power systems that focus
solar radiation to generate steam and electricity. In thermal applications involving high
operating temperatures, structural materials are subjected to extreme thermal and mechan-
ical conditions, necessitating materials with superior resistance, stability, and long-term
operational performance.

Due to their geometric simplicity and large surface area for radiation absorption, plate
configurations are the most common structural form used in solar thermal collectors [6].
Consequently, a significant number of studies have focused on analyzing the behavior
of plates made from functionally graded materials under thermal loading conditions,
employing various theoretical modelling approaches. Different plate theories have been
applied, ranging from classical to higher-order shear deformation theories.
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The classical plate theory served as the basis in the work of Chakraverty and Prad-
han [7], where the dynamics of FGM plates with exponentially graded properties in a
thermal environment were analyzed using the Rayleigh-Ritz method.

Mokhtar et al. [8] applied the first-order shear deformation theory (FSDT) to investigate
the thermoelastic response of FGM plates under various temperature profiles, including
uniform, linear, and sinusoidal distributions. Trabelsi et al. [9] modified the FSDT to analyze
the post-buckling behavior of FGM structures under thermal conditions. From the perspec-
tive of the second-order shear deformation theory (SSDT), Shahrjerdi et al. [10] examined
the natural frequencies of solar FGM plates subjected to different thermal conditions, in-
cluding nonlinear distributions, constant temperature, heat flux, and sinusoidal variations.
Unlike FSDT, which requires the introduction of a correction factor to compensate for the
simplified shear stress assumptions, higher-order shear deformation theories (HSDT) pro-
vide a significantly more accurate representation of deformation through the plate thickness
without the need for such corrections. One key advantage of HSDT is its ability to account
for the curvature and displacement of normal fibers, which are considered incompressible
and inflexible through the thickness in classical theories, by modelling them with higher-
order nonlinear displacement functions [11]. Based on this feature, HSDT has emerged as a
robust approach for analyzing complex thermo-mechanical responses of FGMs, especially
under conditions of large thermal gradients and complex boundary constraints.

Numerous researchers have developed variants of higher-order shear deformation
theory (HSDT) employing different functional forms, including third-order, sinusoidal,
hyperbolic, and exponential models, in order to achieve an optimal balance between mod-
eling accuracy and computational efficiency [12,13]. Over the past decade, an increasing
number of studies have introduced quasi-3D theories as generalizations of classical higher-
order formulations, among which polynomial [14], sinusoidal [15], exponential [16], and
hyperbolic [17] models stand out. For example, Kenanda et al. [17] proposed a quasi-3D
hyperbolic theory combined with the Navier method for analyzing the free vibration of
porous FGM plates, demonstrating that this approach yields significantly more accurate
results compared to traditional third-order theories and other HSDT variants.

On the other hand, theories incorporating nonlocal elasticity effects, such as the model
presented by Daikha and Zenkour [18], offer valuable insights into material behavior at the
micro- and nano-scale, which is particularly relevant in the context of thin functional layers
used in solar applications [19]. Novel approaches such as the polynomial quasi-3D HSDT
developed by Ghumare and Sayyad [14], although more computationally intensive due
to an increased number of degrees of freedom, provide superior results in modelling the
static response of FGM plates. These concepts have further been applied in finite element
method (FEM) analyses of bending, buckling, and vibrational behavior of porous FGM
structures [20,21].

Despite the theoretical and numerical advancements, the practical implementation
of FGM plates in real engineering systems, such as solar thermal collectors, faces chal-
lenges in the domain of manufacturing, particularly in controlling the microstructure and
material homogeneity. In practice, porosity often forms during fabrication, significantly
affecting the mechanical stiffness, structural stability, and overall reliability of compo-
nents. These porosities may result from non-uniform sintering, thermal fluctuations during
processing, or inadequate control of the material gradient [22,23]. In response to this
challenge, an increasing number of studies have focused on investigating the influence of
porosity on the thermo-mechanical behavior of FGM structures. While some works have
addressed mechanical behavior without thermal effects [24-29], others have considered
scenarios involving significant thermal gradients, which are typical of operational con-
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ditions in solar applications [30-35]. These studies highlight the need for sophisticated
modelling approaches.

Despite substantial progress in understanding the fundamental mechanisms govern-
ing the behavior of porous functionally graded structures, further research is required to
enhance the predictive accuracy of existing models and to ensure their reliable application
in industrial practice. Khatir and Filali [36] investigated the free vibration characteristics of a
novel functionally graded porous microplate using isogeometric analysis (IGA). They devel-
oped a numerical model for computing natural frequencies and analyzed the effects of size
parameters, porosity, aspect ratio, and plate thickness on its macromechanical properties.

Wang and Zu [37] conducted a vibration analysis of rectangular FG plates with
porosities in a thermal environment. They employed the von Karmédn nonlinear plate
theory and the harmonic balance method to investigate the effects of porosity distribu-
tion, moving speed, and temperature variations on natural frequencies and the system’s
nonlinear response.

Analyses of free vibrations of porous FGM plates on elastic foundations, including
Winkler, Pasternak, and Kerr models, enable a detailed understanding of dynamic response
under realistic operating conditions, particularly in thermo-mechanical environments.
Hoang and Thanh [38] developed a new theoretical model for analyzing the free and
transient vibrations of FG plates resting on Kerr-type elastic foundations under thermal
loading. They applied Reddy’s third-order shear deformation theory and the Galerkin
method, with a comprehensive investigation of the effects of foundation stiffness, thermal
profiles, and material parameters on the plate’s dynamic behavior. Kumar et al. [39]
examined the free vibration behavior of conically shaped porous FG plates on an elastic
foundation using FSDT. Their study evaluated the influence of material gradation laws,
porosity, geometry, boundary conditions, and Winkler-Pasternak foundation parameters on
vibrational characteristics. Similar problems have also been addressed in studies [28,29,40].

As highlighted in recent studies [41,42], the dynamic behavior of porous FGM struc-
tures remains challenging due to the complex combined effects of porosity and material
gradation. These findings further underline the significance and timeliness of the present
study and emphasize the need for continued development of advanced theoretical models.

Higher-order shear deformation theories (HSDT) provide a solid foundation for such
analyses due to their accurate modelling of transverse shear deformation without the need
for correction factors.

The present work focuses on a detailed investigation of the mechanical performance of
functionally graded porous structures, with special emphasis on the analysis of free vibra-
tions. Within this study, two new shape functions (Present 1 and Present 2) are proposed to
enable accurate modelling of nonlinear shear strain distributions and optimization of the
vibrational response of porous FGM plates resting on elastic foundations.

2. Shape Functions and Kinematic Formulation in Higher-Order Models

Higher-order shear deformation theories (HSDT) represent an advanced theoretical
framework for modelling the behavior of layered and functionally graded materials (FGMs).
In the context of dynamic analysis, particularly in the study of free vibrations, HSDT enables
a detailed representation of displacement and strain distributions across the thickness of
the composite. Unlike classical bending theories, which require empirical shear correction
factors, HSDT offers accurate modelling of shear effects, thus providing enhanced precision
and reliability in the analysis of complex structural systems.

FGMs, characterized by a continuous variation in mechanical properties through the
thickness, pose specific challenges in analysis, especially in the accurate modelling of shear
deformation. In such structures, no material discontinuities are present, making simplified
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approaches used in homogeneously laminated composites inapplicable. In this context,
HSDT allows for the integration of higher-order functions dependent on the thickness
coordinate, thereby enabling precise modelling of property variation and its influence on
plate behavior. This approach facilitates the detailed tracking of changes induced by thermal
and other external effects, making it particularly suitable for thermo-mechanical analyses.
The application of HSDT to FGM plates ensures an accurate representation of shear
deformation, especially in cases where the material exhibits functional gradation through
the thickness. This framework enables analyses that consider all relevant behavioral
variations in materials under different thermal and mechanical loads, offering a robust
modelling platform for the design and evaluation of advanced structural components.
The displacement fields within the framework of HSDT are assumed in the following

form:
u(x,y,z) = uo(x,y) +z¢=(x,y) + f(2)x(x, ),
v(x,y,2) = vo(x,y) + 2y (x, y) + f(2) Py (x,y), 1
w(x,y,z) = wo(x,y),
where

o up(x,y), vo(x,y), wo(x,y)—displacements of the mid-surface in the x, y, and z directions,
respectively;

e ¢x(xy), py(x,y)—rotations of transverse cross-sections about the y and x axes, respec-
tively;

o Px(xy), Py(xy)—higher-order terms which, in combination with the shape function
f(z), enable the interpolation of shear deformation across the plate thickness.

The shape function f(z) plays a pivotal role in the accuracy and reliability of the
proposed model. It must satisfy the boundary conditions of zero transverse shear stress
at the free surfaces, allow for a flexible and realistic representation of the nonlinear dis-
tribution of shear strains consistent with the material property variation through the
thickness, and be suitable for mathematical manipulation within energy-based methods
and numerical implementation.

Within this work, two new shape functions along the thickness coordinate z are pro-
posed, denoted as f1(z) and f(z), which are used in the formulation of the macromechanical
model for the analysis of free vibrations of functionally graded materials:

filz) =z (cosh(%) - 1.388) and fo(z) = — <22512h(zh) - o.8z>. 2)

Unlike the existing functions traditionally used in higher-order shear deformation the-
ories, the proposed functions enable a more precise description of nonlinear deformations
through the thickness, which is crucial for accurate frequency analysis of FGM plates.

The proposed shape functions f1(z) and f,(z) are introduced because they naturally
satisfy the conditions of zero shear stresses at the top and bottom surfaces. The hyperbolic
character provides a more realistic distribution of deformations through the thickness, while
the linear and quadratic multipliers allow greater flexibility in describing higher-order
displacement gradients. In this way, a better balance between mathematical simplicity and
physical consistency is achieved compared with existing HSDT approaches.

The function f(z) is constructed as a product of a linear dependence on z and a
hyperbolic component that introduces and generates a nonlinear distribution of transverse
deformations. This form satisfies the zero tangential stress condition on the free surfaces,
which is particularly important in vibration problems where an accurate definition of
boundary conditions significantly influences the natural frequencies and mode shapes.
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The second shape function, denoted as f,(z), is formulated as a combination of a
quadratic dependence on the thickness coordinate z and the hyperbolic function sinh(z/h).
Compared to f1(z), this function provides an enhanced ability to capture higher-order
nonlinear effects of transverse shear deformation through the plate thickness. Such a
formulation makes f,(z) particularly suitable for porous FGM plates with strong gradients of
elastic modulus and density, ensuring a more refined description of their vibration modes.

Unlike conventional shape functions (such as sinusoidal, exponential and rational
forms) that are often mathematically simple but physically limited, the proposed shape
functions possess a deeper physical foundation and better adaptability to complex defor-
mation fields. Application in the formulation of vibration problems leads to improved
accuracy in the calculation of natural frequencies, especially in the case of multilayer
composite laminates and FGM structures.

Another important advantage of the proposed functions is their suitability for nu-
merical implementation, they can be easily differentiated and integrated, making them
convenient for use in analytical and numerical methods such as the Ritz method, finite
element method, and other variational approaches. Thus, the contribution of these func-
tions is reflected not only in more accurate physical modelling but also in enhancing the
efficiency and stability of numerical solutions for free vibrations of FGM structures. Their
mathematical form eliminates the need for additional correction functions or numerical
stabilization procedures, improving the robustness and accuracy of the results. Therefore,
these functions are recommended as a valid alternative to existing models in the context of
higher-order deformation theories.

Using such a kinematic model, the strain-displacement relations are derived in accor-
dance with linear elasticity theory for small displacements:

1 [ du; E)u]
gi=-s+==—1| 3
g 2 (ax] + axi ( )
with the inclusion of higher-order terms along the thickness coordinate, which enables
detailed consideration of local effects. This ensures accurate determination of thermal
stresses, shear forces, and bending moments in FG plates supported on a Kerr elastic

foundation, considering the additional response of the foundation in interaction with
the plate.

3. Formulation of Temperature-Dependent Constitutive Models for
Functionally Graded Materials with Porous Structure

Constitutive models of functionally graded materials are formulated based on locally
defined effective properties that vary along the thickness coordinate z. The fundamental
approach is based on the power-law distribution, which describes the continuous variation
in elastic, thermal, and thermally induced characteristics along the thickness direction of
the component. Within this model, the effective material properties, excluding porosity
effects, are defined as

N
1 T) = 1) = (T (5 4 5+ (D), @

where

e 1y € {p, E, a}]—denotes the generic symbol for density, Young’s modulus, and coefficient
of thermal expansion;

o #(T) and #,,(T)—represent the temperature-dependent properties of the ceramic and
metal constituents, respectively;
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e Nis the power-law exponent defining the gradient variation in the properties,
e  zis thelocal coordinate through the thickness;
e  his the total thickness of the plate.

Temperature dependence of the properties is modelled by an analytical function in the
form of a third-degree polynomial [41]:

7(T) = Py(PaT '+ 1+ P T+ BT? + P3T°), (5)

where P_1, Py, P1, P, P3 are experimentally determined coefficients for specific materials
(e.g., Si33N44 and SUS304).

To more accurately represent the microstructure, models incorporating the effect of
porosity as a corrective factor on the effective material properties have been introduced.
In this context, three different porosity distributions [19,42] have been developed, which
complement the basic power-law function:

e  Uniform porosity (Type I):
N
1) = ) =) (5 +3) D) = BT 4l @

e Linearly non-uniform porosity (Type II):

N
1) =) =] (543) + D) = B0 40l (1-22), @)

o  Trigonometric porosity (Type III):

N
1) = (T = (D] (G4 3+ (D) = B0 (M) eos® (), ®

where B € [0, 1] is a parameter describing the porosity intensity.

This approach models the reduction in porosity near the surface layers of the material,
which is especially important in the design of functionally graded materials used in solar
thermal collectors and other applications with high efficiency requirements. Uniform
porosity implies a constant porosity effect through the thickness of the material, except for
the variation defined by the power-law function. Linearly non-uniform porosity decreases
linearly toward the surface, thereby modeling lower porosity in the surface layers, while
trigonometric porosity allows for a smoother, wave-like decrease in porosity toward the
surface, more accurately reflecting the actual microstructure of the material.

In this study, the temperature-dependent material properties are represented using
polynomial approximations, which is a common and convenient practice in the analysis
of functionally graded materials. Such representations ensure smooth variation in the
effective properties with temperature and allow for closed-form evaluation of integrals in
the variational formulation, thus simplifying the mathematical treatment. However, the
accuracy of these approximations inherently depends on the quality of the experimental
data used for their calibration, and deviations may occur in extreme temperature ranges.
The adopted approximations were verified against tabulated reference data reported in
the literature, confirming satisfactory accuracy within the temperature intervals relevant
for the engineering applications considered here. For applications involving broader or
more extreme thermal environments, further refinement of the coefficients through direct
experimental characterization would be recommended.
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4. Variational Formulation of the Dynamic Behavior of a Porous
FGM Plate

This approach utilizes Hooke’s law for anisotropic materials:
0ij = Cijxi€xl, )

where

e jare the stress components in different directions;
° Cijkl is the material elasticity tensor;
e gy are the strain components.

This law is applied locally at each point through the thickness, taking into account
the corresponding variations in elastic moduli and thermal expansion coefficients. Using
Equations (1) and (9) and grouping terms, the components of the resultant force vector and
resultant moment vector are obtained.

The total external load, consisting of components of in-plane resultant forces Ny, Ny,
Nyy, bending moment components My, My, My,, moments associated with the transverse
shear deformation function Py, Py, Pyy, and components of the resultant transverse shear
forces Ry, Ry, can be calculated as follows:

Jdug azwo b Iy
Ny Ain A 0 s Byy Bz O agxz Cn Cp O aaf
(4 !
Ny 0= A2 An 0 En + |Biz Bn 0 2 ¢+t |C2 Cn O 3 ,
Ny 0 0 A 3”0 + % 0 0 B 2?,,3’; 0 0 Ces] aaiy 1 aa%
- aug - A azwo 7 a‘/’x
My Byy B O o D1 D 0O a{%xz Tn T O aaz/f
[
My ¢ = |Biz Bn 0 En Dy, Dy 0 G2 ¢ T2 T2 0 e §
My 0 0 B 5’“0 + % | 0 0 Des| 23;,’; 0 0 Te aaq;x + f’% (10)
. d - Pw Ay
Py Cn C2 O aa%o Ty Tz O agxz Gi1 G O aasz
(Y
Py r=|Cp Cpp O En + T2 Tz O S22+ |G Gn 0 3 ,
Pyy 0 0 Cesl %0 + % 0 0 T 23,5’; 0 0 G Baiy + a%
Re | _ F44 0| )¢x
Ry Fs5| ¥y
where
h(xy)/2 ) )
{AI]/ Bz]/ Cz]r D1]/ Tz]r Gz]} = f {1r Z,f(X,y, z),z /Zf<x/ Y, z), [f(xr Y, z)] }Qijdzl
—h(xy)/2
(i,j =1,2,6), (11)
h(x,y)/z af(x 2
Y, 2) .
{Fi}= [ {az} Qijdz, (i,j =4,5)
—h(xy)/2

The next step involves deriving the energy expressions using Hamilton’s principle,
through which the variational form of the problem is formulated:

5/ (T—U—U)dt =0, (12)

where

e T—Xkinetic energy of the system (due to oscillatory motion);
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e U—strain energy of the plate (including bending, stretching, and other forms of
deformation);

e  U,—potential energy of the elastic foundation (reaction of the foundation to the plate
displacement).

In the analysis of free vibrations of functionally graded (FG) plates resting on an elastic
foundation, the contribution of the elastic foundation is expressed through the variation in
potential energy, defined as

s, = / FudwodA, (13)
A

where

e  Ais the plate surface area;

e  wj is the displacement of the mid-surface of the plate in the vertical direction;

e f, is the reaction force of the elastic foundation per unit area, whose specific form
depends on the type of foundation.

The foundation reaction f, can be modelled in various ways depending on the physical
model of the foundation employed:

1. Winkler Foundation (Figure 1)—models the foundation as a series of independent elas-
tic springs (linear and local response without interaction between foundation points):

Winkl
e e = dWinkler = kwwo, (14)

where

e  ky—Winkler foundation modulus (stiffness coefficient).

j

a
Figure 1. FGM plate on a Winkler foundation.
2. Pasternak foundation (Figure 2)—includes shear interaction between adjacent points

of the foundation (enables the distribution of force through the foundation and a
better approximation of real conditions):

Past k 2
e asternak = (Pasternak = kwwo — Gpv wo, (15)

where

e Gy —shear modulus (stiffness) of the foundation;
e V2wy—Laplacian operator (second derivative with respect to spatial coordinates).

Zi

P X

5

~

——Shear layer,Gp

Ceramic == Spring,Kw

Figure 2. FGM plate on a Pasternak elastic foundation.

=~
LN e
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3. Kerr Foundation (Figure 3)—a more complex model that accounts for surface and
internal layers of the foundation with mutual interactions (includes both local and
nonlinear interaction through the thickness of the foundation):

kik ksk
Kerr __ _ "u . shu 2
e - quIT - (kl + ku ) wo (ks + ku ) V wo, (16)

where

e kj, ky—elastic moduli of the lower and upper layers of the foundation;
e  ks—shear stiffness of the layer between them.

y

X

y
/

T o y —— Upper Spring, K,
]1 = —~— Shear layer, K,
y Z- Lower Spring, K;
Y iitiitiity
REREREEREE %o
a

Figure 3. FGM plate on Kerr elastic foundation.

If the expressions for kinetic and potential energy defined as follows are substituted
into the Hamilton’s principal Equation (12):

H fhﬁz p(z [(ito +z¢, +f(2)¢x>2 + (iio + Z¢y + f(z)¢y>2 + wﬁ} dzdA,

17)

1 (

= EI‘H [Oxx€xx + Oyyyy + Tzz€zz + 200y€xy + 200265 + 20726, | dV.
%

The differential equations of free vibrations of the plate are obtained in the form

aN oN; 92
-+ Xy =h E)tléo I28t280 + 14 atz ’

aNW +5 aNy =1 aafio h atzzgoy Tl E;Zy,
Bagx +2 ai\g;y + =1 a?z’” + Iz(aaﬂ%gc + ;;?,ﬂc) (18)
1 (2 + 2 ) + 15(;32%’; + ;ﬂ%yy) e
apx n apxy _R, =1, a;;o s at;gt; + 1 aa tezx,
P 4 9 apy — Ry = I atz —I5 atzao + I6aat92y'
The mass inertia term I; (i=1, 2, ..., 6) is defined as
h/2
(L, b, I, I, Ts, T} = / {1,z,f(x,y,z),zzrzf(x,y,Z)/ [f(X,y,z)]z}P(x,y,z)dz. (19)
—i/2

The proposed shape functions are constructed in such a way that all required integrals
can be evaluated in closed form. In this manner, the need for numerical integration is elimi-
nated, which simplifies the formulation process and ensures the stability of the resulting
expressions. This approach avoids the usual issues related to numerical convergence and
significantly enhances computational efficiency, since the results can be obtained directly
from analytical formulations without additional approximations.
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5. Analytical Solution of Natural Frequencies of an FGM Plate

For obtaining numerical results in the analysis of laminated plates, both analytical
and numerical methods can be employed. The application of an analytical approach,
based on assumed solution forms, enables efficient examination of the influence of various
parameters, especially for plates with complex functional gradients and elastic supports. An
additional advantage of analytical methods lies in their suitability for testing and validating
new shape functions and deformation theories, making them particularly valuable in the
early stages of model development and verification of numerical solutions. In this work,
the Navier method is used to solve the free vibration problem of a functionally graded
plate with the following boundary conditions:

vg=wyg =0y =Ny=My =P, =0(atx =0, a),

20
uy=wy =6, =Ny =M, =P, =0(aty =0, b). (20)

The assumed solution forms, consistent with the boundary conditions for a simply
supported (SSSS) rectangular plate with dimensions a x b, are given by:

© . mnx  nmy
up(x,y,t) = ¥ ¥ Upysin cos ye""t,
m;l n;l a b
mnx . nwy .
vo(x,y,t) = ¥ ¥ Vipncos sin ye”"t,
m:ol ni} a b
mnx . nmy
wo(x,y,t) = ¥ ¥ Wyysin sin ye""t, (21)
mfol n:o.} a b
mnx . nmy
Or(x,y,t) = ¥ ¥ Temn cos—sin—ye“"t,
m=1n=1 a b

0y (x,y,t) = OZOL OZOJ Tymn sin mx cos @ei“’t.
m=1n=1 a b

where w denotes the natural frequency associated with frequency mode numbers m and n.

In the dynamic extension adopted here, the spatial dependence of the displacement
field is represented by double trigonometric series that identically satisfy the simply
supported boundary conditions, while the corresponding modal amplitudes are time-
dependent functions. Substitution of these forms into the potential and kinetic energy
expressions, including the contribution of the elastic foundation, and application of Hamil-
ton’s principle reduce the governing PDEs to a system of ODEs in the modal coordinates.
Assuming a sinusoidal time dependence of the modal amplitudes, the ODE system is
further transformed into the generalized eigenvalue problem of the following form:

(K+Ky)q = w?lq, (22)

where

e K—bending stiffness matrix of the functionally graded plate;

° Kf—stiffness contribution from the elastic foundation (Winkler, Pasternak, or Kerr
model);

e I—mass matrix;

e g—vector of unknown vibration amplitudes.

The eigenvalue problem is solved using standard methods:
det(K + Ky — w’I) =0, (23)
To ensure brevity and clarity, the following compact notation is adopted:

L=K+Kj, (24)
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ie.,
’L—wzl’ =0 (25)
L1 Lo Liz Ly Lss I 0 —alp Iy 0
Lo Lypp Lps Lpg Los 0 Iy —Bh 0 Iy
L1z Loz L3z L3y Lass —w? —al, —BL Iz (062 + /32) +I —als —BIs | =0 (26)
L1y Lys Lzg Ly Lgs Iy 0 —als Is 0
Lis Los Lss Lgs Lss 0 Iy —BIs 0 Is
L 1

where the coefficients Lij, (i,j = 1+ 5) are functions of the parameters and the coefficients

mrm __ nr

specified in Equation (11) and parameters a = 7.5, = %F.

6. Numerical Results

To obtain numerical results based on the developed theoretical formulation, custom
MATLAB R2024a codes were implemented for the analysis of free vibrations of a simply
supported FGM plate resting on an elastic foundation. This type of boundary condition
was selected as it represents the most commonly used benchmark case in the literature
and allows for clear comparison with existing results while also serving as a fundamental
test for the validation of new models. Nevertheless, different boundary conditions can
significantly affect the dynamic behavior of plates: clamped edges are expected to increase
the natural frequencies due to stronger kinematic constraints, whereas free edges generally
lead to lower frequencies and more pronounced local deformations. Extending the analysis
to other combinations of boundary conditions is envisaged as part of future research. In the
numerical study, three different materials are considered, with their properties summarized
in Tables 1 and 2.

Table 1. Material properties of Alumina and Aluminum [12].

Alumina (Al,O3) Aluminum (Al)
E. =380 GPa E, =70 GPa
Pc = 3800 kg/m? Pm = 2707 kg /m3
v =03 V=03
ae=7x107%1/°C am =23 x 1070 1/°C

To present and verify the results, dimensionless parameters are employed, enabling
standardization and comparison across different materials and geometric configurations.
This approach simplifies the mathematical model and facilitates more efficient computation
of vibration and dynamic characteristics. The formulas for the dimensionless parameters
used in the analysis are defined as follows:

— _ a* pm(1=0)\2, ~ _ Om_. ~ _ Pc. _ Ec .0 _ Pc.
w-w(h)( Futy ,w-thEmTO,w—wh G'G_2(1+v)'w_Wh £

3
_ Pm _ LT ked. 7T kqat., _ Eugyh
w = wh Em’ko ~ Dn’ ks = Dy’ ky = Dy’ Dn = 12(1-22)

I

(27)

The elastic modulus of metal E,, 7, is evaluated at room temperature (Tp = 300 K).
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Table 2. Material properties of porous ceramic and metal for two types of FGMs [19].
Material P_, Py P, P, P;
SisNy 0 34843 x 107*  3.070 x 1074 2160 x 1077 —8.946 x 10~ 1
E@) SUS304 0 201.04 x 10° 3.079 x 107 —6.534 x 1077 0
SisNy 0 2370 0 0 0
0 08/m) o3 0 8166 0 0 0
SisNy 0 5.8723 x 107¢  9.095 x 10~* 0 0
a (1/K)
SUS304 0 12.330 x 107¢  8.086 x 10™* 0 0

6.1. Validation of Material Modeling and Input Functions

Figures 4 and 5 illustrate the variation in the effective Young’s modulus E(z) along
the nondimensional thickness coordinate z/h for different porosity distribution models
(uniform, linear non-uniform, and trigonometric), considering variations in the porosity
parameter 8 and the power-law exponent N.

—&— Mod | (uniform porosity)
—+— Mod Il {linearly graded porosity)
—— Mod Il (cosine-based porosity)

Elastic modulus (GPa)

270,

260 L L L L |
05 04 03 02 -01 0 0.1 02 03 04 0.5

zh

Figure 4. Variation in the elastic modulus along the normalized thickness coordinate for different
porosity distributions, with g = 0.2, N = 0, and temperature T = 300 K.

340

—&— Mod | (uniform porosity)
320 | —+— Mod Il {linearly graded porosity)
—— Mod il {cosine-based porosily)

300

X1
@
=]

Elastic modulus (GPa)

05 04 03 02 OH1 0 01 02 03 04 05
zh

Figure 5. Variation in the elastic modulus along the normalized thickness coordinate for different
porosity distributions, with § = 0.1, N = 2, and temperature T = 300 K.

In the case of homogeneously distributed constituent materials (N = 0, Figure 4), the
variations in elastic properties arise solely from the porosity distribution. Uniform porosity
results in a constant Young’s modulus throughout the thickness. In contrast, linear and
trigonometric porosity profiles induce more pronounced variations, exhibiting a minimum
at the mid-plane for Type II and low values in the interior with higher values near the
surfaces for Type III. For functionally graded material distribution (N = 2, Figure 4), the
elastic modulus increases toward the top surface due to the dominance of the ceramic
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phase. The trigonometric porosity distribution further amplifies this effect by eliminating
porosity in the surface layers.

This behavior clearly confirms the significant influence of the combined effects of
porosity and material gradation on the stiffness distribution, which is crucial for accurate
calculations and optimization of functionally graded structures under thermomechanical
loading conditions.

Table 3 presents the nondimensional fundamental frequencies of a square FGM plate
under conditions without a temperature gradient, at room temperature, and for a geometric
ratio of a/h = 8. The comparison includes various theoretical approaches from the literature,
as well as two new formulations labeled Present 1 and Present 2. Both versions imple-
ment modified shape functions along the thickness coordinate within the framework of a
higher-order shear deformation theory, with particular emphasis on physically consistent
satisfaction of the natural boundary conditions for shear deformation.

The results obtained using the proposed models closely match those from the reference
HSDT formulation, confirming their high accuracy and consistency. The minimal discrep-
ancies between Present 1 and Present 2 models, as well as relative to established references
(e.g., Refs. [18,22,24,43]), further attest to the numerical stability of the implementation.
Deviations compared to other approaches, especially for larger values of the power-law
exponent N, indicate differences in assumptions regarding the distribution of deformation
through the thickness, which is particularly noticeable in works such as Refs. [44,45].

Table 3. Non-dimensional fundamental frequencies (@) of a square SI3Ny — SUS304 FGM solar plate
for varying power-law parameters at AT = 0 °C and Ty = 300 K, with aspect ratioa/h = 8.

Source N=0 N=05 N=1 N=2
Present 1 12.5068 8.60908 7.54435 6.77066
Present 2 12.5068 8.60908 7.54436 6.77069
Ref. [19] 12.508 8.610 7.545 6.771

Refs. [18,22] 12.507 8.609 7.544 6.771
Ref. [7] 12.506 8.652 7.584 6.811
Refs. [18,23] 12.507 8.609 7.544 6.770
Ref. [18] 12.507 8.609 7.544 6.770
Refs. [18,24] 12.509 8.611 7.546 6.772
Ref. [46] 12.506 8.616 7.552 6.777
Ref. [47] 12.495 8.675 7.555 6.777
Ref. [44] 12.508 8.717 7.608 6.737
Ref. [45] 12.528 8.622 7.557 6.786
Ref. [21] 12.463 8.592 7.565 6.763
Ref. [43] 12.508 8.610 7.545 6.771

6.2. Effect of Gradient Index, Geometric Ratios, and Temperature

The systematic decrease in natural frequencies with increasing N clearly reflects the
transition in material distribution from ceramic to metal composition, aligning with the
known mechanical behavior of FGM structures. This confirms that the proposed shape
functions not only provide accurate results but also enable physically consistent modelling
of gradient effects without the need for additional correction parameters, making them
well-suited for vibration analysis of composite systems.
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Based on the results shown in Figures 6 and 7, a pronounced influence of temperature
effects, as well as the material gradient exponent, on the fundamental nondimensional
frequency of square SI3N; — SUS304 FGM plates is observed. An increase in temperature
leads to a systematic reduction in the fundamental frequency, which is a direct consequence
of the degradation of the material’s mechanical properties due to thermal softening. This
effect is more pronounced for higher values of the gradient exponent N, indicating that
structures with more pronounced heterogeneity, i.e., with a higher metal content, are more
susceptible to thermal loading.

9

L) ~ @

Fundamental frequency
o

200 400 600 800 1000 1200 1400
T(K)

Figure 6. Dependence of the nondimensional frequency w on temperature T [K] for different values
of the exponent N.
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10

Fundamental frequency

Figure 7. Dependence of the nondimensional frequency @ on the exponent N for various a/h ratios
at a fixed temperature of T = 300 K.

On the other hand, the analysis of the frequency dependence on the gradient exponent
N, which characterizes the distribution of material properties, shows an initial sharp
decrease in frequency at low values of N, followed by stabilization. This saturation suggests
that within a certain range of N values, the effect of the gradient on the dynamic response
practically saturates, especially pronounced in thicker plates (with smaller a/h ratios).

Such behavior confirms that by proper selection of the material property distri-
bution, the dynamic response of FGM structures under thermal loading can be effec-
tively controlled, representing a key prerequisite for the optimization of these systems in
engineering applications.

The influence of geometrical aspect ratios on the fundamental frequencies of SI3Ny —
SUS304 FGM plates is illustrated in Figures 8 and 9. The shape function labelled Present 1
was used in the analysis. Figure 8 shows the variation in the nondimensional fundamental
frequency as a function of the a/h ratio at a constant temperature of T = 300 K, for different
values of the material gradient exponent N. A clear increase in frequency is observed with
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increasing a/h ratio, which is physically expected, as a reduction in relative thickness
(i.e., an increase in width aa relative to height /) results in greater stiffness per unit mass.
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Figure 8. Dependence of the fundamental frequency @ on the a/h ratio for different values of the
exponent N at a fixed temperature T = 300 K.
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Figure 9. Dependence of the fundamental frequency @ on the a/b ratio for different values of the
exponent N at a fixed temperature T = 300 K.

However, the rate of this increase depends on the value of the parameter N, higher val-
ues of N (indicating a greater concentration of material with weaker mechanical properties
in the lower region of the plate) are associated with lower values of fundamental frequency.
This highlights the significant effect of material distribution on the dynamic response of
the plate, further confirming the importance of incorporating functionally graded materials
in engineering applications.

Figure 9 shows the effect of the a/b ratio (length-to-width ratio of the plate) on the
fundamental frequencies at the same temperature and for different values of the gradient
exponent N. A significant drop in frequency is observed at low a/b values, followed by
stabilization or saturation at higher a/b ratios. This phenomenon results from a shift in the
plate’s mode shape, were for more elongated geometries, the dominant vibration modes
transition from two-dimensional to nearly one-dimensional.

The values of the exponent N continue to exert influence, higher N values reduce
the overall structural stiffness and thus lower the frequency, but this effect becomes less
pronounced as the geometry approaches the saturation region.

Overall, these results confirm that both geometric parameters and the material gradient
exponent are key factors defining the dynamic behavior of FGM plates. Such dependencies
provide an important basis for optimizing structural design in terms of mass, stiffness,
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and resonant response, thereby justifying the need for accurate modelling of functional
gradation in analysis and engineering design.

6.3. Effect of Elastic Foundation and Porosity Distributions

Table 4 presents the non-dimensional fundamental frequencies of an aluminium
functionally graded (FGM) plate for different values of the gradient parameter N, and four
sets of Kerr-type elastic foundation parameters: (100, 0, 100), (100, 100, 100), (100, 100, 200),
and (100, 200, 200). All results correspond to a geometric ratio of a/h = 20, which represents
a typical case of a thin plate subjected to bending and shear deformations.

Table 4. Effect of Kerr-type elastic foundation on the non-dimensional frequency & of Al-Al;O3 FGM
plates for different values of the gradient exponent N, with fixed parameters a/b =1 and a/h = 20.

(ky, ky, ks) Source N=0 N=0.5 N=1 N=5
Ref. [19] 0.0294 0.0251 0.0227 0.0198

Ref. [40] 0.0294 0.0253 0.0231 0.0202

(100, 0, 100) Ref. [48] 0.0294 0.0253 0.0231 0.0202
Presentl 0.0294 0.0251 0.0227 0.0198

Present2 0.02942 0.0251 0.02274 0.01978

Ref. [19] 0.0356 0.0328 0.0314 0.0303

Ref. [40] 0.0356 0.0329 0.0316 0.0305

(100, 100, 100) Ref. [48] 0.0356 0.0329 0.0316 0.0305
Presentl 0.03558 0.03275 0.03138 0.0303

Present2 0.03558 0.03275 0.03138 0.0303

Ref. [19] 0.0375 0.035 0.0339 0.0332

Ref. [40] 0.0375 0.0351 0.0341 0.0334

(100, 100, 200) Ref. [48] 0.0375 0.0351 0.0341 0.0334
Presentl 0.0375 0.03504 0.03389 0.0332

Present2 0.0375 0.03504 0.03389 0.0332

Ref. [19] 0.044 0.0426 0.0421 0.0425

Ref. [40] 0.044 0.0427 0.0423 0.0426

(100, 200, 200) Ref. [48] 0.044 0.0427 0.0422 0.0426
Presentl 0.04404 0.04264 0.04209 0.04248

Present2 0.04404 0.04264 0.04209 0.04248

The objective of this analysis is to verify the numerical results obtained using the
newly proposed shape functions (Presentl and Present2) by comparing them with data
from the literature (Refs. [19,40,48]).

In all analyzed cases, the results obtained using the Presentl and Present2 models
perfectly match the values from Ref. [19], which was used as the primary benchmark
example. Deviations from the results reported in Refs. [40,48] are less than 0.3%, confirming
the exceptional accuracy of the proposed models.

For the foundation configuration (100, 0, 100), the Presentl and Present?2 results for
the gradient parameter N in the range of 0 to 5 precisely reproduce the reference values
from Ref. [19], with virtually negligible numerical error. Deviations from Refs. [40,48] for
N =1and N =5 are in the range of 0.002 to 0.004.
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A similar level of accuracy is observed for more complex Kerr foundation configura-
tions: for (100, 100, 100) and (100, 100, 200), the Presentl and Present2 models achieve exact
agreement with Ref. [19] up to the third decimal place, while the differences compared to
Refs. [40,48] remain below 0.2%.

In the most demanding case, (100, 200, 200), the proposed models maintain high
precision and consistency across all three references, with the maximum recorded deviation
being 0.002 for N = 1.

In addition to their high accuracy, the results exhibit a consistent trend of decreasing
nondimensional fundamental frequencies with increasing values of the gradient parameter
N, which corresponds to a higher content of the metallic component in the FGM structure
and reflects the overall reduction in system stiffness due to the lower elastic modulus of
the metal. This outcome fully aligns with physical expectations and further confirms the
validity of the proposed model.

The observed trends in gradient exponent, metallic content, and porosity distribution
also carry important implications for engineering design. The systematic reduction in
fundamental frequencies with increasing gradient exponent and metallic content highlights
the need for careful control of these parameters in applications where dynamic stability
is critical. At the same time, tailoring the porosity distribution provides opportunities for
structural weight optimization. This allows for a compromise between mass reduction and
preservation of vibration performance. The present findings therefore offer guidelines that
can serve as a basis for preliminary optimization strategies in future studies.

It is important to emphasize that the shape functions in the Present1 and Present2 mod-
els are carefully constructed to satisfy physically realistic shear deformation distributions
through the thickness without the need for shear correction factors. Their mathematical
structure enables efficient integration into the Navier method while maintaining numerical
stability under variations in substrate and material parameters.

Based on the data presented in Table 4, it can be confidently confirmed that the
proposed shape functions enable a high level of accuracy and predictability of results
across a wide range of mechanical and geometrical conditions. This consistency with
renowned results from the literature serves as clear evidence of the validity and scientific
relevance of the proposed model in the analysis of free vibrations of FGM plates resting on
elastic foundations.

Table 5 presents the fundamental dimensionless frequencies w of square SI3Ny —
SUS304 FGM solar plates resting on elastic Kerr-type foundations with parameters (50,
50, 50), (100, 100, 100), and (200, 200, 200), for various geometric ratios a/h = 2, 4, 10 and
power-law index values N =0, 0.5, 2, 10. The results obtained using the newly proposed
shape functions, Presentl and Present?2, are compared with the reference values reported in
the literature (Ref. [19]).

The analysis indicates that the frequencies computed using the Presentl and Present2
models exhibit near-perfect agreement, yielding results that closely match the reference
values with minimal deviations. Specifically, for all three Kerr foundation configurations
and all examined geometric ratios, the Present models consistently reproduce the refer-
ence frequencies for N = 0, thereby confirming the accurate implementation of the initial
boundary conditions.
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Table 5. Values of the non-dimensional frequency of a square SI3N; — SUS304 FGM solar plate
resting on a Kerr-type elastic foundation for different geometric ratios a/h and various values of the
power-law exponent N.

(kg, ky, ks) alh Source N=0 N=0.5 N=2 N=10
Ref. [19] 12.3247 8.5891 6.6386 5.6486

2 Present1 12.3247 8.2849 6.40381 5.61505

Present2 12.3247 8.28482 6.40388 5.61501

Ref. [19] 16.2081 11.5922 9.4233 8.3917

(50, 50, 50) 4 Presentl 16.2047 11.5904 9.42176 8.3899
Present2 16.2047 11.5904 9.42177 8.38987

Ref. [19] 17.5734 12.5496 10.1637 9.0126

10 Present1 17.5728 12.5492 10.1635 9.01226
Present2 17.5728 12.5492 10.1635 9.01227

Ref. [19] 12.3247 8.5891 6.6386 5.6486

2 Presentl 12.3247 8.28489 6.40381 5.61505

Present2 12.3247 8.28489 6.40388 5.61501
Ref. [19] 20.067 14.5002 11.896 10.6767

(100, 100, 100) 4 Presentl 20.0647 14.4993 11.8949 10.6754
Present2 20.0647 14.4993 11.8949 10.6754

Ref. [19] 21.3429 15.432 12.611 11.2598

10 Presentl 21.3424 15.4317 12.6108 11.2595

Present2 21.3424 15.4317 12.6109 11.2595

Ref. [19] 12.3247 8.5891 6.6386 5.6486

2 Presentl 12.3247 8.28489 6.40381 5.61505

Present2 12.3247 8.28482 6.40388 5.61505

Ref. [19] 24.6493 17.1782 13.2772 11.2972

(200, 200, 200) 4 Presentl 24.6495 17.0131 13.1459 11.2796
Present2 24.6495 17.0131 13.1459 11.2796

Ref. [19] 27.366 19.9856 16.4466 14.761

10 Presentl 27.3656 19.9854 16.4464 14.7608

Present2 27.3656 19.9854 16.4464 14.7608

As the parameter N increases, representing a higher proportion of the metallic phase
within the FGM structure, a clear trend of decreasing fundamental frequencies is observed.
This behavior is attributed to the reduction in overall stiffness due to the lower elastic
modulus of the metallic component. This trend is evident across all investigated cases, and
the results from the Present models follow it with a high degree of accuracy.

More specifically, for a/h = 2, the differences between the Present models and Ref. [19]
are negligible, particularly for higher values of N, where the deviations are on the order of
10~3. For larger geometric ratios, a/h = 4 and a/h = 10, the agreement remains exceptionally
high, with differences that are virtually imperceptible and do not exceed a few thousandths.
This indicates the stability and robustness of the proposed shape functions across different
deformation regimes and foundation configurations.
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Furthermore, the Presentl and Present2 models produce practically identical results,
which further confirms the consistency and reliability of their mathematical formulations.
Such alignment demonstrates the successful integration of the shape functions into the
numerical methods used for analyzing the free vibration behavior of FGM plates resting on
elastic foundations.

In conclusion, based on the results presented in Table 5, it can be affirmed that the
proposed Presentl and Present2 models offer a high level of accuracy and reliability in
predicting the fundamental frequencies of FGM plates with varying Kerr foundation
parameters and geometric ratios. This analysis further strengthens confidence in the
applicability of these shape functions for comprehensive dynamic analyses of functionally
graded materials.

The study of the influence of the elastic foundation modelled according to the Kerr
approach reveals a pronounced dependence of the fundamental nondimensional frequency
w on the individual foundation components: the upper spring stiffness k,, the lower
spring stiffness k;, and the shear layer stiffness k;. An increase in k;, (Figure 10) results in a
systematic rise in w, which can be attributed to the additional support provided in the upper
zone of the plate. This component acts as an active constraint against bending, increasing
the effective flexural stiffness and reducing amplitudes in the fundamental vibration mode.
Such behavior highlights the importance of introducing vertical reactive forces at the
surface layer of the foundation, especially in thin FGM plates with a pronounced gradient
in material properties.

..—Q— T=300K
| —+—T=450K

Fundamental frequency
o

0 50 100 150
Upper spring ku

Figure 10. Values of the dimensionless fundamental frequency @ of a square FGM plate as a function
of the stiffness of the upper elastic foundation spring ky, for a/h =10, N = 2, k;, = 100.

In contrast, an increase in k; (Figure 11) leads to a reduction in w, indicating a redistri-
bution of deformations and energy dissipation in the lower zone. Rather than enhancing
stability, a high lower spring stiffness creates localized system behavior and limits the
efficient transfer of energy, thereby reducing the global dynamic stiffness. This result
reveals the delicate balance between support and deformability, where the lower layer may
exert a destabilizing effect if not properly coordinated with the rest of the system.

Finally, an increase in ks (Figure 12) consistently has a positive effect on w, underscor-
ing the importance of shear rigidity in limiting relative displacements between layers. This
parameter further homogenizes the dynamic response of the system, particularly in the
presence of thermal variations and material gradation. Comparative analysis shows that k,
is the most effective in increasing frequency, k; can be potentially counterproductive, while
ks acts as a stabilizing factor across a wide range of configurations.
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Figure 11. Values of the dimensionless fundamental frequency @ of a square FGM plate as a function
of the stiffness of the lower elastic foundation spring k;, for a/h =10, N = 2, k; = 100.
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Figure 12. Values of the dimensionless fundamental frequency @ of a square FGM plate as a function
of the shear stiffness of the elastic foundation ks for a/h =10, N = 2, k,, = 100, k; = 100.

These findings emphasize the need for an integrated design approach to elastic founda-
tions in FGM structures, where the optimization of individual parameters must be aligned
with the goals of vibration control and mechanical stability.

Table 6 presents the influence of different porosity distributions (Types I, 11, and III),
the porosity coefficient B, and the material gradient exponent N on the dimensionless
fundamental frequencies @ of a square FGM plate with a side-to-thickness ratio a/h =5,
evaluated at room temperature (AT = 0 K). Special emphasis is placed on comparing the
reference results from the literature [19] with those obtained using the newly proposed
porosity functions Presentl and Present 2.

By introducing these new functions, a quantitatively almost identical response is
achieved compared to the reference models for all parameter combinations, with frequency
deviations ranging from 10~# to 10~2. This consistency confirms the accuracy and reliability
of the new models, along with the added flexibility and improved numerical stability they
offer for subsequent implementation in higher-dimensional simulations.
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Table 6. Effect of porosity distributions and temperature rise on the non-dimensional fundamental

frequencies @ of the square SI3N; — SUS304 FGM plate ata/h =5and AT =0 K.

Di;’t‘;irl‘)’iit?;ns B Source N=0 N=05 N=1 N=2 N=5
Ref. [19] 11.6778 8.0369 7.0405 6.3109 5.726

0 Presentl 11.6737 8.0342 7.0381 6.3092 5.7246
Present2 11.6737 8.0342 7.0381 6.3092 5.7247

Ref. [19] 12.6857 8.1528 7.0258 6.2248 5.5976

0.1 Presentl 12.6812 8.1501 7.0234 6.2231 5.5964
Present2 12.6812 8.1501 7.0234 6.2232 5.5965

Ref. [19] 14.3225 8.302 7.0052 6.1171 5.4418

Typel 0.2 Presentl 14.3175 8.2993 7.0028 6.1156 5.4408
Present2 14.3175 8.2993 7.0028 6.1157 5.4409

Ref. [19] 17.5594 8.5016 6.975 5.9787 5.248

0.3 Presentl 17.553 8.4989 6.9727 5.9773 5.2473
Present2 17.5533 8.4989 6.9727 5.9774 5.2474

Ref. [19] 28.7275 8.783 6.9284 5.7934 4.9992

0.4 Presentl 28.7175 8.7803 6.9262 5.7922 4.9989
Present2 28.7175 8.7803 6.9262 5.792 4.999

Ref. [19] 11.6778 8.0369 7.0405 6.3109 5.726

0 Presentl 11.6737 8.0342 7.0381 6.3092 5.7246
Present2 11.6737 8.0342 7.0381 6.3092 5.7247

Ref. [19] 12.2057 8.1601 7.098 6.329 5.7188

0.1 Presentl 12.203 8.1584 7.097 6.3285 5.7188
Present2 12.2031 8.1585 7.0967 6.329 5.719

Ref. [19] 12.8464 8.2955 7.1586 6.3456 5.7073

Typell 0.2 Presentl 12.8455 8.2952 7.1586 6.3467 5.7092
Present2 12.8457 8.2953 7.1587 6.3469 5.7095

Ref. [19] 13.6445 8.445 7.2222 6.3596 5.6897

0.3 Presentl 13.6463 8.4464 7.224 6.3628 5.6943
Present2 13.6467 8.4467 7.2243 6.3632 5.6948

Ref. [19] 14.6746 8.611 7.2886 6.3695 5.6635

0.4 Presentl 14.68 8.6147 7.2928 6.3757 5.672
Present2 14.6808 8.6152 7.2932 6.3763 5.6727

Ref. [19] 11.6778 8.0369 7.0405 6.3109 5.726

0 Presentl 11.6737 8.0342 7.0381 6.3092 5.7246
Present2 11.674 8.0342 7.04 6.3092 5.7247

Ref. [19] 12.0516 8.1431 7.1013 6.3433 5.7394

0.1 Presentl 12.0502 8.1424 7.101 6.3438 5.7405
Present2 12.0504 8.1426 7.1011 6.344 5.7407

Ref. [19] 12.4718 8.2541 7.1628 6.3738 5.7492

Type III 0.2 Present1 12.474 8.256 7.165 6.3772 5.7535
Present2 12.4744 8.2563 7.1653 6.3776 5.754

Ref. [19] 12.9492 8.3702 7.2245 6.4017 5.7541

0.3 Presentl 12.9558 8.3754 7.2299 6.4087 5.7628
Present2 12.9566 8.3759 7.2304 6.4094 5.7635

Ref. [19] 13.4981 8.4916 7.2858 6.4258 5.7525

0.4 Presentl 13.5106 8.5008 7.2954 6.4376 5.767
Present2 13.5117 8.5016 7.2962 6.4385 5.7681
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The contribution of the Present] and Present2 shape functions is primarily reflected in
their ability to accurately approximate complex porosity distributions with minimal error,
making them suitable for application in nonlinear analyses and optimization tasks, where
traditional models often exhibit limitations.

An analysis of the results clearly shows that an increase in the porosity parameter
B leads to a reduction in the fundamental frequencies for all porosity distribution types,
which can be attributed to the decrease in the material’s effective stiffness due to increased
porosity. Conversely, increasing the material gradient exponent N results in a continuous
decline in frequencies, because of the redistribution of mass and elastic modulus across the
plate thickness.

It is noteworthy that Presentl and Present? yield virtually identical values in most
cases, indicating the numerical consistency of both formulations. The minor deviations
observed at higher values of 8, and N further confirm the robustness of the proposed
models under more demanding engineering conditions.

In conclusion, the proposed porosity models represent a valid alternative to existing
approaches, exhibiting extremely small deviations and strong potential for improving
analytical and numerical models in engineering applications involving functionally graded
materials with porous structures.

The influence of the porosity volume fraction § and porosity distribution on the
fundamental dimensionless natural frequency of a square FGM plate is presented in
Figure 13, while Figure 14 illustrates the effect of the gradient exponent N for different
porosity distributions.
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Figure 13. Dependence of the fundamental frequency @ of the FGM plate on the porosity parameter
BatT=300K,N=0.5a/h=5.
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Figure 14. Dependence of the fundamental frequency w of the FGM plate on the exponent of the
stepwise porosity distribution N at T =300K, a/h =5, p=0.2.
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In Figure 13, the dependence of the frequency w on the porosity § is analyzed at a
fixed N = 0.5. Three different functional porosity distributions are considered: uniform
(Type I), linear (Type II), and trigonometric (Type III). The results show that an increase in
B leads to a rise in the natural frequency for all distributions, with the most pronounced
effect observed in the Type III distribution.

This behavior can be explained by the fact that the trigonometric distribution concen-
trates a larger amount of the solid (ceramic) component near the plate surfaces, contributing
to greater bending stiffness. The increase in w despite higher porosity is a result of the
nonuniform distribution of stiff and porous zones, where the effective mass decreases while
stiffness is maintained or even locally enhanced in critical bending regions. It should be
emphasized, however, that this trend is not universal; for different porosity models or
boundary conditions, stiffness degradation may dominate over mass reduction, leading to
decreasing frequencies with increasing f.

Figure 14 shows the dependence of w on the gradient exponent N at a constant poros-
ity f = 0.2. An increase in frequency is observed with the rise in N, which is explained
by the greater presence of the ceramic component in the upper region of the plate as N
increases. However, at higher values of N (e.g., N > 1.2), the curves reach a plateau, in-
dicating saturation of the effect of mass and stiffness redistribution. The trigonometric
distribution (Type III) consistently results in the highest frequency values across the entire
range of N, confirming its efficiency in localizing stiffness in regions of dominant defor-
mation. In contrast, uniform porosity (Type I) produces the lowest w values because the
evenly distributed porosity degrades stiffness throughout the plate thickness without local
optimization of bending resistance.

Overall, the results show that besides the porosity value g itself, the distribution of
the porous material has a dominant influence on the dynamic behavior. An appropriate
distribution (especially Type III), combined with a higher exponent N, enables achieving an
optimal balance between mass reduction and increased dynamic stability. These findings
can directly contribute to the development of FGM structures with improved vibration
performance in high-precision engineering applications.

Table 7 clearly demonstrates the high level of accuracy of the proposed shape functions
Present]l and Present2 within the HSDT formulation. The obtained non-dimensional
frequencies for higher modes show an almost perfect agreement with the reference 3D
exact solutions and existing HSDT models, with deviations consistently below 0.3% and
practically negligible.

Table 7. Non-dimensional fundamental frequencies @ of the square solar isotropic plate for several
mode numbers ata/h =10 and v = 0.3.

) Mode (1, m)

Source Theories 1) 2.2) 1,3) 3.3) 2.9
Present 1 HSDT 0.0930 0.3406 0.4151 0.6840 0.7453
Present 2 HSDT 0.0930 0.3406 0.4151 0.6839 0.7453
Reddy and Phan [49] FSDT 0.0930 0.3406 0.4149 0.6834 0.7446
Akavci and Tanrikulu [50] HSDT 0.0930 0.3407 0.4151 0.6841 0.7455
Srinivas et al. [51] 3D-Exact 0.0932 0.3421 0.4171 0.6889 0.7511
Mechab et al. [47] HSDT 0.0930 0.3406 0.4151 0.6839 0.7454
Kenada [19] LLHSDT 0.0930 0.3408 0.4153 0.6845 0.7460

Importantly, both functions yield identical results, confirming their numerical stability
and robustness. Compared to classical HSDT approaches, the Present functions provide
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an accurate description of transverse shear deformation without the need for additional
correction factors, while retaining a simple expression structure. This makes them well-
suited for further analytical and numerical applications.

Their use is therefore not only justified but also highly desirable, as they enhance the
accuracy of the model without increasing computational complexity.

Table 8 presents the non-dimensional fundamental frequencies of a square FGM plate
for various values of the material distribution parameter N. The results obtained using the
shape functions Presentl and Present2 show complete agreement. For all analyzed values
of N, these results closely match the existing HSDT models available in the literature.

Table 8. Non-dimensional fundamental frequencies of the square FGM plate Al-Al,O3 for several
power-law parameters ata/h = 5.

Source Theories N=05 N=1 N=4 N=10
Present 1 HSDT 0.1807 0.1631 0.1378 0.1301
Present 2 HSDT 0.1807 0.1631 0.1379 0.1301
Ref. [19] LLHSDT 0.1808 0.1632 0.1377 0.1300
Ref. [49] FSDT 0.1805 0.1631 0.1397 0.1324
Ref. [50] TOSDT 0.1807 0.16321 0.1378 0.1301
Ref. [47] HSDT 0.1807 0.1631 0.1378 0.1301
Ref. [52] HSDT 0.1807 0.1632 0.1375 0.1303
Ref. [53] HSDT 0.1811 - 0.1389 0.1305

A stable performance of the proposed functions is observed with increasing non-
linearity in the material gradient, which becomes especially evident at higher values of
N, where the ceramic component is more significantly concentrated toward the surfaces.
The deviation from the FSDT model increases with rising N, indicating the limitations of
simplified theories in capturing the more complex transverse response. In contrast, the
results based on the Present functions remain within expected bounds when compared
with higher-order theories.

This consistency suggests that the proposed shape functions enable an accurate
representation of the influence of variable material property distributions within the
analytical model.

Table 9 presents the influence of different porosity distributions on the non-
dimensional fundamental frequencies of an FGM plate, considering three values of the
power-law exponent N and three levels of total porosity, represented by the parameter .
The results across all porosity types (Type I—uniform, Type II—linear, and Type III—cosine)
demonstrate that the Presentl and Present2 shape functions yield solutions in full agree-
ment with the reference values, maintaining consistency regardless of porosity level or
distribution profile.

Notably, with increasing B, the frequency values for Type I distribution exhibit a more
pronounced decline compared to Type II and Type III, indicating a higher sensitivity of
uniform porosity to reductions in the system’s mechanical stiffness. In the domain of
higher N values, where the ceramic component is more concentrated near the surface, the
distinctions between the porosity types become more significant.

The presence of more complex porosity distributions (Type II and Type III) is clearly
reflected in the frequency behavior due to the mass and stiffness redistribution, with the
Present functions accurately capturing these effects. This confirms the validated appli-
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cability of the proposed model even in scenarios where porosity effects are nonlinearly
distributed through the plate thickness.

Table 9. Effect of porosity distributions on the non-dimensional fundamental frequencies of the
square FGM plate Al-Al,Oj3 for several power-law parameters at a/h = 10.

B Source Dii‘r’irl‘)’fl‘:iins N =01 N =05 N=1

Present 1 0.1120 0.0959 0.0823

Present 2 0.1120 0.0959 0.0823

FSDT [54] 0.1123 0.0951 0.0824

Ref. [19] 0.1120 0.0959 0.0823

Present 1 0.1122 0.0984 0.0876

0.2 Present 2 0.1122 0.0984 0.0876
————— Typell

FSDT [54] ype 0.1126 0.0986 0.0879

Ref. [19] 0.1122 0.0984 0.0876

Present 1 0.1118 0.0985 0.0883

Present 2 Type III 0.1118 0.0985 0.0883

Ref. [19] 0.1118 0.0985 0.0880

Present 1 0.1163 0.0947 0.0713

Present 2 0.1163 0.0947 0.0713

FSDT [54] 0.1166 0.0949 0.0714

Ref. [19] 0.1163 0.0947 0.0713

Present 1 0.1157 0.1008 0.0883

0.4 Present 2 0.1157 0.1008 0.0883
————— Typell

FSDT [54] ype 0.1162 0.1011 0.0887

Ref. [19] 0.1157 0.1007 0.0883

Present 1 0.1148 0.1009 0.0900

Present 2 Type III 0.1148 0.1009 0.0900

Ref. [19] 0.1147 0.1009 0.0899

Present 1 0.1234 0.0908 0.0102
—_— TypeI

Present 2 0.1234 0.0908 0.0102

Present 1 0.1200 0.1036 0.0887
06 ——————  Typell

: Present 2 0.1200 0.1036 0.0888

Present 1 0.1180 0.1036 0.0916
—— Typell

Present 2 0.118 0.1036 0.0917

Figure 15 illustrates the dependence of the non-dimensional fundamental frequency
on the porosity volume fraction 8 for three different porosity distributions (Type I, II, and
III), at a constant aspect ratio of a/h = 10 and a fixed power-law index of N = 0.1. The
diagram clearly confirms that the frequency increases with rising 3 for all distribution types,
which is a direct consequence of the reduction in effective material mass due to porosity,
while the stiffness remains the dominant factor. The differences among the distributions
become more pronounced at higher § values, with Type II and Type III showing higher
frequencies compared to Type I, implying a more favorable pore arrangement in terms
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of dynamic response. This behavior should be interpreted in the context of the present
modeling assumptions; under different porosity patterns or boundary conditions, the
reduction in stiffness may become more dominant, in which case the natural frequencies
could decrease with increasing 3.
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Figure 15. Effect of porosity volume fraction 8 on the non-dimensional fundamental frequency ’w of
a square FGM plate (a/h = 10) with different porosity distributions (Type I, II, IIT) at N = 0.1.

This diagram not only validates the mechanical sensitivity of FGM plates to the poros-
ity distribution profile but also highlights the potential for design optimization through
controlled pore allocation, thereby enabling the development of structures with tailored
dynamic characteristics.

Figure 16 analyses the influence of the power-law index N on the fundamental fre-
quency under a fixed porosity volume fraction of § = 0.2. For all porosity types, a distinct
nonlinear decrease in frequency is observed as the material transitions from a homogeneous
to a highly graded distribution (from low to high N values), which gradually stabilizes
beyond N > 10. This effect can be attributed to the redistribution of mass and stiffness
within the FGM plate: higher N values lead to a dominant metallic phase (Al) toward the
mid-thickness, reducing overall stiffness and thus lowering the resonant frequency.
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Figure 16. Variation in the non-dimensional fundamental frequency 'w with power-law index N for
different porosity distributions in a square Al-Al,O3 FGM plate (a/h =10, § =0.2).

Type III distribution exhibits slightly elevated frequency values across the entire N
range, indicating that a specific porosity profile can mitigate the adverse effect of stiffness
degradation at high gradient levels. The diagram provides a quantitative insight into the
interrelationship between material gradient index and porosity distribution, which is of
critical importance for the design of advanced FGM systems subjected to dynamic loading.
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The bar chart shown in Figure 17 illustrates the influence of different porosity distribu-
tions (Type 1, II, and III) on the non-dimensional fundamental frequency of a functionally
graded Al-Al, O3 plate, for a fixed aspect ratio of a/h = 10, a constant porosity volume
fraction § = 0.4, and three characteristic material gradient indices (N = 0.1, 0.5, 1). It is
clear that an increase in the gradient parameter N, which models a progressive transition
from the ceramic to the metallic component through the thickness of the plate, leads to a
systematic decrease in the natural frequency for all porosity distribution types.

Effect of Porosity Distribution on Frequency at 3= 0.4
0.14 T T T

0.12
N = 0.1

N - 05
=

Mon-dimensional Freguency

"

Type | Type ll Type lll
Porosity Distribution

Figure 17. Effect of porosity distribution on the non-dimensional fundamental frequency of a square
Al-Al,O3 FGM plate (a/h = 10) at B = 0.4 for different power-law indices N.

The most significant frequency reduction is observed for Type I distribution, suggest-
ing that a uniform distribution of porous defects through the thickness further amplifies the
degradation of the effective stiffness as the metallic phase becomes more dominant. In con-
trast, Type Il and especially Type III distributions, which introduce linear and trigonometric
non-uniformity in the porosity profile, respectively, demonstrate a more stable frequency
response with changes in N. Type III exhibits the smallest frequency reduction gradient
with increasing N, indicating potentially more favorable mechanical performance in terms
of vibrational stability. This behavior can be attributed to the redistribution of mass and
stiffness that mitigates localized zones of reduced rigidity.

Such analysis provides both quantitative and qualitative insight into the complex
interdependence between porosity distribution, material gradient profile, and vibrational
characteristics of FGM structures. Consequently, it can serve as a foundation for design opti-
mization in engineering applications where dynamic performance is of critical importance.

The present study has been restricted to linear free vibration analysis, which is appro-
priate for small amplitude oscillations where linear kinematics provide accurate predictions.
However, in applications involving large deflections, high mechanical loads, or severe ther-
mal environments, nonlinear effects such as geometric nonlinearity and material plasticity
may become significant. A systematic extension of the present formulation to nonlinear
vibration analysis, including amplitude-dependent frequency shifts and stability considera-
tions, represents a natural direction for future research.

7. Conclusions

In this study, a theoretical model is developed for the free vibration analysis of func-
tionally graded material (FGM) plates resting on elastic foundations, introducing two
novel shape functions within the framework of the higher-order shear deformation theory
(HSDT). The proposed functions are carefully constructed to satisfy physically consistent
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conditions of zero transverse shear stress on free surfaces, enabling accurate modelling of
transverse deformations without resorting to shear correction factors. Their form encom-
passes combined nonlinear effects of property gradation and porosity, thereby enhancing
the description of complex deformation fields in FGM plates.

Based on these functions, a complete variational formulation of the dynamic problem
is derived, incorporating temperature effects, porosity, and elastic foundation models in-
cluding Winkler, Pasternak, and Kerr foundations. Numerical computations are performed
using original MATLAB codes developed specifically for this work, ensuring full control
over formulation, discretization, and eigenvalue problem solving.

The obtained results confirm the accuracy and stability of the proposed shape functions
through detailed comparisons with existing theories, showing a high degree of agreement
across all tested configurations. Notably, the influence of porosity distribution shape on the
effective stiffness distribution is observed, where the trigonometric porosity model allows
stiffness localization near the surfaces, thereby improving the dynamic response.

Analyses demonstrate that increasing porosity and gradient exponent systematically
decreases the fundamental frequencies, while saturation effects are noted at higher values of
these parameters, an insight important for engineering optimization. The impact of elastic
foundation parameters is examined in detail, revealing that variations in layer stiffness and
shear interaction allow precise control over the plate’s dynamic behavior.

The model is successfully validated for various material combinations, including
porous ceramic—metal FGM structures, under different thermal conditions and geome-
tries. Based on these findings, the proposed model with new shape functions provides a
reliable foundation for vibration analysis of functionally graded structures, especially in
applications involving complex thermomechanical loading such as solar absorbers, thermal
insulation barriers, and support components in high-energy systems.

Although the proposed model provides accurate predictions of vibration characteris-
tics, it is necessary to emphasize its limitations. The formulation is based on linear kinematic
assumptions and does not account for large deformation effects or material plasticity, while
porosity is represented by idealized distributions (uniform, linear, and trigonometric). In
addition, damping effects and interactions with the surrounding fluid medium are not
considered, which defines the scope of applicability of the model and indicates directions
for future research.

Future research may extend to nonlinear vibration analysis, damping effects, multi-
physics coupling, and experimental validation of numerical predictions, aiming to further
confirm the model’s practical applicability.
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