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Abstract 

In a dynamic and uncertain environment, maintaining a high level of business process 
(BP) reliability represents a key long-term objective for organizations. The manufacturing 
process, as the most critical business process in manufacturing enterprises, is emphasized 
due to its potential to cause significant disruptions across other BPs if it fails. This paper 
proposes a two-stage model. In the first stage, failures leading to lean waste are evaluated 
and ranked using the Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) combined with interval-valued intuitionistic fuzzy numbers (IVIFNs), referred 
to as IF-TOPSIS. The model is grounded in the Failure Mode and Effect Analysis (FMEA) 
framework. In the second stage, a modified fuzzy logic system with IVIFN-based rules is 
applied to determine the risk level of the manufacturing process. This approach is based 
on the property of symmetry in the decision-making process, ensuring that criteria are 
treated in a balanced manner and inference rules are applied consistently. A case study 
based on real-life data demonstrates that the obtained results identify measures that can 
enhance business strategy and reduce failure rates. Thus, the model is validated and 
shown to contribute to lean waste reduction. It can be concluded that the proposed 
methodology provides clear and practical guidance to enterprise management, as well as 
to all sectors and individuals involved in ensuring a reliable manufacturing process, for 
defining failure priorities and implementing preventive measures. 

Keywords: manufacturing; risk level; intuitionistic fuzzy sets; IF-TOPSIS; IF-fuzzy logic 
rules 
 

1. Introduction 
Technological advancements in recent decades have rapidly impacted consumer 

habits and needs, leading to constant changes in the market. These ongoing market 
changes are seen as key drivers of economic development, particularly for companies, 
with small and medium-sized enterprises (SMEs) benefiting significantly. The importance 
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of SMEs in developed countries is reflected in their role in promoting employment, 
generating new value, increasing gross domestic product, and more. Achieving strategic 
goals, such as long-term business stability and maintaining a market position in the 
production sector, can be supported, among other factors, by enhancing manufacturing 
reliability, which represents a key business process. Different definitions of business 
process reliability have influence on their assessment in real business organizations. The 
reliability of manufacturing processes is essential for ensuring stable system operation, 
improving product quality, and reducing production losses. The aforementioned issues 
have not allowed a presence of the scientific consensus on the unified elements of business 
process reliability, nor an appropriate methodology for its comprehensive assessment. 

In the relevant literature, there are differing views regarding the aspects of business 
with which manufacturing process reliability is most closely associated. Naturally, this 
also depends on the perspective from which the problem is examined. Some authors [1,2] 
argue that manufacturing process reliability is best reflected through its connection with 
generated costs. An alternative approach links manufacturing process reliability to quality 
improvement, considering it from a quality management perspective [3]. However, in a 
large number of analyzed studies, the issue has been observed through the perspective of 
failure analysis within the manufacturing process [4,5]. This approach is rooted in an 
engineering perspective and focuses on ensuring the conditions for uninterrupted 
execution of the manufacturing process. 

All of these aspects align with the formal goal of lean manufacturing: achieving well-
balanced production. The motivation for this research comes from the belief that 
manufacturing reliability is greatly affected by generating waste in production. The 
results of best practice indicate that each form of waste is generally caused by various 
types of failures. There are no established rules or guidelines, either in the literature or 
practice, for identifying failures specific to a lean waste type. In most cases, the 
identification of failures depends on the expertise of operational management, as is the 
case in this paper. 

Reducing or eliminating the impact of identified failures that lead to waste 
generation can be achieved by applying different quality tools and methods. In practice, 
due to limited resources, it is realistic to assume that several quality methods cannot be 
conducted at the same time. Some authors [6] recommend focusing efforts on reducing or 
eliminating the top three ranked wastes. Ranking can be performed through surveys and 
the weighted average method, where each waste type is assigned a specific weight. 
Furthermore, the identification and prioritization of the most significant wastes can be 
achieved using Multi-Attribute Decision-Making (MADM) methods [7]. 

The goal of this research is to propose a model for analyzing and assessing the risk 
level arising from failures that generate waste, as described by the lean manufacturing 
approach, at the enterprise level. The assessment of identified failures is based on the 
Failure Mode and Effect Analysis (FMEA) framework. Considering the nature of human 
thinking, it can be argued that decision-makers (DMs) are more comfortable expressing 
their evaluations using natural language, rather than precise numerical values. In line 
with this, the development of different mathematical theories, such as the theory of 
intuitionistic fuzzy sets [8], has enabled a more effective representation of uncertainty, 
imprecision, and vagueness. In this paper, all existing uncertainties describing the relative 
importance of risk factors (RFs) and their values are modeled using interval-valued 
intuitionistic fuzzy sets (IVIFSs) [9]. 

The rank of failures under each lean waste is given in an exact way by using the 
proposed TOPSIS method with interval-valued intuitionistic fuzzy numbers (IVIFNs)—
IF-TOPSIS. This approach reduces the influence of DMs’ biases on the obtained rankings. 
While many studies have proposed IF-TOPSIS methods [10–12], the relevant literature 
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lacks research that applies IF-TOPSIS specifically to prioritize failures within the 
manufacturing process. The main difference between the developed IF-TOPSIS model in 
this research and those found in the literature [13–15] lies in the construction of the fuzzy 
decision matrix, and the method used to determine the closeness coefficient (a standard 
step of the TOPSIS method based on which the ranking of alternatives is performed). In 
this study, RFs are evaluated by the FMEA team based on their type, which eliminates the 
need for normalizing RF values and considerably reduces computational effort. The 
Euclidean distance between the fuzzy positive ideal solution (FPIS) and the fuzzy negative 
ideal solution (FNIS) is commonly used in the literature [16]. However, in this paper, the 
Hamming distance is used. It should be noted that the choice of distance can be seen as a 
problem in itself. 

Best practice results have shown that the selection of an appropriate quality method 
depends not only on the priority of failures but also on the overall risk level of the 
manufacturing process. Therefore, in this paper, the risk level of the manufacturing 
process is determined using the Mamdani fuzzy inference system with IVIFNs, based on 
min-compositional rules by analogy [17]. In the literature, there are a few fuzzy 
production rules where uncertain data are described by IVIFNs [18]. The mentioned can 
be seen as one of the main contributions of the work in the theoretical domain. 

On the other hand, from a practical perspective, this study contributes to this by 
providing a guide for quality managers in SMEs, which is based on linking lean waste 
with the underlying causes that lead to the occurrence of failures in the manufacturing 
process. In this way, the research contributes to reducing lean waste, improving the 
reliability of the manufacturing process, and enhancing decision-making stability in a 
dynamic and uncertain environment. 

For the purpose of conducting an objective and sufficiently reliable risk analysis in 
the manufacturing process, it is important that all considered criteria, in this case RFs, are 
treated in a balanced and consistent manner. In practice, this does not mean that the 
criteria should have the same weight, but rather that the weight of each criterion 
proportionally influences the final results, in accordance with its importance. In this way, 
a fairer and more objective risk assessment is ensured, thereby overcoming one of the key 
shortcomings of the FMEA related to the importance of RFs. For this reason, in this paper, 
the emphasis is placed on the property of symmetry, which ensures consistent application 
of decision-making rules and contributes to the stability of decisions. Particularly in SMEs, 
which operate in an uncertain and dynamic environment, the property of symmetry 
enables the decision-making process to be easily repeated under similar conditions, while 
the results remain stable. 

The property of symmetry is also present in the production rules. In this specific case, 
symmetry in fuzzy inference means that the IF-THEN rules are arranged such that any 
change in the order of these rules or the sequence of input data does not alter the output, 
i.e., the result remains unchanged. The outcome is always consistent for any input value, 
regardless of the order in which it is processed. 

The paper is organized in the following way: Section 2 presents a literature review. 
The methodology and the proposed model are presented in Section 3. The case study is 
presented in Section 4. The conclusion is given in Section 5. 

2. Literature Review 
In order to better review the literature, this section is divided into three subsections. 

In the first subsection, the basic considerations regarding the reliability of manufacturing 
process management are presented. In the second, studies in which the authors applied 
the IF-TOPSIS approach are shown. In the third subsection, papers in which production 
rules were used are discussed. 
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2.1. Basic Consideration About Reliability of Manufacturing Process Management 

In addition to continuous improvement and maintaining the reliability of business 
processes, it is essential that these processes remain adaptable to unexpected situations 
and challenges. A significant number of studies have focused on evaluating and 
improving the reliability of manufacturing processes. 

Well-maintained reliability of business processes can be considered a cost-effective 
approach to preventing process failures [1]. Additionally, in the relevant literature, 
business process reliability has been analyzed from the perspectives of modeling and 
optimization [19]. The method proposed in the research utilizes a communication network 
of probabilistic graphs and further analyzes and simulates the business process network 
model using system dynamics. 

The analysis of process faults and determining the most effective methods for their 
elimination can be based on different methods, such as the extended FMEA approach and 
a fault classification system [4]. In this research, a Bayesian Belief Network was utilized to 
analyze these faults. Additionally, a reliability analysis module was developed 
specifically for machinery manufacturing enterprises, aimed at increasing the reliability 
of selected production routes. 

Improving the effectiveness of the manufacturing process in SMEs can be achieved 
by enhancing the quality of this business process. Some authors have proposed a model 
for improving quality management through the assessment and ranking of 
manufacturing subprocesses with respect to key performance indicators [3]. 

In this paper, it is assumed that increasing the reliability of the manufacturing 
process can be achieved by reducing its risk level through lean waste reduction. 

2.2. IF-TOPSIS 

Although IVIFNs have been applied in the literature in combination with various 
MADM methods [20,21], it should be noted that the TOPSIS method is the most widely 
used. Furthermore, it should be emphasized that there are very few studies in which the 
failure ranking of the manufacturing process has been carried out based on IF-TOPSIS 
[22]. A comparative analysis of existing models and the proposed research is presented in 
Table 1 and constitutes an extension of the analysis conducted in [23]. 

Table 1. Literature review of IF-TOPSIS. 

Reference A B C D E 

[16] 4/- 5/12/IVIFWA/- 

Combining the procedure 
proposed in conventional 
TOPSIS and fuzzy algebra 
rules with IVIFNs 

Normalized Euclidean 
distance  
[24] 

Supplier selection 

[10] 15/7 
16/crisp/-/vector 
normalization 
procedure 

Procedure by TOPSIS 
Normalized Euclidean 
distance [24] 

Sustainability 
performance of 
alternative vehicle 
technologies 

[14] 6/- 5/-/IFWA [25]/- 

Combining the procedure 
proposed in conventional 
TOPSIS and fuzzy algebra 
rules with IVIFNs 

The proposed procedure 
based on using 
IFOWAWAD  
[14]/crisp 

Investment selection 

[11] 6/- 
4/-/-/the 
proposed 
procedure 

The proposed procedure 

The aggregated connection 
numbers/the proposed 
procedure/ 
crisp 

Illustrative example 
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[13] 9/5 9/10/-/- 

Combining the procedure 
proposed in conventional 
TOPSIS and fuzzy algebra 
rules with IVIFNs 

Normalized Euclidean 
distance [24] 

Supplier selection 

[15] 14/ 
crisp 

3/5/IVIFWA 
[26]/- 

Combining the procedure 
proposed in conventional 
TOPSIS and fuzzy algebra 
rules with IVIFNs 

Normalized Euclidean 
distance  
[24] 

Supplier selection 

[12] 6/- 

4/-/-/the 
proposed 
normalization 
procedure 

The proposed procedure 
Exponential  
distance measures [12] Location selection 

[23] 3/9 

8/7/IVIFWG/ 
normalization 
procedure by 
[11] 

Procedure 
by [27] 

The normalized 
Euclidean 
Distance [28] 

Quality Performance 
Indicators 

[5] 3/5 9/7-11/- IF-Hybrid Weighted 
Euclidean Distance 

Conventional TOPSIS 
method 

Hazards in turbine 
and alternator unit 

The proposed 
model 

3/3 6/5/consensus/- 

Combining the procedure 
proposed in conventional 
TOPSIS and fuzzy algebra 
rules with IVIFNs 

Hamming [24]/ 
crisp 

Ranking of failures in 
manufacturing 
process 

Legend: A—number of criteria/number of linguistic expressions; B—number of 
alternatives/number of linguistic expressions/aggregation operator/normalization; C—IFPIS and 
IFNIS; D—closeness coefficient; E—application domain. 

A comparative analysis (see Table 1) reveals certain differences between them. First, 
the differences from the perspective of criteria analysis are as follows: (1) The selection of 
criteria is based on the assessment of DMs as well as the literature sources. In this research, 
the criteria (in this case RFs) are defined using the FMEA framework. (2) The assessment 
of the relative importance of criteria and their values is based on predefined linguistic 
expressions in this research. (3) In all analyzed papers, the determination of criteria 
weights is treated as a fuzzy group decision-making problem, where aggregated DM 
opinions are obtained using an intuitionistic fuzzy weighted averaging (IVIFWA) 
operator. In contrast, this research proposes an intuitionistic fuzzy weighted geometric 
(IVIFWG) operator. 

The analysis of the relevant literature reveals that fuzzy decision matrices are defined 
in various ways: (1) determining matrix values—in several studies [10–13], as well as in 
this research, the values of the elements in the fuzzy decision matrix are determined based 
on the consensus of DMs; and (2) consideration of criteria type—many authors [13–16] 
emphasize that DMs should take into account the type of criteria when performing 
assessments. This approach eliminates the need for normalization procedures, thereby 
significantly reducing computational complexity. That approach is also adopted in this 
paper. 

Almost all authors suggest that the definition of IF-PIS and IF-NIS should be based 
on combining the procedure proposed in conventional TOPSIS with fuzzy algebra rules 
using IVIFNs, as applied in this research. The closeness coefficient is determined based on 
the following: (i) the overall “identity degree” and the overall “contrary degree” [11]; (ii) 
the intuitionistic fuzzy ordered weighted averaging distance (IFOWAWA) [14] and the 
distance between two IVIFNs; and (iii) distance measures such as the normalized 
Euclidean distance [5,23], exponential distance measures [12], and the Hamming distance, 
as considered in this research. 
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2.3. Production Rules 

In many real-world problems, imperfect and imprecise information is an inherent 
aspect of the problem itself. Continuing the reasoning process without appropriate 
modeling tools can lead to inaccurate inferences [29]. Key components of fuzzy/linguistic 
IF-THEN rules are evaluative linguistic expressions [30]. These expressions, often drawn 
from natural language, are used when it is necessary to evaluate a decision-making 
situation, describe the development of a process, or address various other complex 
scenarios [17]. 

Generally, there are two main types of fuzzy inference systems: Mamdani and TSK, 
which differ in their representation and output evaluation. In this research, we assume 
the use of a Mamdani fuzzy inference system. The input data are described by uncertain 
numbers [31,32], which are aggregated into a single precise value, referred to as the overall 
index. Based on the obtained overall index value, the uncertain output variable values are 
determined using the defined production rules. When uncertain numbers are modeled by 
type-1 fuzzy numbers, the max composition rule is applied. However, when fuzzy 
numbers with multiple membership functions are used, the production rules rely on the 
min composition rule [18]. 

3. Methodology 
This section provides: (1) basic definitions of IVIFNs to facilitate understanding of 

the proposed algorithm, (2) the problem statement, and (3) extended IF-TOPSIS. 

3.1. Basic Definitions of Intuitionistic Fuzzy Sets 

All the mentioned definitions and properties of intuitionistic fuzzy sets and IVIFSs 
were adopted and adapted from [8]. The extensions related to basic mathematical 
operations with IVIFNs were adopted and adapted from [9], while the procedure for 
determining the Hamming distance between two IVIFNs was adopted from [33]. 

Definition 1. An intuitionistic fuzzy set 𝐴ሚ in the universe of discourse X is defined with the form [8]: 𝐴ሚ = ሺ𝑥, 𝜇஺෨ሺ𝑥ሻ,𝜗஺෨ሺ𝑥ሻ|𝑥 ∈ 𝑋ሻ (1) 

where 
The numbers 𝜇஺෨ሺ𝑥ሻ → ሾ0,1ሿ  and  𝜗஺෨ሺ𝑥ሻ → ሾ0,1ሿ  denote the membership degree and non-

membership degree. 
With the condition 0 ≤ 𝜇஺෨ሺ𝑥ሻ + 𝜗஺෨ሺ𝑥ሻ ≤ 1, ∀𝑥 ∈ 𝑋 (2) 

for each intuitionistic fuzzy set 𝐴ሚ from set X, the following holds: 𝜋஺෨ሺ𝑥ሻ = 1 − 𝜇஺෨ሺ𝑥ሻ − 𝜗஺෨ሺ𝑥ሻ (3) 

0 ≤ 𝜋஺෨ሺ𝑥ሻ ≤ 1, ∀𝑥 ∈ 𝑋 (4) 

The value of 𝜋஺෨ሺ𝑥ሻ is called the degree of indeterminacy (or hesitation). The smaller 𝜋஺෨ሺ𝑥ሻ, 
more certain 𝐴ሚ. 
Definition 2. Let a set 𝑋 = ሼ𝑥ଵ, … . , 𝑥௡ሽ be auniverse of discourse, an IVIFS 𝐴ሚ in X is an object 
having the form: 𝐴ሚ = ሺ𝑥, 𝜇஺෨ሺ𝑥ሻ,𝜗஺෨ሺ𝑥ሻ|𝑥 ∈ 𝑋ሻ (5) 

where 
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𝜇஺෨ሺ𝑥ሻ = ൣ𝜇஺෨௅ሺ𝑥ሻ, 𝜇஺෨௎ሺ𝑥ሻ ൧ ∈ ሾ0,1ሿ (6) 

𝜗஺෨ሺ𝑥ሻ = ൣ𝜗஺෨௅ሺ𝑥ሻ,𝜗஺෨௎ሺ𝑥ሻ ൧ ∈ ሾ0,1ሿ (7) 

Are intervals denoting the membership and the non-membership degrees of the element 𝑥 ∈𝑋 to 𝐴ሚ with the condition: 𝜇஺෨௎ሺ𝑥ሻ + 𝜗஺෨௎ሺ𝑥ሻ ≤ 1 and  𝜇஺෨௅ + 𝜗஺෨௅ ≤ 1 (8) 

Similarity, the hesitancy degree of x to 𝐴ሚ can be calculated as: 𝜋஺෨ሺ𝑥ሻ = ൣ𝜋஺෨௅ሺ𝑥ሻ,𝜋஺෨௎ሺ𝑥ሻ ൧ = ൣ1 − 𝜇஺෨௅ሺ𝑥ሻ − 𝜗஺෨௅ሺ𝑥ሻ, 1 − 𝜇஺෨௎ሺ𝑥ሻ − 𝜗஺෨௎ሺ𝑥ሻ൧ (9) 

An interval-valued intuitionistic fuzzy number (IVIFN) can be simply denoted as: 𝐴ሚ = ሺሾ𝑎, 𝑏ሿ, ሾ𝑐,𝑑ሿሻ (10) 

where 0 ≤ 𝑎 ≤ 𝑏 ≤ 1 and 0 ≤ 𝑐 ≤ 𝑑 ≤ 1 and 𝑏 + 𝑑 ≤ 1 

Definition 3. Let 𝐴ሚ = ሺሾ𝑎ଵ,𝑏ଵሿ, ሾ𝑐ଵ,𝑑ଵሿሻ  and 𝐵෨ = ሺሾ𝑎ଶ,𝑏ଶሿ, ሾ𝑐ଶ,𝑑ଶሿሻ  be two positive IVIFNs. 
And λ is a real positive number. The operations of these IVIFNs are [9]: 𝐴 ෩ + 𝐵෨ = ሺሾ𝑎ଵ + 𝑎ଶ − 𝑎ଵ ∙ 𝑎ଶ,𝑏ଵ + 𝑏ଶ − 𝑏ଵ ∙ 𝑏ଶሿ, ሾ𝑐ଵ ∙ 𝑐ଶ,𝑑ଵ ∙ 𝑑ଶሿሻ (11) 

𝐴 ෩ ∙ 𝐵෨ = ሺሾ𝑎ଵ ∙ 𝑎ଶ, 𝑏ଵ ∙ 𝑏ଶሿ, ሾ𝑐ଵ + 𝑐ଶ − 𝑐ଵ ∙ 𝑐ଶ,𝑑ଵ ∙ 𝑑ଶሿሻ (12) 

λ ∙ 𝐴ሚ = ൫ൣ1 − ሺ1 − 𝑎ሻఒ, 1 − ሺ1 − 𝑏ሻఒ൧, ൣ𝑐ఒ,𝑑ఒ൧ ൯ (13) 

൫𝐴 ෩൯ఒ = ൫ൣ𝑎ఒ, 𝑏ఒ൧, ൣ1 − ሺ1 − 𝑐ሻఒ, 1 − ሺ1 − 𝑑ሻఒ൧൯ (14) 

ሩ൫𝐴 ෩ ,𝐵 ෩ ൯ = ሺሾ𝑚𝑖𝑛ሺ𝑎ଵ,𝑎ଶሻ,𝑚𝑖𝑛ሺ𝑏ଵ,𝑏ଶሻሿ, ሾ𝑚𝑎𝑥ሺ𝑐ଵ, 𝑐ଶሻ,𝑚𝑎𝑥ሺ𝑑ଵ,𝑑ଶሻሿሻ (15) 

ራ൫𝐴 ෩ ,𝐵 ෩ ൯ = ሺሾ𝑚𝑎𝑥ሺ𝑎ଵ,𝑎ଶሻ,𝑚𝑎𝑥ሺ𝑏ଵ, 𝑏ଶሻሿ, ሾ𝑚𝑖𝑛ሺ𝑐ଵ, 𝑐ଶሻ,𝑚𝑖𝑛ሺ𝑑ଵ,𝑑ଶሻሿሻ (16) 

Definition 4. Let 𝐴ሚ = ሺሾ𝑎ଵ,𝑏ଵሿ, ሾ𝑐ଵ,𝑑ଵሿሻ  and 𝐵෨ = ሺሾ𝑎ଶ,𝑏ଶሿ; ሾ𝑐ଶ,𝑑ଶሿሻ  be two IVIFNs. The 
Hamming distance is [33]: 𝑑 ൫𝐴ሚ,𝐵෨൯ = 14 ∙ ሼ|𝑎ଵ − 𝑎ଶ| + |𝑏ଵ − 𝑏ଶ| + |𝑐ଵ − 𝑐ଶ| + |𝑑ଵ − 𝑑ଶ|ሽ (17) 

3.2. The Problem Statement 

The types of waste observed in manufacturing enterprises, as defined by lean 
manufacturing, are formally represented by the set {1, … , 𝑙, … 𝐿} . The total number of 
considered types of lean waste is denoted by 𝐿, and 𝑙, 𝑙 = 1, . . . , 𝐿 is index of lean waste. 
The types of lean waste are as follows [34]: Transportation (𝑙 = 1 ), Inventory (𝑙 = 2 ), 
Motion (𝑙 = 3), Waiting (𝑙 = 4), Overprocessing (𝑙 = 5), Overproduction (𝑙 = 6), Defects 
(𝑙 = 7) and Unused employee creativity (𝑙 = 8), which are defined by [35]. 

The number and type of failures from the aspect of each considered type of lean waste 𝑙, 𝑙 =  1, … , 𝐿 are determined by DMs (production manager, FMEA leader, and quality 
manager). Identification lists of failures are based on the knowledge and experience of 
DMs. Formally identified failures from the aspect of each type of waste can be represented 
by a set of indices {1, … , 𝑖, …  𝐼}. The total number of identified failures is denoted as 𝐼, 
and 𝑖, 𝑖 =  1, … , 𝐼 is the index of failure. The estimation of failures can be performed with 



Symmetry 2025, 17, 1535 8 of 19 
 

 

respect to multiple RFs, which can be formally represented by a set of indices {1, … , 𝑘, …  𝐾}. The total number of RFs is denoted as 𝐾. The index of RF is 𝑘, 𝑘 =  1, … ,𝐾. 
In this research, respecting the FMEA framework, identified failures are evaluated 

according to three RFs: severity of consequence (𝑘 = 1), frequency of failure (𝑘 = 2), and 
difficulty of detecting failure (𝑘 = 3), analogous to the FMEA method [36]. 

The uncertain relative importance of criteria is assessed in a direct way by DMs 
originating from the group of considered SMEs that are formally represented by a set of 
indices {1, … , 𝑒, …  𝐸}. The total number of SMEs is denoted as E, and e, e = 1, ..., E is index 
of SME. 

At the level of one SME, DMs make a decision by consensus. They use three pre-
defined linguistic terms which are modeled IVIFSs [37]: 

• low importance (Ωଵ)—(ሾ0.75, 0.85ሿ, ሾ0.1, 0.15ሿ) 
• medium importance (Ωଶ)—(ሾ0.45, 0.65ሿ, ሾ0.25, 0.35ሿ) 
• high importance (Ωଷ)—(ሾ0.9, 0.95ሿ, ሾ0, 0.05ሿ) 

The importance of the considered SMEs is estimated according to the profit growth 
during the last 5 years of business, and it is denoted as 𝜔௘ , 𝑒 = 1, . . . ,𝐸. RF weights are 
given by using IVIFWG operator [25]. 

It is supposed that the RF values could be adequately described by using 5 linguistic 
expressions which are modeled by IVIFNs: 

• very low value (VL)—(ሾ0.7, 0.8ሿ, ሾ0.15, 0.2ሿ) 
• low value (L)—(ሾ0.75, 0.85ሿ, ሾ0.1, 0.15ሿ) 
• medium value (M)—(ሾ0.45, 0.55ሿ, ሾ0.4, 0.45ሿ) 
• high value (H)—(ሾ0.5, 0.6ሿ, ሾ0.35, 0.4ሿ) 
• very high value (VH)—(ሾ0.8, 0.9ሿ, ሾ0.05, 0.1ሿ) 

Fuzzy rating of the RF values with respect to type is performed at the level of each 
lean waste 𝑙, 𝑙 =  1, . . . , 𝐿 , taking into account the type of RF. In this way, it can be 
considered that all considered RFs benefit the type, and it is not necessary to perform 
normalization. 

The weighted fuzzy decision matrix is constructed. The elements of this matrix are 
calculated as the product of RF values and its weight, and they are described by IVIFNs 
too, according to fuzzy algebra rules. Intuitionistic fuzzy positive ideal solution (IF-PIS) 
and intuitionistic fuzzy negative ideal solution (IF-NIS) are determined by [38]. The 
distance from IF-PIS and IF-NIS are determined by the Hamming distance [33]. The 
closeness coefficient is given by using the procedure proposed in conventional TOPSIS 
[39]. Its values are described by precise numbers and sorted in decreasing order. The rank 
of failures is determined according to closeness coefficient values. In this way, the failure 
at the level of each lean waste that has the greatest impact on the reliability of the 
manufacturing process in the considered SME is determined. 

The overall risk index is determined as union IVIFSs, which describe the weighted 
values of failures that are ranked first in terms of each lean waste. According to fuzzy 
algebra rules [9], the overall risk index is described by IVIFNs, too. The risk level can be 
described by three linguistic expressions and corresponding IVIFSs: 

• low risk level (R1)—(ሾ0.65,0.85ሿ, ሾ0.05,0.1ሿ) 
• medium risk level (R2)—(ሾ0.4,0.6ሿ, ሾ0.2,0.2ሿ) 
• high risk level (R3)—(ሾ0.55,0.75ሿ, ሾ0.1,0.15ሿ) 

The risk level of the manufacturing process is given by applying the fuzzy IF-THAN 
rules proposed in this research. 
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3.3. The Proposed Model Combining IF-TOPSIS and Fuzzy Logic Rules 

Before presenting the mathematical formulation of the proposed model, a simplified 
representation of the proposed methodology can be seen in Figure 1. 

 

Figure 1. The proposed methodology. 

Step 1. Fuzzy rating of the relative importance of RF 𝑘, 𝑘 = 1, . . . ,𝐾 is performed by 
DMs at the level of enterprise 𝑒, 𝑒 = 1, … ,𝐸. They use pre-defined linguistic expressions 
which are modeled by IVIFSs: 𝑊෩௞௘ = (ሾ𝑎௞௘ ,𝑏௞௘ሿ, ሾ𝑐௞௘ ,𝑑௞௘ሿ) (18) 

Step 2. The RF weights, 𝜔෥௞ = (ሾ𝑎௞,𝑏௞ሿ, ሾ𝑐௞,𝑑௞ሿ) are calculated by using IVIFWG: 

𝜔෥௞ = ൭൥ ෑ (𝑎௞௘)௪೐௘ୀଵ,…,ா , ෑ (𝑏௞௘)௪೐௘ୀଵ,…,ா  ൩ , ൥൭1 − ෑ (1 − 𝑐௞௘)௪೐௞ୀଵ,…,௄ ൱ ,൭1
− ෑ (1 − 𝑑௞௘)௪೐௞ୀଵ,…,௄ ൱൩൱ 

(19) 

Step 3. Construct the fuzzy decision matrix: ൣ𝑥෤௜௞௟ ൧ூ௫௄ (20) 

where 𝑥෤௜௞ = ൫ൣ𝑎௜௞௟ ,𝑏௜௞௟ ൧, ൣ𝑐௜௞௟ ,𝑑௜௞௟ ൧൯  is IVIFS which describes the value RF 𝑘, 𝑘 = 1, . . . ,𝐾  for 
failure 𝑖, 𝑖 = 1, … , 𝐼. 

Step 4. Construct the weighted fuzzy decision matrix: ൣ𝑧̃௜௞௟ ൧ூ௫௄ (21) 

where 𝑧̃௜௞௟ = 𝜔෥௞ ∙ 𝑥෤௜௞௟ = ൫ൣ𝑎௞ ∙ 𝑎௜௞௟ ,𝑏௞ ∙ 𝑏௜௞௟ ൧, ൣ𝑐௞ ∙ 𝑐௜௞௟ ,𝑑௞ ∙ 𝑑௜௞௟ ൧൯ = ൫ൣ𝛼௜௞௟ ,𝛽௜௞௟ ൧, ൣ𝛾௜௞௟ , 𝛿௜௞௟ ൧൯ (22) 

Step 5. Let them be IF-PIS, ൫𝑓ሚ௞௟൯ା, and the IF-NIS, ൫𝑓ሚ௞௟൯ିas follows: ൫𝑓ሚ௞௟൯ା = ቀቂ𝑚𝑎𝑥௜ 𝛼௜௞௟ ,𝑚𝑎𝑥௜ 𝛽௜௞௟ ቃ , ቂ𝑚𝑖𝑛௜ 𝛾௜௞௟ ,𝑚𝑖𝑛௜ 𝛿௜௞௟ ቃቁ (23) 

൫𝑓ሚ௞௟൯ି = ቀቂ𝑚𝑖𝑛௜ 𝛼௜௞௟ ,𝑚𝑖𝑛௜ 𝛽௜௞௟ ቃ , ቂ𝑚𝑎𝑥௜ 𝛾௜௞௟ ,𝑚𝑎𝑥௜ 𝛿௜௞௟ ቃቁ (24) 
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Step 6. Calculate distances from IF-PIS, 𝑑 ቀ൫𝑓ሚ௞௟൯ା, 𝑧̃௜௞௟ ቁ  and distances from IF-NIS, 𝑑൫൫𝑓ሚ௞௟൯ି, 𝑧̃௜௞௟ ൯ by using the Hamming distance. 
Step 7. The closeness coefficient for each failure I, at the level lean waste 𝑙, 𝑙 = 1, . . . , 𝐿 

is given: 𝑐௜௟ = ∑ ൫൫𝑓ሚ௞௟൯ି, 𝑧̃௜௞௟ ൯௞ୀଵ,...,௄∑ 𝑑 ቀ൫𝑓ሚ௞௟൯ା, 𝑧̃௜௞௟ ቁ + ∑ ൫൫𝑓ሚ௞௟൯ି, 𝑧̃௜௞௟ ൯௞ୀଵ,...,௄௞ୀଵ,...,௄  (25) 

Step 8. The crisp values 𝑐௜௟ are sorted in the decreasing order. The rank of the failures 
corresponds to the obtained rank. 

In order to examine the robustness of the solution, the same numerical example was 
tested using three additional MADM methods. For the sensitivity analysis, the following 
methods were employed: complex proportional assessment (COPRAS) [40], evaluation 
based on distance from average solution (EDAS) [41], and ranking based on the distances 
and range (RADAR) [42]. For the purposes of this analysis, the classical methods were 
extended using operations of IVIFNs. 

Step 9. The total value of failure that is first in the rank at the level of each waste; 𝑧̃௜௟ 
are obtained according to the expression: 𝑧̃௜௟ = ራ 𝑧̃௜௞௟௞ୀଵ,...,௄  (26) 

Step 10. The overall risk level index is given: 𝜌෤ = ሩ 𝑧̃௜௟௟ୀଵ,...,௅:௜ୀଵ,...,ூ  (27) 

Step 11. If it is overall risk index, 𝜌෤ THEN the risk level is given according to rule: 𝑚𝑖𝑛௡ୀଵ,…,ே 𝑑 (𝜌෤, 𝑟̃௡) (28) 

where 
N is the total number of linguistic expressions that describe risk levels 𝑟̃௡, n = 1, …, N are IVIFSs which are described risk levels. 
Step 12. Respecting the risk level, determine the quality methods by which failure 

analysis is performed, in order to reduce and completely eliminate lean waste, and thus 
increase the reliability of the manufacturing process. 

4. Case Study 
The proposed methodology is tested on real-life data obtained from 20 

manufacturing companies located in Serbia. A total of six companies are from the wood-
processing and furniture industries, four companies are from the textile industry, four 
companies are from the automotive industry, and two companies are from the metal, 
construction, and chemical industries. 

To determine the weights of the considered criteria, the production manager, FMEA 
leader, and quality manager (with certain variations in the job title/position) of each 
company evaluated the relative importance of the criteria by consensus. Afterwards (see 
the proposed model, Step 2), these assessments were aggregated into a single value. The 
DMs from each company submitted their assessments to the research team via email. 

To test the proposed model, one company was randomly selected. Members of the 
FMEA team also played an important role in assessing the values of failures according to 
the considered criteria. During a panel discussion held at the premises of the selected 
company, DMs presented their evaluations through a constructive discussion. These 
evaluations were then submitted to the research team via email. 
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Based on best practice results and their own experience, the DMs of the selected 
company identified the failures occurring in the manufacturing process. The proposed IF-
TOPSIS method is demonstrated through an example that ranks failures related to lean 
waste that is categorized as Unnecessary Transportation (𝑙 =  1). 

The identified failures that lead to lean waste, which is marked as transportation, 
include: not understanding the process flow (𝑖 = 1), inadequate layout of technological 
equipment (𝑖 = 2), large storage space (𝑖 = 3), communication failure (𝑖 = 4), and using 
old layouts (𝑖 = 5). 

To better understand the identified failures, a brief description of each is provided 
below: 

• Not understanding the process flow refers to a situation where the operator does not 
fully understand the sequence of operations, and materials (parts) may be 
unnecessarily transported between workstations even though it is not planned. 

• Inadequate layout of technological equipment refers to a non-optimized 
arrangement of machines and workstations, which increases the distance materials’ 
need to travel, causing time losses that affect the execution of the production plan 

• Large storage space refers to excessively large and poorly utilized storage areas. This 
requires unnecessary material handling, and materials are often transported for 
longer than necessary. 

• Communication failure can cause transportation to be duplicated, result in 
unnecessary transport, or lead to the transport of incorrect materials. 

• Using old layouts indicates the use of outdated arrangements of machines and 
workstations, despite potential changes in workforce size, transport means, 
automation, or product design and manufacturing. 

4.1. An Application of the Proposed Model 

The developed methodology is presented at a randomly selected SME (𝑒 = 12). The 
fuzzy rating of the relative importance of DMs is presented in Table 2. DMs originating 
from the first four companies have the highest importance, 𝑤ଵ = 0.37 , the next eleven 
companies have medium importance, 𝑤ଶ = 0.33, and DMs originating from the last five 
companies have the lowest importance, 𝑤ଷ = 0.3. 

Table 2. Fuzzy rating of the relative importance of criteria 
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1 𝛺ଷ 𝛺ଷ 𝛺ଶ 𝛺ଷ 𝛺ଷ 𝛺ଷ 𝛺ଷ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଷ 𝛺ଷ 𝛺ଶ 𝛺ଷ 𝛺ଷ 𝛺ଷ 𝛺ଷ 𝛺ଶ 𝛺ଷ 𝛺ଶ 

k 
= 

2 𝛺ଵ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଷ 𝛺ଵ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଶ 𝛺ଵ 𝛺ଶ 𝛺ଶ 𝛺ଵ 𝛺ଷ 𝛺ଶ 

k 
= 

3 𝛺ଵ 𝛺ଶ 𝛺ଶ 𝛺ଵ 𝛺ଶ 𝛺ଵ 𝛺ଶ 𝛺ଶ 𝛺ଵ 𝛺ଷ 𝛺ଶ 𝛺ଵ 𝛺ଵ 𝛺ଵ 𝛺ଵ 𝛺ଷ 𝛺ଵ 𝛺ଶ 𝛺ଶ 𝛺ଷ 

The aggregated weights of considered RFs are calculated by IVIFWG (Step 2 of the 
proposed algorithm). This procedure is illustrated by the following example: 𝑎ଵ = (0.9଴.ଷ଻)ଷ ∙ (0.45଴.ଷ଻)ଵ ∙ (0.9଴.ଷଷ)଻ ∙ (0.45଴.ଷଷ)ସ ∙ (0.9଴.ଷ)ଷ ∙ (0.45଴.ଷ)ଶ = 0.10 𝑏ଵ = 0.30; 𝑐ଵ = 0.48; 𝑑ଵ = 0.7 

so that: 𝜔෥ଵ = (ሾ0.10,0.30ሿ, ሾ0.48,0.70ሿ) 



Symmetry 2025, 17, 1535 12 of 19 
 

 

The weights vector of the other two RFs were calculated in a similar way, so that: 𝜔෥ଶ = (ሾ0.02,0.11ሿ, ሾ0.77,0.89ሿ)                𝜔෥ଷ = (ሾ0.05,0.19ሿ, ሾ0.66,0.81ሿ) 

The fuzzy decision matrix at the level transportation is constructed and presented in 
Table 3 (Step 3 of the proposed algorithm). 

Table 3. The fuzzy decision matrix at the level transportation waste. 𝒊 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝑖 = 1 L VL M 𝑖 = 2 VL L M 𝑖 = 3 VL VL VL 𝑖 = 4 L M L 𝑖 = 5 L L VL 

According to the proposed algorithm (Step 4 to Step 5) the weighted fuzzy decision 
matrix and IF-PIS and IF-NIS are presented in Table 4. 

Table 4. The weighted fuzzy decision matrix, IF-PIS, and IF-NIS at the level transportation waste. 𝐢 𝐤 = 𝟏 𝐤 = 𝟐 𝐤 = 𝟑 i = 1 (ሾ0.08,0.25ሿ, ሾ0.05,0.11ሿ) (ሾ0.01,0.08ሿ, ሾ0.12,0.18ሿ) (ሾ0.02,0.10ሿ, ሾ0.26,0.37ሿ) i = 2 (ሾ0.07,0.24ሿ, ሾ0.07,0.14ሿ) (ሾ0.01,0.09ሿ, ሾ0.08,0.13ሿ) (ሾ0.02,0.10ሿ, ሾ0.26,0.37ሿ) i = 3 (ሾ0.07,0.24ሿ, ሾ0.07,0.14ሿ) (ሾ0.01,0.08ሿ, ሾ0.12,0.18ሿ) (ሾ0.03,0.15ሿ, ሾ0.10,0.16ሿ) i = 4 (ሾ0.08,0.25ሿ, ሾ0.05,0.11ሿ) (ሾ0.01,0.06ሿ, ሾ0.31,0.40ሿ) (ሾ0.03,0.16ሿ, ሾ0.07,0.12ሿ) i = 5 (ሾ0.08,0.25ሿ, ሾ0.05,0.11ሿ) (ሾ0.01,0.09ሿ, ሾ0.08,0.13ሿ) (ሾ0.03,0.15ሿ, ሾ0.10,0.16ሿ) 

The distances from IF-PIS and IF-NIS, closeness coefficient values and rank of failures 
(Step 6 to Step 8 of the proposed algorithm) at the level of transportation waste are 
presented in Table 5. 

Table 5. Rank of failures under transportation waste (𝑙 = 1) 𝐢 ෍ 𝐝ቀ൫𝐟ሚ𝐤𝐥 ൯ା, 𝐳෤𝐢𝐤𝐥 ቁ𝐤ୀ𝟏,...,𝐊  ෍ 𝐝൫൫𝐟ሚ𝐤𝐥 ൯ି, 𝐳෤𝐢𝐤𝐥 ൯𝐤ୀ𝟏,...,𝐊  𝐜𝐢𝐥 Rank i = 1 0.1504 0.1315 0.466 5 i = 2 0.1478 0.1341 0.476 4 i = 3 0.0635 0.2184 0.775 2 i = 4 0.1341 0.1478 0.524 3 i = 5 0.0213 0.2606 0.924 1 

Respecting the obtained rank, it is clear that for the considered company, the greatest 
importance for the generation of transportation waste is failure. Using old layouts (𝑖 = 5). 

In order to examine the robustness of the obtained solution, the results obtained 
using the TOPSIS method were compared with those obtained using the COPRAS, EDAS, 
and RADAR methods, as shown in Table 6. 
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Table 6. Sensitivity analysis 𝐢 TOPSIS 
Coefficient/Rank 

COPRAS 
Coefficient/Rank 

EDAS 
Coefficient/Rank 

RADAR 
Coefficient/Rank i = 1 0.466/5 0.084/4 0.263/4 0.831/4 i = 2 0.476/4 0.082/5 0.125/5 0.809/5 i = 3 0.775/2 0.090/2 0.668/3 0.968/2 i = 4 0.524/3 0.088/3 0.717/2 0.889/3 i = 5 0.924/1 0.094/1 0.981/1 1.000/1 

The application of all four methods showed that the top-ranked alternative is always 𝑖 = 5  (Using old layouts). There are only very minor variations in the ranking of 
alternatives among the considered methods. In particular, for the TOPSIS method, the last 
and penultimate alternatives have swapped positions compared to the other methods. 
This is because TOPSIS ranks alternatives based on their distance from the ideal solution, 
while the other methods use a slightly different mathematical logic. It is also observed 
that there is a slight deviation in the EDAS method, where the second and third 
alternatives swap positions compared to all other methods. 

To quantify the comparison of these methods, the Pearson correlation coefficient was 
used. The correlation coefficient for the ranking coefficients between TOPSIS and 
COPRAS is 0.93, between TOPSIS and EDAS 0.83, and between TOPSIS and RADAR 0.96. 
This clearly indicates a very high positive correlation, confirming that the obtained 
solution is stable. Nevertheless, these methods are based on different mathematical 
principles, and under certain conditions, they may produce slightly different results. In 
this case, the TOPSIS method was recommended due to its characteristic of identifying 
the alternative that is closest to the ideal solution and furthest from the anti-ideal solution. 
This logic aligns well with the type of problem under consideration. 

The total value of failures which are placed in first place in the rank at the level of 
each considered lean waste is given by using the procedure (Step 9 of the proposed 
Algorithm) and presented in Table 7. 

Table 7. The overall values of failures which are placed in the first place in the rank respecting to all 
lean waste. 

Waste Failure 𝒛෤𝒊𝒍 
Transportation Using old layouts ([0.08, 0.25], [0.05, 0.11]) 

Overproduction Inadequate use of automation ([0.07, 0.24], [0.07, 0.12]) 
Inventory Poor communication ([0.07, 0.24], [0.07, 0.13]) 

Overprocessing Too many processing processes, too many iterations ([0.07, 0.24], [0.07, 0.12]) 
Defects Insufficient process control ([0.08, 0.27], [0.02, 0.07]) 
Waiting Imbalance with subsequent processes ([0.08, 0.25], [0.05, 0.11]) 
Motion Employees have to move to receive information ([0.08, 0.25], [0.05, 0.11]) 

Unused employee creativity 
Not involving all employees and their knowledge and skills 

in business and production processes ([0.08, 0.27], [0.02, 0.07]) 

By applying the proposed procedure (Step 10 of the proposed algorithm), the overall 
risk index is as follows: 𝜌෤ = ሩ 𝑧̃௜௟௟ୀଵ,…,௅:௜ୀଵ,...,ூ  

𝜌෤ = (ሾ0.07,0.24ሿ, ሾ0.07,0.13ሿ) 
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Using the modified fuzzy logic rules, the risk level of manufacturing process of the 
considered SME is determined (Step 11 of the proposed algorithm): 𝑚𝑖𝑛൫𝑑(𝑅1,𝜌෤),𝑑(𝑅2,𝜌෤),𝑑(𝑅3,𝜌෤)൯ 
so that: 𝑚𝑖𝑛(0.312, 0.221, 0.258) = 0.221 

It follows that the level of risk of manufacturing process in considered SME can be 
described as medium. 

The quality manager defines a set of quality methods based on their expertise and 
best practice results. The implementation of these methods facilitates failure analysis 
aimed at their elimination, which ultimately leads to the reduction or complete 
elimination of lean waste. 

Considering the risk level of the manufacturing process in the analyzed SMEs, the 
failures ranked first for each type of lean waste can be analyzed using the following 
methods: contingency table, benchmarking, workflow diagram, check sheet (generic), 
cost-of-poor-quality analysis, design of experiments, flowchart (generic), mistake-
proofing, operational definitions, storyboard, and survey. These methods are suitable for 
employees with basic engineering knowledge, and their application does not require 
significant time or financial resources. On the contrary, they can be implemented quickly 
and efficiently, thereby reducing the manufacturing process risk level, which is the main 
objective of operational management. 

The rank of failures at the level of each lean waste for each considered SME is 
determined using the proposed IF-TOPSIS method. For both researchers and 
practitioners, it is important to identify which failure ranks first for each lean waste. The 
frequency with which each failure appears in the first rank, across all SMEs and for each 
lean waste, is presented in Table 8. 

Table 8. Frequency distribution failures in the first place in the rank under each lean waste with 
respect to all SMEs 

  
i = 1 Not understanding the process flow i = 1 Imbalance of production lines 
i = 2 Inadequate layout of technological equipment i = 2 Inadequate use of automation 
i = 3 Large storage space i = 3 Poor assessment of market demands 
i = 4 Communication failure i = 4 Poor application of just in case logic 
i = 5 Using old layouts i = 5 Low knowledge and skills of employees 

  
i = 1 Poor workplace ergonomics i = 1 Inadequate level of automation 
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i = 2 Large distance between operations i = 2 Inadequate processing modes 
i = 3 Frequent hand movements i = 3 Worker error 
i = 4 Multiple taking the same piece i = 4 Product design requires too many processing steps 
i = 5 Employees have to move to receive information i = 5 Too many processing processes, too many iterations 

i = 6 Manual work to compensate for some shortcomings 
in the production process i = 6 Customer needs are not clear 

i = 7 Inexperience of the operator 

  
i = 1 Insufficient knowledge and skills of workers i = 1 Waiting for material between operations 
i = 2 Inaccuracies in the documentation i = 2 Interruption of the machine or system 
i = 3 Insufficient process control i = 3 Lack of work 

i = 4 Design-construction omissions i = 4 
Waiting for the information needed to continue the 

process 

i = 5 
Inadequate state of technical and technological 

equipment 
i = 5 Imbalance with subsequent processes 
i = 6 Long preparatory-final time 

  

i = 1 Imbalance of material flow i = 1 Narrowly defined jobs 
i = 2 The unreliability of suppliers i = 2 Not involving workers in creating new ideas 
i = 3 Excessive supply of raw materials i = 3 Employees do not work in the appropriate position 

i = 4 Poor communication i = 4 
Not involving all employees and their knowledge 

and skills in business and production processes 

i = 5 
Protection of the company from risk and unexpected 

event i = 5 Workers’ absenteeism 

Applying the proposed fuzzy production rules, the risk level of manufacturing 
process in each treated SME can be described as medium. 

4.2. Discussion 

Based on the obtained risk level of the manufacturing process and the results 
presented in Table 8, a practical guide for quality managers in SMEs within the 
manufacturing sector can be developed. This guide should include a set of recommended 
preventive measures that quality managers can apply to avoid the occurrence of the most 
frequent failures. These measures should be tailored to the level of identified risk. This 
guide represents the main practical contribution of this research. 

Lean waste types such as transportation, motion, overprocessing, waiting, and 
inventory are commonly caused by specific failures, namely: inadequate layout of 
technological equipment, employees having to move to receive information, inadequate 
processing modes, waiting for material between operations, and excessive supply of raw 
materials, respectively. Some of the methods that should be applied in these companies 
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to analyze and eliminate the identified failures include the following: benchmarking, 
workflow diagrams, check sheets (generic), and cost-of-poor-quality analysis, among 
others. It is important to note that these quality methods can be effectively used to analyze 
all identified failures within the manufacturing process. The ultimate goal of this analysis 
is to prevent failure occurrence, and thereby reduce or eliminate lean waste. 

Failures such as inadequate use of automation and poor assessment of market 
demands contribute to overproduction, which is considered the most critical type of lean 
waste in manufacturing enterprises. Methods like mistake-proofing and relations 
diagrams can effectively analyze and reduce overproduction. 

The type of lean waste that is marked as defects is most frequently generated in SMEs 
due to two identified failures: inaccuracies in the documentation and insufficient process 
control. The issue of failure caused by inaccuracies in documentation can be effectively 
solved through the implementation of a quality management system. Additionally, 
process control in manufacturing can be successfully maintained by applying some 
statistical quality methods, such as control charts, Pareto charts, process capability 
studies, and regression analysis. For example, the application of regression models, with 
a particular focus on engineering and applied sciences data, is presented in [43]. Readers 
can refer to this publication for more detailed information on this aspect, which goes 
beyond the scope of the present study. 

All identified failures contribute almost equally to the generation of lean waste 
denoted as unused employee creativity. The effective elimination of this type of waste can 
be achieved through continuous employee education, either within SMEs or in 
collaboration with specialized training centers. 

It is important to emphasize that even when the ranking of failures remains the same, 
the selection of appropriate quality methods should vary depending on whether the risk 
level of the manufacturing process is categorized as low or high. 

5. Conclusions 
In practice, the FMEA method is widely used in manufacturing companies to analyze 

failures and determine risk levels. Many authors have pointed out the disadvantages of 
this method, which can be addressed by combining FMEA with fuzzy set theory and 
MADM methods. 

In this paper, the FMEA framework is applied to define RFs based on which 
manufacturing process failures in SMEs are evaluated. Failure identification is performed 
by DMs, relying on their knowledge, experience, and best practice insights. 

In this research, it is assumed that it aligns more closely with human thinking to 
describe uncertainties in the relative importance of RFs and their values using pre-defined 
linguistic expressions. These linguistic terms are modeled by the IVIFNs. 

The ranking of failures leading to lean waste is determined through a fuzzy multi-
criteria optimization task. The failure ranking is based on the fuzzy TOPSIS method with 
IVIFNs, which is proposed in this research. The proposed fuzzy logic with rules using 
IVIFNs is employed to determine the risk level of the manufacturing process. Based on 
the obtained ranking of failures and the risk level of the manufacturing process, the 
quality manager can select the optimal number of quality methods. By applying these 
methods, lean waste can be reduced quickly and with minimal resource consumption, 
thereby increasing the reliability of the manufacturing process. 

Additionally, quality managers in manufacturing SMEs across the region can use the 
proposed model to recommend quality methods to prevent failures, while ensuring the 
long-term reliability of the manufacturing process. 

The main advantage of the presented model is that DMs can express their 
assessments using natural language words. By employing IVIFNs, these linguistic terms 
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are quantitatively described in a sufficiently accurate manner. The model can be easily 
adapted to changes in the number of failures and their values. It also clearly identifies the 
weakest quality methods in the application, which should be the input when developing 
an enhanced business strategy. 

The general limitations of the model include the need for a well-structured list of 
failures. Prioritization of measures may also be influenced by the subjective views of the 
quality manager, which could be seen as a disadvantage when defining the improvement 
strategy. 

It is very important to emphasize that the data were collected in SMEs manufacturing 
companies located in Serbia. Therefore, the results cannot be generalized, as numerous 
factors may influence them, such as organizational culture, organizational behavior, 
hierarchical structure, level of automation, type of activity, and so on. Consequently, this 
fact can be highlighted as a key practical limitation of the study 

The results obtained from 20 SMEs have demonstrated that to reduce waste, 
measures must be taken to reduce the failures that lead to them. 

Future research will focus on applying the proposed model to rank failures for each 
type of lean waste, prescribing and selecting appropriate measures, and maximizing 
process effectiveness. Additionally, the sensitivity analysis of the obtained results could 
be performed by varying the weights of the criteria, that is, by examining the robustness 
of the proposed model through the application of other MADM methods. 

As a specific area for future research, the application of artificial intelligence and 
similar optimization tools can be highlighted, which would enable real-time monitoring 
and predictive analysis. 
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COPRAS Complex Proportional Assessment 
DMs Decision-Makers 
EDAS Evaluation based on Distance from Average Solution 
FMEA Failure Mode and Effect Analysis 
FNIS Fuzzy Negative Ideal Solution 
FPIS Fuzzy Positive Ideal Solution 
GA Genetic Algorithm 
IF-NIS Intuitionistic Fuzzy Negative Ideal Solution 
IFOWAWA Intuitionistic Fuzzy Ordered Weighted Averaging Weighted Average Distance 
IF-PIS Intuitionistic Fuzzy Positive Ideal Solution 
IVIFNs Interval-Valued Intuitionistic Fuzzy Numbers 
IVIFWA Intuitionistic Fuzzy Weighted Averaging 
IVIFWG Intuitionistic Fuzzy Weighted Geometric 
MADM Multi-Attribute Decision-Making 
RADAR Ranking based on the Distances And Range 
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SMEs Small and Medium Enterprises 
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 
VNS Variable Neighborhood Search 
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