PHASE-FIELD DRUCKER-PRAGER MODEL FOR CONCRETE

VLADIMIR LJ. DUNIĆ*1, MIROSLAV M. ŽIVKOVIĆ1, AND DRAGAN M. RAKIĆ1

¹ University of Kragujevac, Faculty of Engineering Sestre Janjić 6, 34000 Kragujevac, Serbia dunic@kg.ac.rs, miroslav.zivkovic@kg.ac.rs, drakic@kg.ac.rs and www.fink.rs

ABSTRACT

An efficient, accurate and minimal-parameter constitutive model for a simulation of concrete structures behavior can be developed based on Drucker-Prager elastic-plastic yield criterion: $\phi = \alpha I_1 + \sqrt{J_{2D}} - k$, where $k = \sigma_0 + h\bar{\varepsilon}_p$, σ_0 is the initial yield stress, h is the hardening parameter, α is the material parameter, and $\bar{\varepsilon}_p$ is the equivalent plastic strain [1]. Total free energy consists of the elastic-plastic and the fracture contribution as [2]: $\psi = \psi^{ep} + \psi^f$, where $\psi^{ep} = g(1/2\boldsymbol{\sigma}: \varepsilon_e + \sigma_0\bar{\varepsilon}_p + 1/2h\bar{\varepsilon}_p^2)$, $\psi^f = G_v(d+l_c^2|\nabla d|^2)$, $\boldsymbol{\sigma}$ is the stress tensor and ε_e is the elastic strain tensor. The phase-field damage evolution law is defined as: $G_v[d-l_c^2\nabla^2 d] + g'H_{max} = 0$, where the degradation function is $g = (1-d)^2$, l_c is the characteristic length, d is the damage variable, and $H_{max} = \psi^{ep} - \psi^{cr}$ is the maximal total strain energy. The fracture energy G_v is calculated in a relation to the tension and compression strength and the threshold value of critical total strain energy $\psi^{cr} = G_v/2$. The results of uniaxial tension and compression tests are presented in Fig.1.

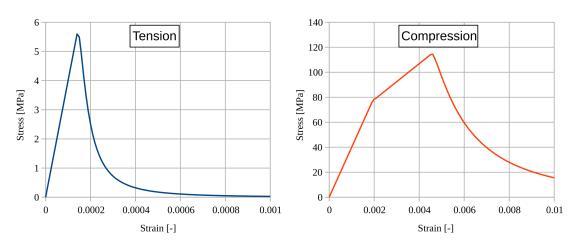


Figure 1: Stress-strain response for tension and compression test

Acknowledgment: The research was supported by the Science Fund of the Republic of Serbia, #GRANT No 7475, Prediction of damage evolution in engineering structures - PROMINENT and by the Ministry of Science, Technological Development and Innovation, Republic of Serbia, Agreement No. 451-03-137/2025-03/200107.

REFERENCES

- [1] Schröder J., Pise M., Brands M., Gebuhr G. Anders S., *Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation*. Comput. Methods Appl. Mech. Eng., 398, 115181, 2022.
- [2] Miehe, C., Hofacker, M., Schanzel L.-M., Aldakheel F., *Phase field modeling of fracture in multi-physics problems. Part II.* Comput. Methods Appl. Mech. Eng., 294, 486–522, 2015.