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Abstract
This paper presents a low-cost, vision-based model for detecting and segmenting wear zones on cutting inserts. The sys-
tem integrates a Vividia 2.0 MP handheld USB microscope with a MATLAB-based algorithm to enable automatic image
segmentation. A total of 250 images were collected during machining on a CNC lathe (TCN 410-1250, SINUMERIK
840D), under controlled laboratory conditions, covering various wear states. The model includes pre-processing, mor-
phological segmentation, visualization, and dimensional analysis. Results show high segmentation performance, with an
accuracy of 0.99 6 0.001 and precision of 0.92 6 0.017. The proposed approach eliminates the need for expensive ima-
ging setups by relying on a low-cost microscope and a simple computational pipeline. While the current setup was tested
under controlled laboratory conditions, results indicate strong potential for reliable in situ monitoring of tool wear. The
system is designed to be easy to implement and scalable, and this pilot study provides a solid foundation for future valida-
tion in real-world manufacturing environments. By supporting early detection of tool degradation, the approach could
contribute to predictive maintenance strategies aimed at improving productivity, reducing downtime, and enhancing
product quality.
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Introduction

Modern manufacturing systems are evolving rapidly
under the influence of automation, artificial intelli-
gence, and cyber-physical systems.1,2 These technolo-
gies are transforming traditional production processes
by enhancing flexibility, efficiency, and product quality.
At the same time, increasing global competition is pres-
suring national industries to adopt smarter and more
adaptive approaches.3–5 In response, the implementa-
tion of smart factories—where physical and digital
environments are tightly connected through embedded

sensors, processors, and actuators—has become essen-
tial. These cyber-physical systems enable real-time data

1Faculty of Engineering, University of Kragujevac, Serbia
2Faculty of Technical Sciences, University of Kragujevac, Cacak, Serbia
3Faculty of Technical Sciences, University of Priština in Kosovska
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exchange, process optimization, and autonomous deci-
sion-making, forming the backbone of intelligent and
reliable manufacturing environments.6,7 In such highly
automated environments, maintaining the reliability of
physical components—particularly cutting tools—
becomes increasingly important.

Despite the rapid advancement of manufacturing
technologies, subtractive material removal processes
continue to play a central role in industrial production.
Even with the rise of additive manufacturing, machin-
ing remains essential for achieving high surface quality
and dimensional accuracy. In this context, the condi-
tion of the cutting tool—particularly the state of its cut-
ting edges—has a direct impact on surface finish,
machine downtime, and overall production costs.8–11

As a result, real-time monitoring of tool wear, accurate
prediction of tool life, and timely replacement strategies
are crucial, especially in high-volume manufacturing
environments.8 To address these challenges, researchers
have developed a variety of tool condition monitoring
approaches, which are typically classified into two cate-
gories: indirect and direct monitoring methods.5

Within this general classification, recent literature
further organizes tool wear monitoring strategies into
three broad groups: sensor-based approaches, data-
oriented predictive models, and direct vision-based
inspection techniques.12–14 Sensor-based approaches
infer tool degradation by measuring physical quantities
such as cutting forces, vibration, acoustic emission, or
temperature. Data-oriented models, typically imple-
mented through machine learning or deep learning, uti-
lize large volumes of historical or real-time data to
estimate tool wear. While these models can achieve
high predictive accuracy, their adoption in small and
medium-sized enterprises is often limited by the need
for extensive labeled datasets and substantial computa-
tional resources. Recent studies rarely address solutions
that balance predictive accuracy with low implementa-
tion costs and minimal computational requirements,
leaving a gap for lightweight, easily deployable
systems.12,14,15

Indirect methods rely on the acquisition and analysis
of signals from various sensors, such as dynamometers
(cutting forces), acoustic emission sensors, vibration
sensors, thermocouples (temperature), microphones
(sound), and motor current sensors.7,8,16,17 These
approaches can be implemented without direct visual
access to the tool, but their accuracy may be influenced
by cutting conditions, material properties, and sensor
placement.

Direct methods, on the other hand, capture and ana-
lyze images of the cutting tool to explicitly assess wear
patterns, offering the added advantage of visual confir-
mation. Vision-based systems have gained considerable
attention for their ability to provide both qualitative
and quantitative insights into tool wear and have been

successfully applied across diverse domains, often in
combination with machine learning and artificial intel-
ligence.12,18 As a type of direct monitoring method,
these approaches are known for their high accuracy
and potential for real-time implementation.19–24 The
level of automation—whether in-line, on-line, or off-
line—can significantly influence their effectiveness in
industrial settings.5,11,17 Depending on the monitoring
objective, different image segmentation and classifica-
tion methods are used to extract relevant wear features.
Common techniques include thresholding methods
(e.g. Otsu), contour-based approaches (e.g. active con-
tour models), morphological operations, and machine
learning algorithms such as neural networks, support
vector machines, and convolutional neural networks
(CNNs).17,19,25

Recent developments also explore hybrid
approaches, combining sensor-based signals with
vision-based inspection to enhance robustness and
compensate for individual method limitations.15

Nevertheless, in uncontrolled industrial environments,
variations in lighting, surface reflectivity, and camera
positioning can compromise segmentation accuracy,
which calls for image processing pipelines that remain
reliable on the shop floor.12,14,26 Although advanced
techniques—such as convolutional neural networks,
vision transformers, infrared thermography, and hybrid
sensor setups-show strong performance, their deploy-
ment often depends on controlled lighting, specialized
or costly hardware, and high computational resources,
while manual segmentation persists in some workflows,
introducing subjectivity and inconsistency, which limits
adoption in everyday industrial environments, particu-
larly in small and medium-sized enterprises.19,23,25,27

In this context, there is a growing interest in devel-
oping lightweight, robust, and cost-effective monitoring
systems that can be easily implemented without major
modifications to the production line. Systems that rely
on standard USB microscope cameras and well-
established image processing techniques, such as mor-
phological operations, present a promising direction.
These methods enable reliable wear assessment with
minimal setup, low cost, and real-time operation—
making them suitable for real-world machining envir-
onments where adaptability and simplicity are key.12

Building on the general context of tool condition
monitoring, understanding the fundamental mechan-
isms of tool wear is essential for designing effective
monitoring strategies and forms the basis for the
approach presented in this study. Tool wear is primar-
ily caused by tribological interactions between the cut-
ting tool and the workpiece. When two surfaces move
in contact, friction, heat, and mechanical stress lead to
gradual material degradation.

In metal cutting, these effects are especially pro-
nounced at the tool–chip and tool–workpiece
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interfaces, where stress gradients and high temperatures
result in forms of wear such as flank wear, notch wear,
comb cracks, plastic deformation, and crater wear.28,29

These wear modes are governed by complex tribologi-
cal processes involving adhesion, abrasion, diffusion,
and oxidation, whose relative dominance depends on
cutting parameters, tool material, and workpiece
composition.

This understanding provides the physical foundation
for selecting appropriate monitoring indicators and
designing robust detection algorithms. Wear mechan-
isms directly influence cutting forces, temperature dis-
tribution, chip formation, surface quality, machining
precision, and tool life.12,30 Such impacts make early
wear detection critical for efficient production and
maintenance planning. The present study focuses on
the automated monitoring and identification of these
specific wear forms, which are illustrated in Figure 1.

In response to the need for more practical and cost-
effective tool wear monitoring solutions, this paper
presents a vision-based model for the automatic seg-
mentation and quantification of wear zones on cutting
inserts. As a preliminary step, this study explores the
feasibility of implementing vision-based wear detection
in a stable laboratory environment, laying the ground-
work for future validation in industrial settings. By
combining a low-cost handheld digital microscope with
morphological operations implemented in MATLAB,
the proposed method demonstrates accurate detection
of tool wear under controlled laboratory conditions.
While conventional approaches often rely on expensive
imaging systems and controlled lighting environments,
this solution aims to provide a more affordable and
accessible alternative. Although not yet validated in real
shop floor conditions, the results from this pilot study
indicate strong potential for integration into future
manufacturing workflows. Improved wear monitoring

could contribute to better product quality, reduced
machine downtime, and more efficient operations.

Embracing the integration of advanced technolo-
gies is essential in order to enhance productivity and
maintain competitiveness in the evolving industrial
landscape.3,8

Materials and methods

Experimental set up

The experimental procedure was conducted at the
Laboratory for Metal Machining and Tribology,
Faculty of Engineering, University of Kragujevac,
using a TCN 410-1250 CNC lathe equipped with a
SINUMERIK 840D control unit (www.echo-eng.it). A
Vividia 2.0 MP handheld USB digital microscope
(http://www.vividia-tech.com, Woodruff, SC, USA)
was mounted on the side of the lathe to record images
of the cutting insert during machining, under controlled
laboratory conditions. This high-resolution device pro-
vides a resolution of 1600 3 1200 pixels and up to
3003 magnification, and was connected to a PC for
real-time image capture and offline analysis (Figure 2).

The microscope was placed in a dedicated magnetic
holder mounted on the lathe’s carriage, ensuring a sta-
ble, vibration-resistant, and repeatable imaging setup.
The cutting insert was periodically brought into the
microscope’s fixed field of view after a defined number
of machining passes. Image capture was manually trig-
gered via a button located on the microscope cable,
eliminating the need for any mechanical movement of
the camera itself. This simple and robust arrangement
preserved the low-cost and easily deployable nature of
the proposed system, while maintaining consistent
image quality throughout the experiment.

Figure 1. Common types of wear on cutting inserts.

Figure 2. Position of the camera relative to the cutting tool.
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The experimental setup also included a model for
the segmentation and dimensional analysis of wear
zones on the cutting inserts, implemented on the PC
(Figure 3). The test workpiece was made of gray cast
iron EN-GJL-200 (composition: C 3.39%, Si 2.11%,
Mn 0.48%, P 0.10%, S 0.087%, Se 0.95%) with dimen-
sions Ø50 3 350mm.18 Machining was performed at a
cutting speed of 265m/min, feed rate of 0.3mm/rev,
depth of cut of 4mm, and spindle speed of 1000 rev/
min.

Table 1 presents the types of cutting inserts and tool
holders used in the experiment.

A total of 250 images of cutting inserts were acquired
during machining under varying wear conditions. These
images were later used to create two databases for eva-
luation: one manually segmented by an expert (serving
as ground truth) and the other segmented using the pro-
posed model.

To ensure accurate dimensional analysis of wear
zones, image calibration was performed prior to test-
ing. A calibration image was captured immediately
after mounting the camera in its final position, using a
standard millimeter ruler placed in the same focal plane
as the cutting insert and recorded under identical light-
ing conditions (Figure 4). From this image, a pixel-to-
millimeter ratio (1mm ’ 48px) was determined and
applied throughout the segmentation algorithm to con-
vert wear dimensions into real-world metric values.
The validity of this conversion was confirmed through

a preliminary comparison with contact meter measure-
ments, revealing a maximum deviation of 6 0.05mm.
While this level of precision is not at the micrometer
scale, it is sufficient for reliable wear measurement in
laboratory settings and shows potential for future
industrial validation.

All machining was performed under dry cutting con-
ditions, without the use of coolant. The cutting tool
was periodically brought into the camera’s field of view
after a defined number of machining passes—typically
every 5–10 passes—depending on the insert type and
wear progression. Image acquisition was performed
manually by the operator using only the integrated
LED lighting of the microscope.

Data acquisition and image segmentation

The images obtained from the experimental procedure
were used as input data for the tool wear segmentation
and dimensional analysis model developed in the
MATLAB environment (https://uk.mathworks.com).
Image processing and analysis were conducted at the

Figure 3. Schematic of experimental setup with tool, camera, and workpiece.

Table 1. Cutting inserts and holders used in the experiment.

Label Cutting insert holder Manufacturer

TNMG 160404 PTGNR 2525 M16 Sandvik Coromant
TNMG 160408 PTGNR 2525 M16 Sandvik Coromant
CNMG 120408 PCLNR 2525 M12 Corun Užice

Figure 4. Calibration image captured with a physical reference
scale (millimeter ruler) for determining the pixel-to-millimeter
ratio used in dimensional analysis.
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Center for Integrated Product and Process
Development and Intelligent Systems (CIRPIS),
Faculty of Engineering, University of Kragujevac.

The image processing pipeline (Figure 5) included
four main stages: pre-processing, morphological seg-
mentation, visualization, and wear parameter measure-
ment. To ensure algorithm robustness, performance
was evaluated throughout the development process.

Although images were acquired under consistent
experimental conditions, variations in lighting, insert
color, and wear types required pre-processing to
enhance relevant features. These steps included grays-
cale conversion, edge enhancement, thresholding, and
noise reduction.31,32

As illustrated in Figure 6, pre-processing aimed to
improve clarity and contrast, thereby increasing the
effectiveness of subsequent segmentation steps. The
Sobel operator—a discrete gradient-based filter—was

applied with a kernel size of 3 3 3 to enhance edge def-
inition by calculating intensity gradients in the horizon-
tal and vertical directions. These gradients represent
local changes in pixel intensity and are used to detect
edges, which typically correspond to transitions
between worn and unworn regions of the cutting
inser.22,33

The Sobel operator uses two convolution kernels to
approximate the first derivative of the image intensity
function:

Mx=
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where Mx and My represent approximations of the
image intensity gradients in the horizontal and vertical
directions, respectively.

These operators are applied via convolution across
the grayscale image, and the magnitude of the gradient
at each pixel is calculated as:

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x +M2
y

q
ð3Þ

This gradient magnitude highlights regions with
strong intensity transitions, which often correspond to
wear boundaries. Intensity gradients are not constant—
they vary across the image and are highest at edges,
providing critical spatial information for edge-based
segmentation.

Following pre-processing, morphological operations
were applied to refine object boundaries (Figure 7).
These operations manipulate binary image elements
using a structuring element. The mathematical formu-
lations of these operations are based on the definitions
provided by Hazzan and Pacella.33

Dilation expands objects to fill gaps:

A� B= zj Bð Þz \A 6¼ �
� �

ð4Þ
Figure 5. Flowchart of the algorithm for segmentation,
visualization, and performance evaluation of cutting insert wear.

Figure 6. Improving quality and clarity using the Sobel filter.
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while erosion removes boundary pixels to smooth and
isolate objects:

A� B= zj Bð Þz � A
� �

ð5Þ

Combined, these operations produce the final seg-
mented matrix:

S = A� Bð Þ � B ð6Þ

where A is the binary image, B the structuring element,
and S the segmented result.

The structuring element B was selected through sys-
tematic preliminary testing on a representative subset of
the dataset. Several shapes (disk, square, and diamond)
and radii ranging from 1 to 5 pixels were evaluated
based on segmentation accuracy, noise suppression,
and contour preservation. A disk-shaped element with
a radius of 3 pixels consistently provided the best bal-
ance between effective removal of small noise artifacts
and retention of wear-edge geometry under the given
imaging conditions. This choice ensured stable segmen-
tation performance across different wear types, lighting
variations, and insert materials observed in the
experiment.

A manually defined intensity threshold was used for
binarization, typically around grayscale level 100, based
on visual inspection of representative samples.

The segmented output was used to calculate wear
parameters and visualize worn regions. The system
included an interactive measurement tool to quantify
distances of interest directly on the segmented region
(Figure 8), enabling high-precision evaluation of
cutting-edge degradation.

Measurements were calibrated based on a pixel-to-
millimeter ratio derived from a reference image, and
distances were calculated using Euclidean metrics
within the MATLAB environment.

This method supports detailed segmentation and
visualization of worn zones, offering a practical
approach for automated assessment of tool wear in
machining processes. The selected parameter values
proved effective across the dataset, ensuring consistent
and reliable performance under the defined imaging
conditions.

The reliability of the segmentation output was later
validated through comparison with manually segmen-
ted ground truth images, as discussed in Section
‘‘Performance evaluation.’’

Performance evaluation

The reliability of the proposed segmentation model was
assessed using standard performance metrics derived
from the confusion matrix: sensitivity, specificity, accu-
racy, and precision.31 Two image datasets were used
for evaluation. The first dataset contained 250 cutting
insert images manually segmented by an expert, serving

Figure 8. Measuring region of interest on the segmented
image.

Figure 7. Application of morphological operations for segmentation.
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as the ground truth. The second dataset comprised the
same images processed using the proposed model.

The predicted segmentation was compared to the
ground truth on a pixel-by-pixel basis, and average val-
ues with standard deviations were reported for each
performance metric. The following formulas were use:

Sensitivity=
TP

TP+FNð Þ ð7Þ

Specificity=
TN

TN +FPð Þ ð8Þ

Accuracy=
TN + TPð Þ

TN + TP+FN +FPð Þ ð9Þ

Precision=
TP

TP+FPð Þ ð10Þ

where:
TP (True Positive): Pixels correctly classified as wear in
both the ground truth and model output,
TN (True Negative): Pixels correctly classified as non-
wear in both images,
FP (False Positive): Pixels incorrectly classified as wear
by the model but not in the ground truth, and
FN (False Negative): Pixels classified as wear in the
ground truth but missed by the model.

To further quantify the similarity between the model
output and the ground truth, the Dice similarity coeffi-
cient (DSC) was calculated34:

DSC =
2 � TP

2TP+FP+FN
ð11Þ

The Dice coefficient ranges from 0 to 1, with higher
values indicating greater overlap and higher segmenta-
tion accuracy.

Results

The proposed segmentation model was applied to vari-
ous images of cutting inserts collected during the experi-
ment. Table 2 shows representative examples of original
images, expert-segmented ground truth, and model-
segmented images, along with corresponding wear mea-
surements. These illustrate the model’s capability to
detect a range of wear geometries with high precision.
The wear measurements include the maximum length
(L) and depth (D) of the segmented wear zone.

The model successfully identified and measured
small-scale wear features, with wear lengths ranging
from 0.35 to 1.52mm and depths from 0.10 to 0.92mm.
These results indicate the model’s capability to detect
fine wear details and accurately estimate geometrical
dimension.

The average values of the confusion matrix metrics were
as follows: Sensitivity = 0.85 6 0.055, Specificity = 0.99

6 0.000, Accuracy = 0.99 6 0.001, Precision = 0.92 6

0.017, andDice coefficient=0.89 6 0.098.
Figure 9 presents a box-and-whisker plot represent-

ing the statistical distribution of L/D ratios across 250
samples, encompassing both typical and extreme cases
of wear geometry. The median L/D value is approxi-
mately 3.1, while several outliers above 10 correspond
to shallow but extended wear zones. These outliers were
intentionally retained to highlight the robustness of the
segmentation algorithm and its ability to maintain sta-
ble measurement output even under atypical and pro-
nounced tool wear.

These values demonstrate high segmentation accu-
racy and consistency, with strong overlap between the
predicted and ground truth wear zones. Visual inspec-
tions further confirmed that the model effectively dis-
tinguished worn and non-worn regions, even in cases of
subtle or irregular tool damage. No major over- or
under-segmentation was observed. These findings con-
firm the robustness of the proposed model under con-
trolled laboratory conditions and highlight its potential
for future application in real-world tool condition
monitoring.

Discussion

Modern manufacturing requires reliable monitoring
solutions compatible with real production constraints.
This study introduces a low-cost system for tool wear
detection, validated under controlled laboratory condi-
tions, and designed with future industrial deployment
in mind.8–10,35

However, accurate and real-time monitoring of tool
wear and breakage remains a persistent challenge in
both research and industrial practice.7,16–19,25

Motivated by current challenges in tool wear
monitoring—particularly the need for affordable, reli-
able, and easily deployable solutions—we developed a
vision-based model intended as a foundation for future
applications in real-world production environments.23

The system was tailored to address practical shop-floor
conditions, including lighting variability and inconsis-
tent wear patterns, although initial testing was con-
ducted in a controlled laboratory setting. These factors
guided the development of a robust and modular seg-
mentation algorithm with potential for seamless inte-
gration and real-time deployment.

The proposed system is designed to integrate easily
into existing production workflows without requiring
major modifications. By enabling timely detection of
tool wear, it has the potential to support increased pro-
ductivity and reduce the time and resources typically
required for routine monitoring. As a result, this
approach may contribute to lower production costs
over time through extended tool life and reduced
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maintenance needs, pending further validation in real
manufacturing environments.

Móricz et al. employed indirect methods for tool
wear assessment based on post-process microscopic
image analysis and geometric evaluation of tool condi-
tion, as well as direct methods involving vibration sig-
nal analysis.36 In contrast, our approach enables visual
identification of insert wear during machining, allowing
timely data acquisition with minimal reliance on
external hardware or post-processing procedures.
This improves practicality for laboratory-based evalua-
tions and lays the groundwork for future in situ
implementations.

Table 2. Representative segmentation results with corresponding wear measurements.

Case Original image Expert segmented image Segmented image Wear dimensions

1. L = 0.79 mm
D = 0.41 mm

2. L = 0.65 mm
D = 0.18 mm

3. L = 1.44 mm
D = 0.1 mm

4. L = 0.94 mm
D = 0.29 mm

5. L = 1.52 mm
D = 0.42 mm

6. L = 0.35 mm
D = 0.1 mm

7. L = 0.36 mm
D = 0.92 mm

Figure 9. Box plot of the L/D ratio distribution for 250 cases.
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The proposed tool wear monitoring model offers
several key advantages. It demonstrates the feasibility
of in situ and real-time damage detection through auto-
matic image segmentation based on morphological
operations, reducing reliance on manual inspection and
minimizing the risk of human error. Designed for
adaptability within existing workflows, the system can
support more timely tool replacement and improve
operational efficiency. Moreover, its automation cap-
abilities help mitigate operator dependence and reduce
subjectivity common in semi-automated visual inspec-
tion systems.

In high-volume production, our approach has the
potential to provide direct visual feedback during
machining, thereby shortening response time in failure-
critical applications.5,8,25 Consistent with the findings
of Hassan et al.,14 who emphasize that timely detection
of tool wear significantly reduces waste and unplanned
downtime, our model demonstrates the feasibility of
monitoring that can enable prompt recognition of criti-
cal wear during machining, which may help to reduce
deterioration in quality and productivity.

Various vision-based approaches for tool wear mon-
itoring have been explored in recent studies. Thakre
et al. acquired insert images using a digital camera
mounted on a fixed stand, while Yoshimitsu et al.
employed two CCD cameras directly integrated into a
machining center.37,38 Brili et al. used infrared thermo-
graphy to assess the thermal condition of the cutting
tool during operation.23 Although effective, these meth-
ods often rely on costly equipment or require tightly
controlled experimental setups.

The combination of a USB microscope and morpho-
logical segmentation enables automated detection of
tool wear without the need for complex hardware con-
figurations or post-processing steps, while achieving
consistent segmentation performance in laboratory
tests. Compared to the method proposed by Daicu and
Oancea,24 which involved manual identification of wear
zones, our solution minimizes operator influence and
supports broader deployment. Furthermore, it operates
independently of thermal sensors or dedicated lighting
systems, offering a streamlined and adaptable alterna-
tive.23 The findings of Kasiviswanathan et al.15 support
the idea that simple, well-tuned visual approaches can
match the accuracy of more sophisticated systems—
even in industrial contexts—underscoring the broader
applicability of our method, particularly for future vali-
dation in small and medium-sized enterprise
environments.

Similar to the findings of Pimenov et al., who
demonstrated the feasibility of direct vision-based tool
wear monitoring under controlled illumination using a
CCD camera,12 our approach also relies on visual
inspection but is designed with potential adaptability to
variable shop-floor conditions in mind. While their

system was limited by sensitivity to ambient light, our
model showed robust segmentation results under mod-
est natural variations in laboratory lighting. Beyond
approaches relying solely on visual inspection, hybrid
methods that combine multiple sensing modalities have
also been explored to enhance detection robustness. In
this context, the findings of Bagga et al.13 confirm the
advantages of hybrid strategies, but at the cost of
higher equipment investment and more complex data
processing. In contrast, our method operates using only
low-cost optical hardware and achieves promising seg-
mentation accuracy in a simplified setup, suggesting its
potential as an accessible solution for small and
medium-sized enterprises, pending further validation.

While changes in ambient lighting are a known chal-
lenge for vision-based monitoring, the proposed system
maintained segmentation accuracy using only the
microscope’s integrated LED light, without any supple-
mental lighting.37,39 This was achieved by fine-tuning
threshold values during pre-processing to extract the
region of interest. Final segmentation was performed
using the Sobel edge detection operator, whose effec-
tiveness in tool wear applications has been confirmed
by Kerr et al. and Junior et al.22,40 These results demon-
strate robustness under stable laboratory conditions
and suggest potential adaptability to environments with
limited lighting control.

Wear-induced damage often appears as irregular
and deformable shapes, making morphological opera-
tions particularly effective for accurately segmenting
worn regions. Prior studies have demonstrated the suit-
ability of these operations for complex tool wear geo-
metries.41 In our approach, the segmented image allows
straightforward of wear parameters, such as length,
width, and perimeter without removing the insert from
its mounted position on the machine. The measured
wear depths closely match those reported by Thakre
et al., who used pre-worn inserts under controlled con-
ditions.37 Our results were obtained using low-cost
equipment under stable laboratory conditions, high-
lighting the accuracy and potential practical relevance
of the method. Furthermore, the system enables users
to interactively select and analyze specific geometric
features of interest, supporting a more detailed under-
standing of wear progression. However, it is worth not-
ing that reflectivity and local contrast on certain insert
materials may influence segmentation accuracy. Future
iterations of the algorithm could incorporate adaptive
thresholding or multi-channel imaging to improve
robustness under challenging conditions.

The visual outputs generated by the proposed
method have the potential to support decision—making
in production environments. Engineers and operators
can use the segmented images and dimensional wear
data to identify tools approaching critical wear limits
and to plan replacements more effectively. This
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approach may contribute to the development of predic-
tive maintenance strategies, help reduce unplanned
downtime, and support more efficient production plan-
ning in future implementations.

The performance of the proposed model was evalu-
ated using standard classification metrics derived from
the confusion matrix, including sensitivity, specificity,
precision, accuracy, and the Dice coefficient.42 The con-
sistently high values of these indicators confirm that the
segmentation was accurate and that the method is reli-
able within the tested laboratory conditions. In particu-
lar, high sensitivity demonstrates the model’s ability to
correctly detect tool wear, while high specificity reflects
its robustness in avoiding false detections. Together,
these metrics highlight the model’s effectiveness in con-
trolled settings and its potential applicability in future
industrial implementations.

The distribution of L/D values across the tested sam-
ples reflects the progressive nature of tool wear under
repeated machining passes. As expected, inserts sub-
jected to a higher number of cutting cycles exhibited
increased flank wear, which is evident from elevated L/
D ratios. While the majority of values fall within a sta-
ble range, the presence of outliers—corresponding to
L/D ratios above 10—suggests localized instances of
accelerated degradation, potentially due to brittle frac-
ture, overheating, or inclusion-related effects. These
findings demonstrate the ability of the segmentation
algorithm in capturing a wide spectrum of wear intensi-
ties and reveal how wear progression manifests through
both gradual trends and abrupt localized failures over
successive machining cycles.

During implementation, we encountered challenges
related to lighting variability and camera positioning,
which affected image consistency. As part of future
work, we plan to refine the data acquisition process to
improve robustness across different operating environ-
ments. We also aim to extend the model to recognize
more complex wear patterns and tool geometries.
Additional testing across a wider range of tool types
and surface finishes will be pursued to confirm the meth-
od’s adaptability across industries and applications.

Importantly, the proposed system is not limited to a
single industry. It could be adapted to various sectors—
including automotive, aerospace, and medical device
manufacturing—where cutting tools with similar geo-
metries are widely used. As such, the model demon-
strates potential for practical and scalable tool
condition monitoring, and may contribute to improved
productivity, reduced operational costs, and enhanced
product quality through timely decision-making based
on visual insights.

The novelty of this work lies in the integration of cost-
effective imaging hardware with a fully automated seg-
mentation algorithm designed to maintain performance

under non-ideal conditions. While many existing
approaches still require controlled laboratory setups or
high-cost sensors, this method aims to balance simplicity,
accuracy, and practical applicability. By addressing
several common barriers to implementation, the
proposed system demonstrates potential as a promising
alternative, particularly in pilot-stage implementations
seeking low-cost, scalable solutions.

Conclusion

This study presents a vision-based model for in situ tool
wear detection that combines a low-cost USB micro-
scope with morphological image processing. The
method demonstrates accurate segmentation under
controlled laboratory conditions, without reliance
on expensive equipment or specialized lighting.
Experimental results showed high sensitivity and specifi-
city, while maintaining affordability and implementa-
tion simplicity-indicating that this pilot implementation
holds strong potential for future validation and broader
us, especially in small and medium-sized enterprises.

Remaining challenges, such as sensitivity to lighting
and camera alignment, will be addressed through
improved acquisition protocols and extension to more
complex wear patterns. The approach also shows
promise for broader applications beyond turning oper-
ations, supporting the development of intelligent main-
tenance strategies and contributing to more efficient,
cost-effective manufacturing systems in future
implementations.
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