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Abstract: The influence of cardinality constraints on the simultaneous optimization of truss
sizing, shape, and topology, when used for weight minimization, is explored in this study.
By integrating precise cardinality constraints, the implications for achieving global optimal
solutions for different numbers of different cross-sections were investigated. This research
underscores the significance of these constraints in enhancing the practical applicability
of optimization outcomes, particularly in complex structural configurations where tradi-
tional approaches may lead to excessive requirements of numerous different cross-sections.
Comprehensive experimentation and comparative analysis, across various standard and
practical truss examples, demonstrate the effectiveness of cardinality constraints in guiding
optimal design configurations. Notably, the presented findings reveal a trend in weight
savings, depending on the number of different cross-sections used relative to global optima,
displaying the utility of this constraint in achieving practical and efficient designs. Case
studies on a produced roof truss underscore the applicability of this approach in practi-
cal engineering scenarios. They offer insights into the optimal design configurations for
problems that do not allow for drastic changes due to their restrictive design mandate.
This research is part of continued advancements in truss optimization methodologies, with
implications for promoting sustainability and cost-effectiveness in structural engineering
practice. By elucidating the role of cardinality constraints in shaping the optimal design
solutions, this study should contribute to the broader discourse on efficient structural
design strategies.

Keywords: truss optimization; cardinality; Euler buckling; optimization constraints; sizing;
shape; topology optimization

1. Introduction
In the field of truss structural design, optimization has the greatest potential to con-

tribute to the efficiency and sustainability of the final product. To this end, numerous
advancements have been made over the years, since the optimization started being re-
searched for these purposes. The design can be optimized for sizing, shape, or topology,
as well as a sequential or simultaneous combination of any of the three types. The use
of discrete variable sets has allowed for optimized structures to use commercially avail-
able cross-sections of bars, though there are still publications using continuous sizing
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variables [1]. Basic static constraints, such as tension and compression loading limits and
maximal nodal displacement resulting from loading, have been used practically since
the beginning.

More recently, the dynamic constraints, which vary with each iteration, have become
prevalent as computational capabilities and heuristic optimization methods allowed for
faster operation and easier navigation of the search space. The inclusion of buckling
constraints, as one of these dynamic constraints, has proven in [2–6] to create truss structures
which are practically applicable or at least closer to application.

The majority of solutions presented in the aforementioned papers, though of minimal
weight, present impractical solutions in terms of the large number of various cross-sections
used. For real-world applications, trusses, depending on complexity, are designed using
a few different cross-sections. Using the conventional design methods might not always
yield the lowest possible weight of a structure as they are labor and time-intensive and
rely on experience, but the added simplicity of using only a few different profiles eases
the calculation, sourcing, and assembly, decreases wasted stock, and has many other
secondary benefits.

An approach that can help in practical applications was used by the authors in [7].
Therein, the design of a structure was optimized to use the stock of reclaimed elements.
This iterative process first assigns elements and conducts topology optimization, and then
geometry optimization follows to best fit the system geometry to the length of the assigned
stock elements.

Another approach is through the limiting of the number of different cross-sections
used in the optimization of trusses, which is performed using cardinality constraints.
Researchers in [8,9] used the genetic algorithm (GA) to optimize truss structures for sizing
and simultaneous sizing and shape. They used an encoding method for automatic variable
linking, which does not allow for solutions that do not meet the cardinality constraint,
eliminating the need for a penalty function for this constraint. The same approach was used
in [10] for simultaneous sizing and layout optimization and in [11] for sizing optimization.
The authors of [12] analyzed the impact of minimizing the number of different cross-
sections as a multi-objective optimization goal. They used 16 evolutionary algorithms to
achieve these conflicting goals and presented their findings for 10-, 200-, 582-, and 942-bar
trusses and a proposed 336-bar truss example. An ant colony approach to multi-objective
structural optimization was used in [13] where the cardinality constraint was built into
the algorithm. The authors minimized the weight and nodal displacement using a two-
step construction process for assigning design variables according to defined cardinality.
In [14,15], the authors also used the GA to optimize the same aspects of planar and spatial
trusses, using a different approach to constraining cardinality, which allows for solutions to
be penalized for not meeting cardinality criteria. That approach for constraining cardinality
was used in this research as well to show its merits in the simultaneous optimization of
sizing, shape, and topology. The addition of topology optimization further complicates the
problem compared to previous applications, as each iteration has the possibility of having a
different number of bars used in the configuration. In the process of optimization, this issue
has been handled by the newly adapted solution in the original software in Rhinoceros 6’s
Grasshopper and Karamba3D 2.2.0 which maintains initial annotations from the example’s
numbering scheme to allow the algorithm to use generational data in subsequent iterations.

The main issue, which was overcome in this research, is the transfer of previous gener-
ational data to subsequent iterations, which is necessary for implementing a combination of
sizing and topology optimization. This has been overcome in the approach by referencing
each bar according to its initial layout nomenclature. The initial idea for this was included
in these authors’ previous paper [15]; however, this system was not implemented there,
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since there was no change in topology. In that phase of research, the system was still
being developed and recognized as a necessity for including topological optimization. This
paper presents this change, as well as the expected benefits of implementing cardinality
constraints on both test problems and a real-world example.

This research also expands on the previous research showing how this approach can
be used on a practical roof truss with a very limited optimization space.

2. Simultaneous Truss Sizing, Shape, and Topology Optimization
In the field of truss structural optimization, sizing optimization considers cross-

sections as variables. This research looks at cross-section variables as a discrete set of
values to achieve applicable results. Shape optimization considers the location of nodes as
variables. For the purposes of varying the location of nodes, planar or special coordinates
are continually variable with a granularity of 1 mm tolerance. Topology optimization
considers the inclusion of bars in the structure as variables. In this paper, each structural
example undergoes scrutiny to determine which bar elements could be potentially removed
and which are indispensable in any configuration. Specifically, bars are considered non-
variable if their absence would lead to an absence of stable loading or support locations in
the required node. Each bar from the initial layout maintains its initial annotation in the
optimization in order to ensure subsequent generations can use the previous generation’s
data to further the search for a global optimum. This is performed through annotation
assignment to bars separate from the iteration set, which matches the initial layout num-
bering scheme to each new generation. Without this step, each generation would assign
cross-sections chronologically instead of matching it to the node pair between which the
bar is located, making each generation, basically, a random instance.

The objective function of most research in the field [2,11–15], including this one, is
to find the combination bars connected in specific locations with assigned cross-sections,
which give a minimal weight, while subjected to adequate constraints. For the purposes of
this study, the material of the beams was not considered as a variable, though this is also a
possibility. The objective function is given as follows:

min W =
n

∑
i=1

ρi Aili (1)

where W is the weight of the truss (not including connections and supports), and n is the
number of used truss bar elements. Since the topological optimization is considered in this
study as a part of the structural optimization process, n is also a variable. The area of the
i-th element cross-section is Ai, and li is the length of the i-th element.

2.1. Stress and Displacement Constraints

Optimization constraints ensure structural functionality under the predefined loading
conditions while maintaining the structural integrity within the elastic zone. The stress
constraint for bar elements is as follows:

|σi|
σmax

− 1 ≤ 0 for i = 1, 2, . . . , n (2)

where σi is the stress of the i-th element, and σmax is the maximum allowable stress. The
displacement constraint ensures that the displacement of nodes under load does not exceed
the predefined values as follows:∣∣uj

∣∣
umax

− 1 ≤ 0 for j = 1, 2, . . . , k (3)
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where uj is the displacement of the j-th node, umax is the maximum allowable displacement
in any direction, and k is the number of nodes.

2.2. Euler Buckling Constraints

Compressed elements must also be tested for the buckling stress (4). Euler buckling
constraints also consider the minimum area moment of inertia, which is why the results of
these examples are only useful for the specific profile shape with which they are optimized.

The Euler buckling is added to obtain results that can be applied in practice. Due to
the change in cross-sections, the iterative change in the moment of inertia also changes
the Euler critical buckling constraint in each iteration (5). This constraint is, therefore,
considered to be a dynamic constraint. Its addition, it significantly increases the complexity
of the optimization problem, as follows:∣∣∣σ comp

Ai

∣∣∣
σcrit. i

− 1 ≤ 0 for i = 1, 2, . . . , n where σ
comp
Ai =

Fcomp
Ai
Ai

and σcrit. i =
Fcrit. i

Ai
(4)

where σAi is the axial compression stress of the i-th bar element and σcrit. i is the critical
buckling stress of the i-th bar element. Euler critical load is used in this research since the
stress comparison uses the same area to determine any given element’s compression and
critical stress, as follows:∣∣∣F comp

Ai

∣∣∣
Fcrit.i

− 1 ≤ 0 for i = 1, 2, . . . , n where Fcrit. i =
π2 · Ei · Ii

l2
i

(5)

where Fcrit.i is the Euler’s critical load of the i-th element, Ei is the i-th element’s modulus
of elasticity, Ii is the minimum moment of inertia of the i-th element’s cross-section, li is the
length of the i-th element, and F comp

Ai is the axial compression force.

2.3. Minimal Element Length Constraint

In this study, aside from the continuous variable set limits for node coordinates, an
additional shape optimization constraint on the minimum element length is incorporated to
prevent the occurrence of overly short elements in solutions, which could pose impractical
challenges during implementation. It is not uncommon to find optimal solutions with zero,
or near zero element lengths, which satisfy all other constraints, but in practice would
be impossible or tedious to make, thereby negating the effects of the savings achieved
through the weight optimization. Determining the constraint value for each example is
guided by established design standards, literature references, or empirical experience. The
formulation of this constraint is delineated as follows:

li
lmin

− 1 ≤ 0 = for i = 1, 2, . . . , n where li =
√
(xbi − xai)

2 + (ybi − yai)
2 (6)

where element length li is from the set of used elements in any iteration, 1 to n. Each bar
element has nodes ai and bi at each end, which are defined as (xai, yai) and (xbi, ybi). If a
maximum element length constraint was required, the same approach could be employed.
Nevertheless, the predefined limits of the node coordinate variable set inherently define a
maximum length.

In this study, a uniform penalty function is applied to all the constraints. This function
involves multiplying any non-compliant results by a substantial factor to penalize instances
where one or more constraints are not satisfied.
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2.4. Cardinality Constraint

This research is an expansion of the works [8,9,14,15], which implemented cardinality
constraints to further increase the applicability of optimization results in the field of trusses.
To implement this constraint, the entire process of cross-section selection and assignment
has been changed from the approaches that do not use this constraint. The mathematical
expression for constraining the number of different cross-sections, used in a solution, is
given as

m
mmax

− 1 ≤ 0 where m =

∣∣∣∣{AG
1 , AG

2 , AG
3 , . . . , AG

n

}∣∣∣∣ and m ≤ mmax ≤ n (7)

where m is the cardinal of the set of used cross-sections for the proposed solution, mmax

is the maximal allowed number of different cross-sections in any given solution, and
AG

n is the cross-section assigned to the n-th element. This constraint is applicable for all
types of cross-sections, as the set of used cross-sections needs to include or be linked to
all the necessary geometrical information about the used cross-section to allow for all of
the necessary calculations. Using a two-step approach with variables being reassigned
to a newly selected set, the authors of this study have developed an original solution
in Rhinoceros 6’s Grasshopper and Karamba3D 2.2.0. The process of implementing the
constraint from expression (4) is created within a module in the optimization process, as
shown in Figure 1. The chosen optimization algorithm is a genetic algorithm (GA) due
to its availability in the software, its possibility to handle this type of problem, and its
comparability with relevant research. The algorithm has been around for a very long time,
but it is still relevant and used in research to date [14–16].
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Figure 1. A schematic overview of how cross-section assignment works with the cardinality constraint.

The starting discrete set of all the possible cross-sections that could be used for the
given example contains all the necessary geometrical information about cross-sections from
1 to q. At the same time, a set of m variables is created according to the set value mmax.
The algorithm then assigns the set S of m values to a cross-section from the set of all the
possible cross-sections, while the same set S is also assigned to a bar element. The resulting
set has m different cross-sections assigned to n elements. The variables in the set S is always
referencing the same bar with the same number from the initial layout throughout the
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optimization process to match sizing optimization genetic variations to the corresponding
bar from the previous iteration.

For this research, to determine the influence of each set value of mmax, even beyond the
global optimal number, the inequality in expression (4) is set to m = mmax ≤ n. In regular
applications, as long as the mmax value is set to less than the global optimum number of
cross-sections the optimization, the process will provide a solution with mmax different
cross-sections. The addition of optimizing topology simultaneously with other aspects of
the structure also influences the results as the number of used cross-sections is limited on
the maximum end by the number of used bars in a particular solution.

3. Test Examples
Some of the most frequently used test examples found in the literature use the full cross-

sections. This is a remnant from the time when buckling constraints were not considered,
so the cross-section’s shape was unimportant and just the areas were important as they
could be used to size an equivalent area cross-section of any shape. This is also why, in
this research, the results for optimal cross-sections are given as areas instead of diameters.
In reality, buckling is an important sizing factor for compressed elements. To present the
influence of using cardinality constraints, the use of the constraints is shown on standard
test examples of 10-bar, 17-bar, and 25-bar truss examples commonly found in the literature,
which use full circular cross-sections to present results comparable to those in the literature.
Additionally, a practical example of a roof truss that uses hollow square profiles is presented
using the same constraint types.

All the examples incorporate dynamic Euler buckling constraints to address com-
pressed elements, ensuring that the optimal truss configurations remain within the elastic
range. Each example introduces a new cardinality constraint, specifying the exact number
of allowable cross-sections for optimization runs. The use of precise numbers is aimed
at identifying the optimal values for varying cardinalities and discerning trends in these
changes. This constraint is proposed to establish a maximum rather than a precise count of
cross-sections, as demonstrated here. Optimization was conducted for each cardinality level,
both below and above the optimal number of cross-sections. Instances exceeding the optimal
count were included solely for the trend observation and are not practically beneficial.

3.1. Planar 10-Bar Truss Problem

The planar 10-bar truss is the most commonly used example for testing the new truss
optimization methods and approaches. The layout of the initial structure is shown in
Figure 2 using aluminum 6063-T5 bars, with a Young modulus of 0.7·105 MPa and a density
of 2700 kg/m3. The application of a point load with a magnitude of F = 444.82 kN in the
negative y-direction is imposed upon nodes (2) and (4).
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Constraints include a maximal displacement under load tolerance of ±0.0508 m for
all the nodes in every direction, maximal axial stress within the range of ±172.37 MPa for
all the bars, and adherence to Euler buckling criteria for all compressed bars. The chosen
set of cross-sections comprises 50 distinct diameters, ranging from 3 mm to 125 mm, as
follows: 3, 4, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10, 11, 12, 12.5, 14, 15, 16, 17.5, 18, 19, 20, 22.5, 25, 27.5, 28,
30, 31.5, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 70, 75, 80, 85, 90, 95,
100, 110, and 125 mm. The topology is limited to maintaining at least two bars in nodes (3)
and (4) to ensure the possibility of loading, and any optimization iteration can only remove
one of the bars from the set {1, 3, 7, and 8}. The positional coordinates of nodes (3) and (4)
are treated as variables within the confines of the initial geometry. Specifically, the x and y
directions allow for variation within the specified bounds: ±9.144 m in the x direction for
nodes (3) and (4) and −9.144 m in the y direction for both nodes.

3.2. Planar 17-Bar Truss Problem

This example uses steel with a Young modulus of 2.1 · 105 MPa and 7400 kg/m3

density for all 17 bars. The load applied to node (9) is 444.82 kN in the −y direction. The
reason for selecting this example is that it does not include a stress constraint other than
for the Euler buckling of only the compressed bars. Displacement under load is, however,
constrained to ±0.0508 m in both x and y directions for nodes (3) to (9). The initial layout
of this problem is shown in Figure 3.
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Figure 3. The 17-bar truss with dimensions and labeled nodes ((1) to (9) and bars (1–17)) [14].

The discrete set of variables for cross-sections and their geometry are the same as in
the previous example, despite the change in material. Coordinates for nodes (3) to (8) can
all vary from 0 to 10.16 m in the x direction and from −2.54 to 5.08 m in the y direction with
respect to the initial configuration. Only the y component of the coordinates for node (9)
can vary from 0 to 2.54 m from the initial configuration. Topology optimization is limited
not to allow the exclusion of bars 13 and 14. Any optimization iteration can only remove
one of the bars from the set {1, 2, 3, and 15}. These limitations for the bar removal reduce
the search space since it is obvious that without this limit, there will be iterations, which
are mechanisms.

3.3. Spatial 25-Bar Truss Problem

The 25-bar truss is a spatial problem that uses the same cross-section variables and
material as the planar 10-bar truss. This example has bars grouped into sets to ensure that
each bar group has the same cross-sections assigned to all the bars in that group. These
eight sets consist of bars, which can be seen in Figure 4 and are grouped as follows: 1 {1},
2 {2–5}, 3 {6–9}, 4 {10–11}, 5 {12–13}, 6 {14–17}, 7 {18–21}, and 8 {22–25} [14]. Forces applied
to this example are given by (x, y, z) components for nodes (1) (4.448, −44.48, −44.48) kN,
(2) (0, −44.48, −44.48) kN, (3) (2.224, 0, 0) kN, and (6) (2.669, 0, 0) kN.
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Figure 4. The 25-bar truss with dimensions and labeled nodes ((1) to (10)) and bars (1–25) [14].

The structure is constrained to a stress limit of 40 kN in all the bars, and Euler buckling
limits are used for bar groups where at least one element is compressed. The displacement
of nodes under load is constrained to ±0.009 m in all directions for all nodes. Shape
variables are created in such a way as to maintain the loading directions but to allow
for variation in the geometry. The shape variables (node coordinates) are continuous
with increments of 1 mm. The limits for node variables according to node are as follows:
0.508 m ≤ x4, x5, −x3, −x6 ≤ 1.524 m; 1.016 m ≤ y3, y4, −y5, −y6 ≤ 2.032 m; 2.286 m ≤ z3,
z4, z5, z6 ≤ 3.302 m; 1.016 m ≤ x8, x9, −x7, −x10 ≤ 2.032 m; and 2.540 m ≤ y7, y8, −y9,
−y10 ≤ 3.556 m.

3.4. Roof Truss Problem

The practical roof truss is a symmetrical structure about the y-axis. This example is
not suitable for topological optimization in the conventional sense. This is due to the fact
that removing any bar from the initial configuration, as seen in Figure 5, would result in
an unstable structure if nodes are considered as joints in the calculation process. For this
reason, this example considers four layouts of topology, as shown in Figure 6, to show
all the possible stable topologies without removing loaded or support nodes [17]. This
means that all the layouts were optimized only for sizing and shape simultaneously. All
the profiles are S235JRG2 steel hollow square sections (HSS), with a Young modulus of
2.1 · 105 MPa and a density of 7850 kg/m3. The profiles used, along with their moments of
inertia, are given in Table 1.

The structure is divided into nine different groups of bars, which are symmetrically
arranged. These groups are used to assign the same cross-section to a whole group of bars.
Grouping is conducted so that there are no changes in cross-section along a straight line of
elements. The bars are grouped as follows: bars 1 to 4 with 16 to 19, bars 5 to 8 with 20 to
23, bar 9 with 24, bar 10 with 25, bar 11 with 26, bar 12 with 27, bar 13 with 28, bar 14 with
29, and bar 15.

Compression and tension stress limits are set to 180 MPa for all bars, along with Euler
buckling constraints for compressed elements, as well as a maximum allowed displacement
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under load of ±0.036 m for all nodes in the x and y directions. Shape constraints are
grouped to ensure that the symmetry is maintained for each iteration. The coordinates
are constrained to 5.5 ≤ −x2 = x11 ≤ 8.5, 3 ≤ −x3 = x12 ≤ 7, 0.5 ≤ −x4 = x13 ≤ 4.5, and
0 ≤ y2–5 = y11–13 ≤ −0.8 (given in meters).
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Figure 6. Roof truss topology configurations. (a) Layout 1 as seen in Figure 5, (b) Layout 2 without
bar 15 with rigid connection between bars 4 and 19, (c) Layout 3 without bars 11 and 26 with rigid
connection between bars 2 and 3 and bars 17 and 18, and (d) Layout 4 without bars 11, 15, and 26
with rigid connection between bars 4 and 19, bars 2 and 3, and bars 17 and 18.
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Table 1. HSS profiles are used for the roof truss example and their moments of inertia [17].

Profile Dimensions,
mm

Moments of Inertia, cm4

Profile Wall Thickness, mm
3 4 5 6

40 × 40 8.6 11.1 - -
45 × 45 14.4 17.6 - -
50 × 50 19.5 23.7 27 -
60 × 60 35.1 43.6 50.5 -
70 × 70 56.1 68.9 - -
80 × 80 87.8 111 131 149
90 × 90 127 162 193 220

100 × 100 177 226 271 311
110 × 110 235.9 300.3 357.4 439.8
120 × 120 317.2 409.5 498.6 562
130 × 130 397.3 510.2 612.8 748.3
140 × 140 510 661.5 805.8 945.8

4. Results
The presented optimization results for all examples are the best of 10 repeated pro-

cesses, always starting from the analytical solution of the initial example configuration. In
the case of the 10-bar, 17-bar, and 25-bar trusses, the analytical solution was dimensioned
according to the most loaded compressed bar of the initial shape and topological layout,
and the same profile was used for all bars of that example. In the case of the roof truss, the
production dimensions were used. All examples are optimized with a forced constraint of
cardinality greater than their respective global optima to show a trend and prove that the
global optima does not use more different cross-sections. For example, with 10 and 25 bars,
the maximum number is set to one less than the initial configuration number of bars (bar
groups) to ensure that topology optimization is employed as well. For the 17-bar and roof
examples, the smaller numbers were chosen as their global optima, which used a smaller
number of different cross-sections than the maximum number of possible elements.

The parameter for termination of the genetic algorithm was set to a maximal stagnant
population of 50. Each generation was set to a population size of 50, maintaining the top
5% onto the next generation and inbreeding of 75%. The same optimization parameters
were used for all the examples. It should be noted that the results presented here can be
obtained using any other heuristic method of optimization. The main reason for using
the genetic algorithm (GA) was for its availability, widespread use, and reliability. Any
other heuristic algorithm can be implemented. This research does not focus on algorithm
speed and performance but rather on the possibilities of bringing optimization closer to
application in the design process.

Table 2 shows the optimum cross-sections and weights for the 10-bar truss sizing,
shape, and topology optimization problem for cardinality constraints from 1 to 9. In this
example, the optimal solution uses five different cross-sections. The coordinates of points
(1) and (3) are given in Table 3 for each optimal solution according to the solution. Solutions
with cardinality constraints ranging from 1 to 4 do not include node (1) in their optimal
configurations, as evident from Table 2, since these solutions do not utilize bars 2, 6, and 10.

A comparison of the trend of optimal weight results, depending on the number of
different cross-sections used for the 10-bar truss example, depending on what aspects of
the truss are optimized, is shown in Figure 7. The results from [14] are shown as sizing
results and simultaneous sizing and shape optimization results are shown from [15].
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Table 2. The cross-section areas of optimal models for 10-bar truss sizing, shape, and topology
optimization.

Element No.

Cross-Section Areas, ×102 mm2

Number of Different Cross-Sections Used
1 2 3 4 5 6 7 8 9

1 415.476 23.758 181.458 181.458 153.938 132.732 132.732 176.715 201.062
2 - - - - 63.617 78.540 50.265 63.617 78.540
3 415.476 490.874 490.874 490.874 490.874 490.874 490.874 490.874 490.874
4 415.476 490.874 490.874 415.476 314.159 314.159 346.361 346.361 380.133
5 415.476 23.758 28.274 28.274 - - - 56.745 12.566
6 - - - - 1.131 1.131 1.131 103.869 103.869
7 - - 28.274 28.274 63.617 78.540 70.882 63.617 33.183
8 415.476 201.062 - - - - - - -
9 415.476 201.062 181.458 181.458 153.938 201.062 213.825 78.540 63.617

10 - - - - 63.617 78.540 50.265 50.265 1.131
Weight, kg 5896.031 4325.324 3572.348 3386.197 3180.693 3233.19 3268.929 3413.695 3276.435

Table 3. Optimal coordinates of points according to the number of different cross-sections used for
the 10-bar truss example.

Coordinate

Values, m

Number of Different Cross-Sections Used
1 2 3 4 5 6 7 8 9

x1 - - - - 11.585 11.586 11.362 11.406 6.768
y1 - - - - 1.409 1.387 1.605 4.126 5.569
x3 9.155 10.304 10.235 9.803 14.15 14.262 13.616 7.619 9.828
y3 3.628 3.239 3.48 3.749 2.885 2.904 3.231 5.795 4.085
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Table 4 shows the optimal cross-sections and weights for the 17-bar truss sizing, shape,
and topology optimization problem, for cardinality constraints from 1 to 10. In this example,
the optimal solution uses six different cross-sections. The coordinates of points (3) to (9) are
given in Table 5 for each optimal solution, according to the solution.

Table 4. The cross-section areas of optimal models for 17-bar truss sizing shape and topology
optimization.

Element No.
Cross-Section Areas, ×102 mm2

Number of Different Cross-Sections Used
1 2 3 4 5 6 7 8 9 10

1 78.540 56.745 78.540 78.540 78.540 78.540 78.540 78.540 78.540 78.540
2 - - - - - 28.274 31.172 31.172 44.179 44.179
3 78.540 86.590 78.540 78.540 78.540 86.590 86.590 86.590 95.033 95.033
4 78.540 56.745 28.274 23.758 23.758 50.265 50.265 50.265 44.179 44.179
5 78.540 56.745 56.745 56.745 56.745 63.617 63.617 70.882 86.590 86.590
6 - - - - - 28.274 31.172 28.274 12.566 12.566
7 78.540 86.590 78.540 78.540 78.540 78.540 78.540 78.540 78.540 78.540
8 78.540 56.745 28.274 31.172 31.172 28.274 38.485 38.485 44.179 44.179
9 78.540 56.745 56.745 56.745 56.745 28.274 31.172 31.172 31.172 31.172

10 - - - - - 23.758 28.274 28.274 12.566 15.904
11 78.540 56.745 56.745 56.745 56.745 63.617 63.617 63.617 78.540 78.540
12 78.540 56.745 28.274 23.758 23.758 28.274 28.274 28.274 23.758 23.758
13 78.540 56.745 28.274 31.172 31.172 50.265 31.172 31.172 50.265 50.265
14 78.540 56.745 56.745 56.745 56.745 50.265 50.265 50.265 56.745 56.745
15 78.540 56.745 56.745 56.745 56.745 - - - - -
16 78.540 56.745 56.745 56.745 50.265 - - - - -
17 78.540 56.745 56.745 56.745 50.265 - - - - -

Weight, kg 1971.904 1598.321 1390.499 1386.597 1366.206 1303.889 1317.059 1322.443 1376.080 1380.341

Table 5. Optimal coordinates of points according to the number of different cross-sections used for
the 17-bar truss example.

Coordinate
Values, m

Number of Different Cross-Sections Used
1 2 3 4 5 6 7 8 9 10

x3 2.455 2.756 2.541 2.543 2.54 1.985 1.982 2.001 1.976 1.972
y3 −0.311 −0.146 −0.194 −0.19 −0.187 0.044 0.029 0.061 −0.019 −0.001
x4 1.668 1.345 1.236 1.247 1.243 3.368 3.334 3.313 3.456 3.456
y4 2.151 2.419 2.519 2.525 2.525 2.428 2.379 2.375 2.441 2.441
x5 5.217 5.157 5.202 5.172 5.172 4.791 4.789 4.789 4.772 4.733
y5 −0.388 −0.01 −0.256 −0.275 −0.371 −0.096 −0.098 −0.099 0.169 0.198
x6 4.546 4.122 3.765 3.735 3.733 5.861 5.859 5.851 5.618 5.618
y6 1.55 2.183 2.249 2.232 2.229 1.956 1.956 1.956 2.119 2.082
x7 7.247 7.638 7.88 7.866 7.857 7.416 7.416 7.415 7.286 7.285
y7 −0.373 −0.051 −0.328 −0.347 −0.347 −0.006 −0.012 −0.014 0.137 0.12
x8 6.691 6.762 6.665 6.632 6.632 8.481 8.478 8.474 8.449 8.439
y8 1.121 1.846 1.846 1.871 1.871 1.647 1.646 1.645 1.514 1.512
y9 0.52 0.862 0.778 0.747 0.747 0.521 0.52 0.514 0.492 0.458

A comparison of the trend of optimal weight results depending on the number of
different cross-sections used for the 17-bar truss example depending on what aspects of the
truss are optimized is shown in Figure 8. The results from [14] are shown as sizing results,
while simultaneous sizing and shape optimization results are shown from [15].

Table 6 shows the optimal cross-sections, according to element groups, and weights
for the 25-bar truss sizing, shape, and topology optimization problem, for cardinality
constraints from 1 to 7. In this example, the optimal solution uses five different cross-
sections in a total of six groups. The coordinates of points (3) to (10) are given in Table 7 for
each optimal solution, according to the solution.
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Table 6. The cross-section areas of optimal models for 25-bar truss sizing shape and topology optimization.

Element
Group No.

Cross-Section Areas, ×102 mm2

Number of Different Cross-Sections Used
1 2 3 4 5 6 7

1 28.274 - - - - 1.131 2.011
2 28.274 12.566 12.566 1.131 12.566 15.904 9.079
3 28.274 38.485 38.485 38.485 33.183 33.183 33.183
4 - - - - - - 1.131
5 28.274 - - - - - -
6 28.274 12.566 12.566 4.909 4.909 4.909 9.621
7 28.274 12.566 9.079 28.274 9.621 12.566 12.566
8 28.274 38.485 38.485 38.485 38.485 38.485 38.485

Weight, kg 543.164 392.324 380.098 361.072 328.893 351.122 353.488

Table 7. Optimal coordinates of points according to the number of different cross-sections used for
the 25-bar truss example.

Node Coordinate
Values, m

Number of Different Cross-Sections Used
1 2 3 4 5 6 7

−x3; x4; x5; −x6 0.508 0.932 0.999 0.609 0.995 0.897 0.961
y3; y4; −y5; −y6 1.245 1.212 1.169 1.4 1.224 1.279 1.168

z3; z4; z5; z6 2.433 2.472 2.559 2.286 2.59 2.49 2.658
−x7; x8; x9; −x10 1.016 1.016 1.016 1.016 1.016 1.016 1.016

A comparison of the trend of optimal weight results, depending on the number of
different cross-sections used for the 25-bar truss example, depending on what aspects of
the truss are optimized, is shown in Figure 9. The results from [14] are shown as sizing
results, while simultaneous sizing and shape optimization results are shown from [15].
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The percentage differences in each cardinality solution, from the respective overall
optimal solutions for the 10-bar, 17-bar, and 25-bar truss examples are shown in Figure 10
to illustrate the trend of weight increase as the cardinality constraint moves away from the
global optima. The graph displays all the values along with a scaled version of values below
40% to highlight variations more clearly. This adjustment is made to enhance visibility
since when the graph spans the 0–100% range, the variations are too close to distinguish
the markers.
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The analytical solution for the roof truss problem is used for the standing structure
from which this example was created. This solution uses three different profiles on the first
topology configuration in the following way: 90 × 90 × 6 profile for bars 1–4 and 16–19,
100 × 100 × 4 profile for bars 5–8 and 20–23, and for all other bars, the 50 × 50 × 4 profile.
The solution is the work of an experienced structural engineer, which is why the solution
is already low in weight. The analytical solution weighs 699.683 kg. To put this into
perspective, a solution using the same cross-section for all bars, which is sized according
to the most loaded compressed bar, weighs 881.841 kg and uses 140 × 140 × 3 profiles.
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Furthermore, the specifics of the use case for this problem did not allow for large variations
in shape, hindering the possible improvements that a larger variation in the shape could
potentially bring. Tables 8–11 give the optimal solution cross-sections according to the
number of different cross-sections used for the four roof topology configurations, along
with their respective weights.

Table 8. Optimal solutions according to the number of different cross-sections used for the first roof
truss topology configuration.

Element
Groups

Used Standard Profile (Width × Height × Wall Thickness), mm

Number of Different Cross-Sections Used
1 2 3 4 5

1–4, 16–19 90 × 90 × 5 140 × 140 × 3 140 × 140 × 3 140 × 140 × 3 90 × 90 × 5
5–8, 20–23 90 × 90 × 5 140 × 140 × 3 140 × 140 × 3 140 × 140 × 3 80 × 80 × 6

9, 24 90 × 90 × 5 50 × 50 × 3 45 × 45 × 3 40 × 40 × 3 40 × 40 × 3
10, 25 90 × 90 × 5 50 × 50 × 3 45 × 45 × 3 50 × 50 × 3 50 × 50 × 3
11, 26 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
12, 27 90 × 90 × 5 50 × 50 × 3 45 × 45 × 3 40 × 40 × 3 40 × 40 × 3
13, 28 90 × 90 × 5 50 × 50 × 3 45 × 45 × 3 40 × 40 × 3 40 × 40 × 3
14, 29 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3

15 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 45 × 45 × 3 45 × 45 × 3

Weight, kg 879.399 634.235 617.637 613.251 624.138

Table 9. Optimal solutions according to the number of different cross-sections used for the second
roof truss topology configuration.

Element
Groups

Used Standard Profile (Width × Height × Wall Thickness), mm

Number of Different Cross-Sections Used
1 2 3 4 5

1–4, 16–19 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 80 × 80 × 6 80 × 80 × 6
5–8, 20–23 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5

9, 24 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
10, 25 90 × 90 × 5 50 × 50 × 3 45 × 45 × 4 45 × 45 × 3 45 × 45 × 3
11, 26 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 4
12, 27 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
13, 28 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
14, 29 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3

15 - - - - -

Weight, kg 852.436 629.502 612.018 614.014 616.609

Table 10. Optimal solutions according to the number of different cross-sections used for the third
roof truss topology configuration.

Element
Groups

Used Standard Profile (Width × Height × Wall Thickness), mm

Number of Different Cross-Sections Used
1 2 3 4 5

1–4, 16–19 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5
5–8, 20–23 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5 90 × 90 × 5

9, 24 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
10, 25 90 × 90 × 5 50 × 50 × 3 50 × 50 × 3 50 × 50 × 3 50 × 50 × 3
11, 26 - - - - -
12, 27 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
13, 28 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 45 × 45 × 3
14, 29 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3

15 90 × 90 × 5 50 × 50 × 3 40 × 40 × 3 45 × 45 × 3 40 × 40 × 4

Weight, kg 842.164 626.117 606.993 607.891 610.392

Coordinates of nodes (2) to (5) and (11) to (13) are shown in Table 12 for all the topology
cases, according to the number of different cross-sections used. The configurations of
topology cases 3 and 4 do not include nodes (3) and (12) since these cases have rigid
connections between bars 2 and 3 and bars 17 and 18, thereby eliminating the need for
nodes in these locations.
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Table 11. Optimal solutions according to the number of different cross-sections used for the fourth
roof truss topology configuration.

Element
Groups

Used Standard Profile (Width × Height × Wall Thickness), mm

Number of Different Cross-Sections Used
1 2 3 4 5

1–4, 16–19 140 × 140 × 3 90 × 90 × 5 140 × 140 × 6 90 × 90 × 5 90 × 90 × 5
5–8, 20–23 140 × 140 × 3 90 × 90 × 5 140 × 140 × 3 90 × 90 × 5 90 × 90 × 5

9, 24 140 × 140 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 4
10, 25 140 × 140 × 3 90 × 90 × 5 60 × 60 × 3 60 × 60 × 3 60 × 60 × 3
11, 26 - - - - -
12, 27 140 × 140 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3
13, 28 140 × 140 × 3 40 × 40 × 3 40 × 40 × 3 45 × 45 × 3 45 × 45 × 3
14, 29 140 × 140 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3 40 × 40 × 3

15 - - - - -

Weight, kg 809.798 640.507 601.890 607.306 609.415

Table 12. Node coordinates of optimal solutions according to the number of different cross-sections
used for all roof truss topology configurations.

Topology
Case

Values, m

Coordinates Number of Different Cross-Sections Used
1 2 3 4 5

1

−x2, x11 6.81 7.10 7.12 7.10 6.82
−x3, x12 5.00 5.01 6.06 5.00 5.00
−x4, x13 2.63 2.79 2.66 2.63 2.63

y2–5, y11–13 0.80 0.80 0.80 0.80 0.8

2

−x2, x11 −6.81 7.01 6.94 6.81 6.81
−x3, x12 5.00 5.00 5.00 5.00 5.00
−x4, x13 2.63 2.65 2.54 2.55 2.55

y2–5, y11–13 0.8 0.80 0.8 0.8 0.8

3

−x2, x11 6.81 7.01 7.02 7.01 7.00
−x3, x12 - - - - -
−x4, x13 2.63 2.69 2.48 2.55 2.59

y2–5, y11–13 0.8 0.8 0.8 0.88 0.8

4

−x2, x11 7.02 6.90 7.27 7.15 7.15
−x3, x12 - - - - -
−x4, x13 2.63 2.59 2.58 2.54 2.54

y2–5, y11–13 0.8 0.87 0.8 0.8 0.8

Figure 11 shows the differences in optimal weight according to topology case and the
number of different cross-sections used. The weights of single cross-section non-optimized
and experience based analytical solutions for topology case 1 are marked, as well.
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The percentage differences in each cardinality solution from the respective overall
optimal solutions for all roof topology cases are shown in Figure 12 to illustrate the trend
of weight increase as the cardinality constraint moves away from the global optima. The
graph displays all values along with a scaled version of values below 7% to highlight
variations more clearly. This adjustment is made to enhance visibility since when the graph
spans the 0–35% range, the variations are too close to distinguish the markers.
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5. Conclusions
The results presented in this paper are part of extensive research in the field of truss

design and optimization. An overall goal in developing new optimization techniques for
engineering problems is to achieve applicable results that require zero to very little further
designer input. In previous works, sizing and simultaneous sizing and shape optimization
were used to test the results of using cardinality constraints to reduce the number of cross-
sections an optimal truss solution uses. Here, the complete sizing, shape, and topology
optimization were simultaneously implemented to give a perspective on what is possible
using this approach and to show how adding complexity improves potential results. To
overcome the problem in the topology optimization of carrying over genetic information
from iteration to iteration, with the additional complexity of cardinality constraints, this
research used a referencing system to maintain the cross-section assignment of sizing
optimization relative to the position of the bar that is used (or omitted).

The implementation of cardinality constraints significantly increases the applicability
of optimization results in the real world. Experience has shown that global optimal solutions
without this constraint use a large number of different cross-sections, especially in more
complex structures with wider ranges for sizing and shape variables.

Cardinality constraints for all examples were set to exact values instead of maximal
possible values to show the trend after the number of cross-sections used increases past the
global optima. This also confirmed that the global optimal solutions were indeed the ones
presented here. All the examples were optimized 10 times from the same corresponding
initial layouts, and the best solutions are presented here. It should be noted that out of the
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10 runs for all examples, most of the results were close to the used results, with only a few
runs becoming stuck in local optimal solutions.

To show comparable results, this paper used typical 10-bar, 17-bar, and 25-bar truss
examples and compared optimization results to corresponding results from the literature.
The main comparison for these examples was between the different numbers of cross-
sections used for each example to optimize sizing shape and topology compared to results
from the literature of those same examples when only sizing and simultaneous sizing and
shape optimization were used. The other comparison is the difference from the global
optima for each different number of cross-sections used for each sizing, shape, and topology
optimized example of each of the problems.

The difference in using sizing and shape as opposed to sizing shape and topology
for the 10-bar example is consistent for 3–7 cross sections used at about 12.5–16.5% and
about 38–43% compared to just sizing in the same range, for each corresponding cardinality
constrained result. A 2.6% difference between sizing shape and this work is seen when
using only two different cross-sections with a total weight still being lower than all sizing
optimization results and from the global optima for sizing of using just by less than 10%. A
similar trend is observed with the 17-bar truss results when comparing approaches. Namely,
sizing and shape compared to this work in the same range of 3–7 differ by approximately
0–5%, while just shape differs by approximately 16–24%. The planar 25-bar truss uses bars
grouped by sector, but even here, there is a clear trend of sizing and shape results differing
by approximately 20–30% in the range of 2–5 bar groups and sizing results differing by
about 50–53% for sizing. These trends indicate that the additional complexity of adding
topology optimization does not give drastically different results compared to sizing and
shape optimization. In practical terms, however, the decrease in the number of used bars
has additional savings in the form of fewer cuts needed to create bars, fewer welds at
connections, fewer connections required if topology optimization eliminates the need for a
node, etc. An interesting aspect to consider for future work would be how overall surface
area is affected depending on weight optimization results to show savings in the amount
of needed surface protection, as was performed in [17].

The difference from the global optima for each different number of cross-sections
used for each corresponding example of the 10-bar, 17-bar, and 25-bar problems shows a
correlation in the weight savings. The observed trend is logarithmic to the point of the
global optima, past which the trend is a slight forced increase in weight. In this regard,
the results that use only three different cross-sections differ from their respective optima
by approximately 6.5–15.5%, while for four cross-sections, this is approximately 6–10%,
depending on the example. Three to four different cross-sections are reasonable for this
complexity of structures.

Aside from typically used examples from the literature, which use full round cross-
sections, a real roof truss with HSS cross-sections was optimized using the same approach.
This example differs in the use of topology optimization since it was impossible to remove
any bars without creating an unstable truss. This was overcome by optimizing sizing and
shape simultaneously for four different topology cases, where the nodes were removed,
and bar pairs going through those nodes were replaced by single bars. The results from the
roof example are compared case by case, according to the number of different cross-sections
used, as well as to a single cross-section solution of the initial layout and the real truss’s
dimensions, which was designed using analytical calculation and years of experience of
the designer.

When comparing the weight results for each topology case, by the number of different
cross-sections used, the distributions are rather similar from case to case, with case 4, which
uses the smallest number of nodes, and bars having the lowest optimal weight with three
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different cross sections. All the cases, regardless of the number of the used cross-sections,
have a lower optimal weight than when just sizing the first case (the initial example)
to use a single cross-section. In fact, the optimal results with three and four different
cross-sections for cases 1, 2, 3, and 4 are roughly about 30–32% lower than this model.
Comparing optimal results with 3 and 4 different cross-sections to the analytical result that
was produced (699.683 kg), the improvement using optimization is roughly approximately
12–14%, depending on the topology case. It is also interesting that for cases 2, 3, and 4, the
global optima are with three different cross-sections, while case 1 has a global optima with
four different cross-sections used, and it is only about 4 kg lighter than the result with three
cross-sections for that case.

The differences from corresponding optimal solutions, for all four topology cases, show
the same trend as the standard truss examples, just with smaller deviations. This is likely
due to the roof’s small ranges of sizing and shape variables compared to standard examples.
Regardless, all the cases have the same logarithmic difference from the corresponding global
optima in this example.

In summary, the findings presented in this study underline the significant impact
of cardinality constraints on the optimization of truss design and the potential weight
savings when using simultaneous sizing, shape, and topology optimization. By applying
the practical constraints, the results demonstrate the practical applicability of this approach,
revealing that the global optimal solutions often necessitate a large number of different
cross-sections. Through the standard and practical examples and comparative analyses,
the results show that the precise cardinality constraints yield insights into optimization
trends beyond the global optima, offering a nuanced understanding of optimal design
configurations. Moreover, this research highlights the potential benefits of integrating
topology optimization, which can lead to substantial material and construction efficiencies
in real-world applications. The purpose of these investigations was to set the stage for
continued advancements in truss optimization approaches, with implications for enhancing
efficiency and sustainability in structural engineering practice.
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