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Abstract: The optimization goal function of minimal weight generally produces results which use many
different cross-sections. In practice, using such a large number of different bar stocks is irrational,
impractical and expensive. This research explores the influence of implementing cardinality constraints in
sizing optimization by limiting the number of possible different cross-sections that are used in any iteration
of the optimization process. The example chosen to showcase the difference in using such an approach is
the typical 47-bar planar problem. Results using the cardinality constraint are compared to results from
an analytical solution where the entire structure was sized according to the structure’s most stressed bar,
as well as to comparable results from literature, which do not limit the number of different cross-section

dimensions.
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1. INTRODUCTION

The wuse of structural optimization is
widespread in the research fields related to truss
construction. However, this approach has not
been widely adopted. One of the issues with
adopting this design approach is the still
inadequate  formulation of  optimization
constraints and a range of different objectives
which vary.

A multi-objective optimization (MOO) of
steel trusses, considering total weight and
displacement as objectives and employing direct
analysis, was presented by researchers in [1].
They used six different metaheuristic algorithms
to solve the MOO problem and presented their
results for 10-,72-47-, and 113-bar truss
examples. In [2], the authors used a modified
GreyWolf Optimizer (GWOM) using three
different —mutation operators for sizing
optimization in truss structures. Their results
were evaluated wusing several benchmark
examples showing the competitiveness of the
method compared to other modern methods.

Current optimized models mainly focus on
improving optimization methods' speed and the

possibility of providing marginally better results
than other unmodified or older methods.

Some researchers approach truss
optimization without a starting geometry. Rather
than traditional methods, the truss layout
problem is formulated as a Markov Decision
Process (MDP) model, as demonstrated in [3],
which introduced AlphaTruss—a Monte Carlo
Tree Search approach for optimal truss layout
design. This model significantly expands the
solution space through three sequential action
sets: adding nodes, adding bars, and selecting
sectional areas. The reward function provides
feedback on actions based on geometric stability
and structural simulation.

In the past, some attempts have been made to
include ways of implementing cardinality as a
means of approaching the applicability threshold
for optimization to be the leading factor in the
design choices of truss construction [4, 5]. This
idea has resurfaced in recent years and has been
implemented in [6, 7], where researchers used a
two-step approach where variables are
reassigned to newly selected sets, which has
been applied to the optimization process of this
research as well. In [8], researchers applied the
ant colony optimization method for multi-



objective structural optimization, incorporating
the cardinality constraint directly into the
algorithm. By employing a  two-step
construction process to assign design variables
based on the defined cardinality, they achieved
minimization of both weight and nodal
displacement. An encoding method for
automatic variable linking was used by authors
in [9] for sizing optimization and in [10] for
simultaneously optimizing sizing and layout,
thereby not allowing solutions which do not
meet the cardinality conditions. The penalty
function is avoided for this constraint in such an
approach. This research explores the influence
of implementing cardinality constraints in sizing
optimization by limiting the number of possible
cross-section diameters used in any given
iteration. The difference in using such an
approach is presented on a typical 47-bar planar
problem where results are compared to those
from an analytical solution sized according to
the bar experiencing the largest stress, as well as
to comparable results from literature.

2. TRUSS STRUCTURAL OPTIMIZATION

In structural optimization, sizing treats cross-
sections as variables. Cross-section variables
should be considered as a discrete set of values
to ensure practical applicability. The objective is
to identify the combination of cross-section
diameters assigned to specific bars which
minimizes weight while satisfying constraints
for both stress and displacement. The majority
of truss sizing problems found in literature
approach the minimal weight optimization
challenge in the following way:
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where W is the mass of the truss, n is the number
of elements the truss consists of, Aj is the cross-
section area of the i element, li is i element’s
length, ai is the i element’s stress, Uj is the j™
node displacement, and k is the total number of
nodes.

Euler buckling is incorporated to achieve results
that are practically applicable. The iterative
changes in the moment of inertia, caused by
variations in cross-sections, also alter the Euler
critical buckling constraint during each iteration
(2). Consequently, this constraint is treated as
dynamic. Its inclusion substantially increases the
complexity of the optimization problem. Since
the stress comparison utilizes the same area on
both sides of the equation, Euler critical load is
employed as the constraint.
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where the compression axial stress of the i bar
element is oai, and o is the critical buckling
stress of the i element ; the compression force

in the axial direction is Fa , the critical load of
the i element according to Euler is Fxi, the
minimum moment of inertia of the i element’s
cross-section is i, and the i element’s modulus
of elasticity is Ei. The length between nodes of
the i element is given as li. The constraint from
expression (2) is appended to the constraints
given in expression (1).

3. CARDINALITY CONSTRAINT

This research further proves the benefits of
using cardinality constraints presented by [6]. In
order to implement the limitation of the number
of different cross-section diameters an optimal
solution can have, a cardinality constraint given
in expression (3) has been used.
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The variables and their indexes from this
relation are further explained in Fig. 1. The
cross-section assignment module is used to
complete several tasks to ensure

Y

Cross-section assignment module

Set of m variables S
112(3(4|5]../m

S.S,[S,lS. Sy .|S

m

Set of all possible cross-sections q

AL|AL|ALIA LA A

gf = q

1 2 3 4

The algorithm selects
cross-sections from this set
and assigns them to a member
of the set of variables S

s |s,[s.l5.|54 ..[5
Adalalal. sl

L] The algorithm assigns an |
S variable to each bar n

1{2(3|4(5]...|n

L1s.|5,]5,[S,S ] ...|S,

The final set of cross-sections
assigned to bars in this generation

G G G G G G

A AL A A LA |

5| =+ 5

A

Y

New generation Aeﬁc

algorithm

Optimal solution

Fig. 1. Schematic overview of cross-section assignment
in genetic algorithm operation, using the cardinality
constraint.

4. EXAMPLE

An example of a frame with 47 rods [11-13]
represents a planar problem where the node
positions are symmetric about the y-axis. The
cross-sections of the elements are grouped into

27 groups, maintaining symmetry about the y-
axis. The configuration is arranged in 22 nodes,
as shown in Figure 2. For this example, profiles
with solid circular cross-sections made of
structural steel were used, characterized by the
following properties: an elasticity modulus of
206,842.719 MPa and a density of 7.4 g/cm?.
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Fig.2. The 47-bar truss example layout.

Regarding discrete variables, the cross-
sections were selected from catalogs of various
manufacturers, and a list of possible rod
diameters was compiled as follows: 6, 8, 12, 12,
14, 15, 16, 17, 18, 20, 22, 24, 25, 28, 30, 32, 35,
36, 38, 40, 45, 50, 55, 56, 60, 63, 65, 70, 75, 80,
85, 90, 95, 100, 105, 110, 115, 120, 125, 130,



140, 150, 160, 170, 180, 190, 200, 220, and 250,
with values given in millimeters.

The structure is required to resist three
distinct load cases (LC1, LC2, and LC3). In
LC1, concentrated forces of 26.689 kN in the +x
direction and 66.275 kN in the —y direction are
applied at both nodes 17 and 22. LC2 applies the
same set of forces solely at node 17, while LC3
applies them solely at node 22.

The example with 47 rods has specified stress
limits of 103.421 MPa in compression and
137.895 MPa in tension. This example does not
include a specified limit for the maximum
allowable nodal displacement due to
deformation. The genetic algorithm was used as
the optimization method due to its capabilities
and availability. All constraints in this research
are subject to a uniform penalty function. If one
or more constraints are violated, the invalid
result are multiplied by a significant factor.

5. RESULTS

The cross-sectional optimization involves 27
variables. Table 1 compares optimal weights for
different limited numbers of cross-sections
(cardinalities) with the general optimal solution
and the optimal solution using only one cross-
section diameter (the analytical solution) for the
whole model for the sizing optimization.

Table 1
Comparison of masses according to the cardinality
constraint.

Difference | Difference

Cartinaity | V0t | ot | trom,
solution optimum
1 3969.870 - -121.999%
2 2510.117 | -36.771% -40.368%
3 2260.859 | -43.050% -26.429%
4 2246.385 | -43.414% -25.620%
5 2194.342 | -44.725% -22.710%
6 2157.790 | -45.646% -20.666%
7 2018.764 | -49.148% -12.891%

14 1788.238 | -54.955% -

The analytical solution is sized according to
the element under the highest stress, which is
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compression and subjected to buckling
constraints, according to Euler. This is the same
solution as the one where the cardinality is set to
one, since all bars are sized to use only one
cross-section. Only examples with cardinality
constraints from 1 to 7 were run since it was
unreasonable to assume that, in practice, more
than four or five different cross-section
diameters would be used, at most. The decision
to go up to seven different cross-sections was
made in order to show a trend of weight increase
with the increased limitation of cardinality.

Cross-sectional areas for optimal sizing
solutions  for all cardinality-constrained
solutions between 1 and 7, and the overall
optimum with 14 different cross-sections are
provided in Table 2.

6. CONCLUSION

The broad application of optimization in the
design process of truss structures is closer than
ever. Faster and faster processing speeds,
coupled with heuristic optimization methods,
have in recent years shown that it is possible to
use these tools in a variety of other fields, and
their acceptance as an alternative to engineer
experience and conventional design methods is
expanding significantly.

The specific problem of using optimization to
design trusses has to cover a broad range of
constraints that are frequently case-dependent.
Over the years, many constraints have been tried
and tested, and an all-encompassing solution is
still some years away. However, the
implementation of practical constraints, the use
of producible cross-section sets, and other steps
have ensured the right path for development.

This paper shows the difference in optimal
weight when comparing a more traditional
optimization approach to one which is mindful
of the number of different cross-sections used to
produce the complete structure. The limitation
of the number of varying cross-section diameters
inevitably gives results which are heavier than
those without the cardinality constraint, but their
advantage is their simplicity, the possibility of
limiting and comparing different maximal
numbers of different stock and assessing the
solutions to come up with the best use case.
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Table 2
Comparison of cross-section areas by element of cardinality solution.

Element Cross-section area [cm?] for each cardinality solution

number 1 2 3 5 6 7 14
1 44.179 24.630 44.179 28.274 28.274 28.274 44.179 24.630
2 44.179 24.630 23.758 23.758 23.758 23.758 23.758 23.758
3 44.179 24.630 23.758 23.758 23.758 15.904 11.341 12.566
4 44.179 24.630 1.310 0.503 0.503 0.503 1.131 7.069
5 44.179 24.630 23.758 23.758 23.758 23.758 15.904 15.904
6 44.179 24.630 23.758 23.758 15.904 15.904 19.635 12.566
7 44.179 24.630 23.758 23.758 23.758 23.758 15.904 15.904
8 44.179 24.630 23.758 23.758 15.904 15.904 11.341 11.341
9 44.179 24.630 23.758 23.758 23.758 23.758 19.635 19.635
10 44.179 24.630 23.758 23.758 15.904 15.904 15.904 15.904
11 44.179 24.630 1.310 0.503 0.503 0.503 1.131 0.283
12 44.179 24.630 1.310 0.503 0.503 0.503 1.131 0.503
13 44.179 24.630 23.758 23.758 23.758 23.758 11.341 11.341
14 44.179 24.630 23.758 23.758 23.758 23.758 23.758 11.341
15 44.179 24.630 23.758 23.758 23.758 15.904 11.341 9.621
16 44.179 24.630 23.758 23.758 23.758 23.758 11.341 7.069
17 44.179 24.630 23.758 23.758 23.758 23.758 23.758 24.630
18 44.179 24.630 23.758 23.758 23.758 31.172 28.274 23.758
19 44.179 24.630 23.758 23.758 23.758 23.758 11.341 1.131
20 44.179 44.179 44.179 44.179 44.179 44.179 44.179 38.485
21 44.179 24.630 23.758 23.758 23.758 23.758 23.758 15.904
22 44.179 24.630 1.310 0.503 0.503 0.503 1.131 7.069
23 44.179 24.630 44.179 44.179 44.179 44.179 44.179 38.485
24 44.179 24.630 23.758 23.758 23.758 23.758 23.758 23.758
25 44.179 24.630 1.310 0.503 0.503 0.503 1.131 1.539
26 44.179 44.179 44.179 44.179 44.179 44.179 44.179 44.179
27 44.179 24.630 23.758 28.274 28.274 23.758 23.758 23.758

W[iigg]ht 3969.87 | 2510.117 | 2260.859 | 2246.385 |2194.342 2157.79 | 2018.764 | 1788.238

The results of the 47-bar test example show
that for sizing optimization, a ~55% lighter
solution can be achieved using the typical
optimization approach with a structure using 14
different cross-sections, compared to the
solution using just one (analytical solution).
While solutions with three or four different
cross-sections making up the same structure are
~43% lighter than the analytical solution.
Compared to the typical optimization approach,
these simpler solutions are only ~26% heavier
but require the acquisition of a far smaller
number of different cross-sections to produce.

More work 1is still needed to bring truss
optimization to mass adoption in truss design.
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Functia obiectiv de optimizare a greutatii minime produce, in general, rezultate care utilizeaza multe sectiuni transversale
diferite. in practica, utilizarea unui numdr atat de mare de tipuri diferite de bare este irationald, nepractica si costisitoare.
Aceasta cercetare exploreaza influenta implementarii unor constrangeri de tip cardinalitate in optimizarea dimensionarii,
prin limitarea numarului de sectiuni transversale diferite care pot fi folosite intr-o anumita iteratie. Exemplul ales pentru
a evidentia diferenta produsa de aceastd abordare este problema planara tipica cu 47 de bare. Rezultatele obtinute folosind
constrangerea de cardinalitate sunt comparate cu rezultatele unei solutii analitice in care intreaga structurd este
dimensionatd in functie de elementul cel mai solicitat, precum si cu rezultate comparabile din literatura de specialitate,
care nu limiteazd numarul de sectiuni transversale diferite.
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