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Abstract: The optimization goal function of minimal weight generally produces results which use many 
different cross-sections. In practice, using such a large number of different bar stocks is irrational, 
impractical and expensive. This research explores the influence of implementing cardinality constraints in 
sizing optimization by limiting the number of possible different cross-sections that are used in any iteration
of the optimization process. The example chosen to showcase the difference in using such an approach is 
the typical 47-bar planar problem. Results using the cardinality constraint are compared to results from 
an analytical solution where the entire structure was sized according to the structure’s most stressed bar, 
as well as to comparable results from literature, which do not limit the number of different cross-section
dimensions. 
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1. INTRODUCTION

The use of structural optimization is
widespread in the research fields related to truss 
construction. However, this approach has not 
been widely adopted. One of the issues with 
adopting this design approach is the still 
inadequate formulation of optimization 
constraints and a range of different objectives 
which vary.   

A multi-objective optimization (MOO) of 
steel trusses, considering total weight and 
displacement as objectives and employing direct 
analysis, was presented by researchers in [1].
They used six different metaheuristic algorithms 
to solve the MOO problem and presented their 
results for 10-,72-,47-, and 113-bar truss 
examples. In [2], the authors used a modified 
GreyWolf Optimizer (GWOM) using three 
different mutation operators for sizing 
optimization in truss structures. Their results 
were evaluated using several benchmark 
examples showing the competitiveness of the 
method compared to other modern methods.  

Current optimized models mainly focus on 
improving optimization methods' speed and the 

possibility of providing marginally better results 
than other unmodified or older methods. 

Some researchers approach truss 
optimization without a starting geometry. Rather 
than traditional methods, the truss layout 
problem is formulated as a Markov Decision 
Process (MDP) model, as demonstrated in [3], 
which introduced AlphaTruss—a Monte Carlo 
Tree Search approach for optimal truss layout 
design. This model significantly expands the 
solution space through three sequential action 
sets: adding nodes, adding bars, and selecting 
sectional areas. The reward function provides 
feedback on actions based on geometric stability 
and structural simulation.

In the past, some attempts have been made to 
include ways of implementing cardinality as a 
means of approaching the applicability threshold 
for optimization to be the leading factor in the 
design choices of truss construction [4, 5]. This 
idea has resurfaced in recent years and has been 
implemented in [6, 7], where researchers used a 
two-step approach where variables are
reassigned to newly selected sets, which has 
been applied to the optimization process of this 
research as well. In [8], researchers applied the 
ant colony optimization method for multi-



 

 

objective structural optimization, incorporating 
the cardinality constraint directly into the 
algorithm. By employing a two-step 
construction process to assign design variables 
based on the defined cardinality, they achieved 
minimization of both weight and nodal 
displacement. An encoding method for 
automatic variable linking was used by authors 
in [9] for sizing optimization and in [10] for 
simultaneously optimizing sizing and layout, 
thereby not allowing solutions which do not 
meet the cardinality conditions. The penalty 
function is avoided for this constraint in such an 
approach. This research explores the influence 
of implementing cardinality constraints in sizing 
optimization by limiting the number of possible 
cross-section diameters used in any given 
iteration. The difference in using such an 
approach is presented on a typical 47-bar planar 
problem where results are compared to those 
from an analytical solution sized according to 
the bar experiencing the largest stress, as well as 
to comparable results from literature.  
  
2. TRUSS STRUCTURAL OPTIMIZATION 
  

In structural optimization, sizing treats cross-
sections as variables. Cross-section variables 
should be considered as a discrete set of values 
to ensure practical applicability. The objective is 
to identify the combination of cross-section 
diameters assigned to specific bars which 
minimizes weight while satisfying constraints 
for both stress and displacement. The majority 
of truss sizing problems found in literature 
approach the minimal weight optimization 
challenge in the following way:  
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where W is the mass of the truss, n is the number 
of elements the truss consists of, Ai is the cross-
section area of the ith element, li is ith element’s 
length, i is the ith element’s stress, uj is the jth 
node displacement, and k is the total number of 
nodes. 
Euler buckling is incorporated to achieve results 
that are practically applicable. The iterative 
changes in the moment of inertia, caused by 
variations in cross-sections, also alter the Euler 
critical buckling constraint during each iteration 
(2). Consequently, this constraint is treated as 
dynamic. Its inclusion substantially increases the 
complexity of the optimization problem. Since 
the stress comparison utilizes the same area on 
both sides of the equation, Euler critical load is 
employed as the constraint. 
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where the compression axial stress of the ith bar 
element is Ai, and Ki is the critical buckling 
stress of the ith element ; the compression force 
in the axial direction is

comp
AiF , the critical load of 

the ith element according to Euler is FKi, the 
minimum moment of inertia of the ith element’s 
cross-section  is Ii, and the ith element’s modulus 
of elasticity is Ei. The length between nodes of 
the ith element is given as li. The constraint from 
expression (2) is appended to the constraints 
given in expression (1). 
  
3. CARDINALITY CONSTRAINT  
  

This research further proves the benefits of 
using cardinality constraints presented by [6]. In 
order to implement the limitation of the number 
of different cross-section diameters an optimal 
solution can have, a cardinality constraint given 
in expression (3) has been used. 
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The variables and their indexes from this 
relation are further explained in Fig. 1. The 
cross-section assignment module is used to 
complete several tasks to ensure

Fig. 1. Schematic overview of cross-section assignment 
in genetic algorithm operation, using the cardinality 

constraint.

4. EXAMPLE  
  

An example of a frame with 47 rods [11-13] 
represents a planar problem where the node 
positions are symmetric about the y-axis. The 
cross-sections of the elements are grouped into 

27 groups, maintaining symmetry about the y-
axis. The configuration is arranged in 22 nodes, 
as shown in Figure 2. For this example, profiles 
with solid circular cross-sections made of 
structural steel were used, characterized by the 
following properties: an elasticity modulus of 
206,842.719 MPa and a density of 7.4 g/cm³.  

Fig.2. The 47-bar truss example layout. 

Regarding discrete variables, the cross-
sections were selected from catalogs of various 
manufacturers, and a list of possible rod 
diameters was compiled as follows: 6, 8, 12, 12, 
14, 15, 16, 17, 18, 20, 22, 24, 25, 28, 30, 32, 35, 
36, 38, 40, 45, 50, 55, 56, 60, 63, 65, 70, 75, 80, 
85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 
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140, 150, 160, 170, 180, 190, 200, 220, and 250, 
with values given in millimeters. 

The structure is required to resist three 
distinct load cases (LC1, LC2, and LC3). In 

–y direction are 
applied at both nodes 17 and 22. LC2 applies the 
same set of forces solely at node 17, while LC3 
applies them solely at node 22. 

The example with 47 rods has specified stress 
limits of 103.421 MPa  in compression and 
137.895 MPa in tension. This example does not 
include a specified limit for the maximum 
allowable nodal displacement due to 
deformation. The genetic algorithm was used as 
the optimization method due to its capabilities 
and availability. All constraints in this research 
are subject to a uniform penalty function. If one 
or more constraints are violated, the invalid 
result are multiplied by a significant factor. 

 
5. RESULTS  
  

The cross-sectional optimization involves 27 
variables. Table 1 compares optimal weights for 
different limited numbers of cross-sections 
(cardinalities) with the general optimal solution 
and the optimal solution using only one cross-
section diameter (the analytical solution) for the 
whole model for the sizing optimization.  

Table 1 
Comparison of masses according to the cardinality 

constraint. 

Cardinality Weight 
[kg] 

Difference 
from the 
analytical 
solution 

Difference 
from 

overall 
optimum 

1 3969.870 - -121.999% 
2 2510.117 -36.771% -40.368% 
3 2260.859 -43.050% -26.429% 
4 2246.385 -43.414% -25.620% 
5 2194.342 -44.725% -22.710% 
6 2157.790 -45.646% -20.666% 
7 2018.764 -49.148% -12.891% 
...    
14 1788.238 -54.955% - 

 
The analytical solution is sized according to 

the element under the highest stress, which is 

compression and subjected to buckling 
constraints, according to Euler. This is the same 
solution as the one where the cardinality is set to 
one, since all bars are sized to use only one 
cross-section. Only examples with cardinality 
constraints from 1 to 7 were run since it was 
unreasonable to assume that, in practice, more 
than four or five different cross-section 
diameters would be used, at most. The decision 
to go up to seven different cross-sections was 
made in order to show a trend of weight increase 
with the increased limitation of cardinality. 

Cross-sectional areas for optimal sizing 
solutions for all cardinality-constrained 
solutions between 1 and 7, and the overall 
optimum with 14 different cross-sections are 
provided in Table 2.  
   
6. CONCLUSION  
  

The broad application of optimization in the 
design process of truss structures is closer than 
ever. Faster and faster processing speeds, 
coupled with heuristic optimization methods, 
have in recent years shown that it is possible to 
use these tools in a variety of other fields, and 
their acceptance as an alternative to engineer 
experience and conventional design methods is 
expanding significantly.  

The specific problem of using optimization to 
design trusses has to cover a broad range of 
constraints that are frequently case-dependent. 
Over the years, many constraints have been tried 
and tested, and an all-encompassing solution is 
still some years away. However, the 
implementation of practical constraints, the use 
of producible cross-section sets, and other steps 
have ensured the right path for development.  

This paper shows the difference in optimal 
weight when comparing a more traditional 
optimization approach to one which is mindful 
of the number of different cross-sections used to 
produce the complete structure. The limitation 
of the number of varying cross-section diameters 
inevitably gives results which are heavier than 
those without the cardinality constraint, but their 
advantage is their simplicity, the possibility of 
limiting and comparing different maximal 
numbers of different stock and assessing the 
solutions to come up with the best use case. 
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 The results of the 47-bar test example show 
that for sizing optimization, a ~55% lighter 
solution can be achieved using the typical 
optimization approach with a structure using 14 
different cross-sections, compared to the 
solution using just one (analytical solution). 
While solutions with three or four different 
cross-sections making up the same structure are 
~43% lighter than the analytical solution. 
Compared to the typical optimization approach, 
these simpler solutions are only ~26% heavier 
but require the acquisition of a far smaller 
number of different cross-sections to produce. 

More work is still needed to bring truss 
optimization to mass adoption in truss design. 
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