The 10" International Conference on Business Information Security @BI SEG

BISEC-2018), 20" October 2018, Belgrade, Serbia
g
BUSINESS INFORMATION SECURITY
CONFERENCE

CAN SUPPORT VECTORS DETECT EXPLOITS?

NEMANJA MACEK
School of Electrical and Computer Engineering of Applied Studies, Belgrade; Graduate School of Computer Sciences,
Megatrend University, Belgrade; SECIT Security Consulting; macek.nemanja@gmail.com

IGOR FRANC
Belgrade Metropolitan University, Faculty of Information Technologies; SECIT Security Consulting;
igor.franc@metropolitan.ac.rs

MILAN GNJATOVIC
University of Novi Sad, Faculty of Technical Sciences; milangnjatovic@uns.ac.rs

BRANIMIR TRENKIC
School of Electrical and Computer Engineering of Applied Studies, Belgrade; btrenkic@viser.edu.rs

MITKO BOGDANOSKI
Military Academy General Mihailo Apostolski, Skoplje, Macedonia; mitko.bogdanoski@ugd.edu.mk

ACA ALEKSIC
Belgrade Metropolitan University, Faculty of Information Technologies; aca.aleksic@metropolitan.ac.rs

Abstract: An exploit is software, a chunk of data, or a sequence of commands that takes advantage of a bug or
vulnerability in operating system or other software products to cause unintended or unanticipated behaviour of computer
software, hardware, or other electronic devices. Such behaviour includes actions like unauthorized gaining control of a
computer system, unauthorized privilege escalation, or a denial-of-service attack. Although anti-malware products and
signature-based intrusion detection systems provide reasonable level of security, they will not detect and prevent
execution of new exploits or exploits that tend to evolve, as there is no signature in the anti-malware or intrusion detection
database. To raise the overall level of security we have introduced one kernel-based machine learning method, named
support vector machines, into an intrusion detection system that is capable of detecting exploits without employing
signature database. Experimental evaluation of our solution is conducted on the custom dataset generated in isolated
environment.

Keywords: Exploits, Machine learning, Support Vector Machines

the malware itself, it is believed that it was built jointly by
1. INTRODUCTION the United States of America and Israeli government
There is no concise definition of malicious software, institutions, yet neither country has admitted responsibility
frequently referred to as malware in the literature. Malware for the Stuxnet creation ever since.

can roughly be defined as any software intentionally
designed with the goal to cause damage to a computer,
computer network or anything controlled by a computer
system, even industrial power-plants. There are various
types of malware, such as computer viruses, worms, Trojan
horses, logic bombs, ransomware and cyber-weapons.
Malware evolved from early infectious programs, which
were written as academic experiments or pranks. Although
most of those were typically harmless, they have set a solid
ground for development of harmful ones. Today, malware
is used by black hats and governments, to steal financial or
business information, perform industrial espionage, etc.
Further, malware is even used to perform attacks on
antagonist country ran industrial plants. One of the first A very detailed list of remote exploits, Web application
attempts of such activities is the infamous Stuxnet, which exploits, local and privilege escalation exploits, denial of
was designed to target SCADA systems and is believed to ~ service and proof of concept exploits is available on
be responsible for causing substantial damage to Iran's Offensive Security’s Exploit Database Archive [2]. On
nuclear program — over 58% of target system in the early July 7, 2018, there were 39,630 exploits archived in the
days of infection resides in Iran. Due to the complexity of database. Each exploit is very well documented (i.e. which

Malware does the damage after it is implanted or
introduced in some way into a target’s computer and can
take the form of executable code, scripts, active content,
and other software [1]. The authors of malware seek out
vulnerabilities in operating systems or computer software,
such as buffer-overflow vulnerability that can be exploited.
Therefore, one may say that malware is based on exploits,
i.e. carefully crafted software chunks that exploit
aforementioned vulnerabilities. After exploit is executed
on the target system, attacker can take control over the
victim, raise privileges, or run the payload attached to the
malware, e.g. ransomware encryption module.

32

target it exploits, on which platform, who is the author,
etc.), and available for free download as source code (in C,
Python, Ruby, etc.)

Although this database may help anti-malware software
vendors to write signatures that will help the security
software detect an exploit, there are two major issues open:
(1) will signature based anti-malware software or intrusion
detection system detect exploit-based malware that
evolves, and (2) will signature based anti-malware
software or intrusion detection system detect zero day
exploits? The answer to both questions is, unfortunately,
negative.

Having that said, simple anti-malware software or
intrusion detection system obviously do not provide
sufficient level of defense, meaning that there is a need for
additional security mechanisms. One way to add another
layer of defense is to employ semi-supervised anomaly
detection on the host. This process is based on training the
learner with normal behavioral patterns. Although
applicable in theory, there are several problems with this
approach: it is very hard to obtain all records of normal
behavior and draw the exact line between normal behavior
and anomaly, normal behavior tends to evolve with time, a
noise may exist in the data, etc. Having that said, one may
conclude that this approach would lead to a large number
of false positives, i.e. legitimate activities that are detected
as anomalous.

Another approach is to employ supervised machine
learning methods, i.e. systems that are trained with both
normal and exploitation data. Although this type of
security mechanism can be implemented as host-based
intrusion detection system, i.e. system that monitors
activities like frequency of system calls and critical system
infrastructures, one should note that remote exploit works
over a network and exploits the security vulnerability
without any prior access to the vulnerable system. Having
that said, it is necessary to implement this security
countermeasure on the network-level, i.e. create a network-
based intrusion detection system trained with data
containing of labelled network traffic containing both
exploits and normal traffic. As a machine learning
classification algorithm we have chosen kernel-based
method named Support Vector Machines.

2. MACHINE LEARNING IN INTRUSION AND
EXPLOITATION DETECTION

Machine learning algorithms independently collect
knowledge from the machine readable information, i.e.
they learn from data. Such algorithms build a model from
training inputs and use it to make decisions, or predictions
[3]. Tom Mitchell provided a widely quoted, formal
definition of machine learning: “A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience
E” [4]. According to this formal definition, an intrusion
detection system (IDS), which we employ to detect
exploits, learns to classify events (task T); performance
measure P of this task is the classification accuracy, and the
experience E is the training set. Mitchell states that
machine learning is suitable for application in software

33

engineering when it is necessary to extract knowledge from
large databases and when a high degree of adaptation to
user needs is required. If we take into account the fact that
IDS analyses a large set of events and that it is necessary
to adapt IDS to the environment it protects, it can be
concluded that machine learning is suitable for use in
intrusion detection.

There are two types of machine learning algorithms:
unsupervised (no "teachers") and supervised (with
"teachers"). Unsupervised algorithms learn from
unlabelled examples; the objective of unsupervised
learning may be to cluster examples together on the basis
of their similarity [5]. Unsupervised learning is suitable for
finding patterns in the data. Supervised learning algorithms
build a model from a training set (given in the form of
feature vectors) with class label assigned to each instance.
Once trained, supervised algorithms assign class labels to
previously unseen examples of the same task, on the basis
of the trained model. Class labels assigned to instances in
data sets that are used to train supervised learning based
IDS indicate legitimate activities or certain types of
intrusions.

Machine learning methods used for classification can be
divided into [6]: basic methods (artificial neural networks
[7], Support Vector Machines [8], decision trees [9, 10],
naive Bayes [11]), hybrid methods (for example, a hybrid
of decision trees and naive Bayes — a regular univariate
decision tree, where leaves contain a naive Bayes classifier
built from the examples that fall at that leaf [12]),
incremental methods (naive Bayes updatable), hybrid
incremental methods (Hoeffding Tree [13]), basic
ensembles (Random Forest [14]), hybrid ensembles
(stacking) and hybrid incremental ensembles (Ada
Hoeffding option tree). There is a large number of studies
reported in the literature that investigate the performances
of intrusion detection systems with classifiers based on
artificial neural networks (multilayer perceptrons and self-
organizing maps), Support Vector Machines, decision
trees, Random Forest, Bayesian networks, naive Bayes,
hidden Markov models, inductive learning, clustering and
nearest neighbors. For more details on findings reported in
aforementioned literature, reader may consult [15].

One should note that the nature of input data will influence
the choice of classifiers. For example, dimensionality of
class label will lead to exclusion of linear regression,
multiple linear regression and Support Vector Machines
(SVMs), while orientation towards creating simple models
lead to exclusion of artificial neural network [10].

3. SUPPORT VECTOR MACHINES

Support Vector Machines are linear learning methods that
seek out the decision function in the set of functions
(hypothesis) that are linear combinations of input values.
The data that is not linearly separable in the original input
space is cast into high-dimensional feature space where it
is linearly separable. The transformation from the input
into the feature space increases the expressiveness of linear
methods, but also leads to an increased risk of overfitting.
The statistical learning theory [16] defines which
parameters should be controlled in order to achieve an
appropriate level of generalization and reduce the risk of

overfitting. Maximum margin classifier does not allow
learning examples to be misclassified and can only be used
with a data set that is linearly separable in the feature space.
This constraint motivated the development of soft-margin
classifier [17], a modified maximum margin idea that
allows examples to be mislabelled.

Support vector machines can be defined as “(1) learning
algorithm that uses linear methods (2) in kernel induced
feature space, (3) statistical learning theory to control
generalization error and (4) optimization theory to solve
convex quadratic programming problem; solving this
problem equals learning with SVM.”

4. FEATURE SELECTION

Feature selection (e.g. features that describe the network
connections in the training set) affects the classifier's
performance. Although each feature contains a certain
amount of knowledge that has an impact towards detection,
two facts should be taken into account when selecting
features that will be used to form a training set: (1) some
features contribute significantly to the classification
accuracy, while the influence of others might be almost
negligible; (2) system based on an excessive number of
features will most probably be CPU-demanding and
practically useless if the network flow is heavy.

IDS can be adapted to detect specific categories of attacks
by re-adjusting feature weights. There are several methods
that can be used to determine feature weights. One feature
weight calculation method is based on that idea: the weight
of feature is calculated according to the accuracy change of
the classifier trained with a set from which feature is
removed, compared to the classifier that takes all features
in consideration. Another feature weights calculation
method is based on F-score. Based on statistic
characteristics, it is independent of the classifiers. F-score
is a simple technique that measures the discrimination
between a feature and the label. Feature's F-score is a ratio
of discrimination between the positive and negative sets
and discrimination within each of the two sets. The larger
the F-score is, the more likely this feature is more
discriminative.

To design a high sensitivity exploit detection system based
on support vectors, one should follow these steps: pre-
process the data (convert the features and normalize feature
values), determine optimal hyper-parameters of the
original model (optimal hyper-parameters provide a
classifier that will predict unknown data most accurately),
train the classifier, calculate feature weights, scale training
and test set with feature weights (thus the relevance of
features towards classification will be incorporated into a
model that is trained in the final training step), determine
optimal hyper-parameters of the new model, train the
classifier with the scaled training set and finally test it.

5. GENERATING THE DATASET

The dataset used in this research is built from traffic
captured on the simulated network, consisting of three
computers. One computer was used as attacker, the other
one as a Linux router which also captured the network
traffic using PCAP library, while the third was used as a
victim, running Windows and Linux operating systems and

34

software that was found exploitable on Offensive
Security’s Exploit Database Archive [2]. Synthetic dataset
consists of normal, healthy traffic recorded during one day
period and variety of simulated attacks, generated by
compiled exploits from Exploit Database Archive, fired up
with variety of open source and commercial software
products. Both healthy and malicious traffic have been
recorded separately and cleansed from other protocol and
service leftovers (partial noisy data removal), thus leaving
clean normal and anomalous PCAP files, which
reassembles a scenario for supervised anomaly detection.
QoSilent Argus software was used to extract features
values from PCAPs and create data instances which were
labelled and shuffled into a separate training and test sets.
Features used in this research do not include source and
destination IP addresses. However, they include flags,
connection states, protocols, port numbers and lots of
statistical data. Once the feature extraction was done, a
sneak peek into the generated CSV certain incompleteness
of the dataset. Since Support Vector Machines operate with
numerical data, all features must be converted to numerical
(scaled to range [0,1]) without missing values. This leaves
a Support Vector Machine learner to be trained and
evaluated with incomplete datasets, i.e. with some features
removed.

6. PERFORMANCE METRICS

The efficiency of our exploit detection system is given by
detection accuracy and false negative rates. True alarm
(True Positive, TP) indicates that the system successfully
detected the intrusion. False alarm (False Positive, FP)
indicates that the system incorrectly identified legitimate
activity, recognizing it as an intrusion. Missed alarm (False
Negative, FN) indicates that the system incorrectly
identified an intrusion, recognizing it as a legitimate
activity. True Negative (TN) indicates that the system
successfully identified the legitimate activity.

Detection accuracy depends on all positive and negative
results of the system and is defined as follows:

TP+TN
TP+TP+FP+FN

False Negative Rate (FNR) is the ratio of false negatives
and the sum of true positives and false negatives:

(1

Fp
TP+ FN

Low incidence of false negative alarms indicates that a
small amount of exploits is incorrectly identified as
legitimate activities. System with low FNR can be used in
critical areas of computer networks where an exploitation
attempt may not pass undetected, as it may produce
significant damage, while discrimination of legitimate
activities can easily be corrected (for example, in a
corporate network).

7. EXPERIMENTAL EVALUATION

FPR = =1-sensitivity ()

Performance of the algorithms is experimentally evaluated
using MATLAB R2016a with Statistical and Machine
Learning Toolbox, version 10.2. Within this research the

following algorithms have been evaluated: Support Vector
Machines on incomplete dataset and adaptive models
based on Support Vectors built by empirical and F-score
based re-weighting on incomplete dataset. Training
datasets consisting of five thousand instances with 41
features (incomplete) and 54 features (complete) were used
for five-fold cross validation. Balanced sets with thousand
instances were used as test-sets. Results for each classifier
were listed in Table 1 (results of five-fold cross validation)
and Table 2 (results on the test set).

Table 1: Five-fold cross validation results (accuracy and
false negative rates)

Classifier Accuracy (%) | FNR (%)
SVM 92.81% 3.39%
SVM (empirical) | 94.38% 2.65%
SVM (F-score) 94.76% 2.41%

Table 2: Test results (accuracy and false negative rates)

Classifier Accuracy (%) | FNR (%)
SVM 89.12% 4.27%
SVM (empirical) | 93.67% 3.11%
SVM (F-score) 94.61% 3.07%

5. CONCLUSION

This paper evaluated the possibility of Support Vector
Machines to discriminate exploitation code in network
traffic from the rest of the data. The dataset for network-
based exploit detection was created on the basis of normal,
healthy traffic, and exploits, downloaded and run from
Offensive Security Database of Exploits. Due to
irresolvable incompleteness problem, support vectors were
trained with incomplete dataset with several features
removed. By boosting feature weights we have managed to
increase detection accuracy and reduce false negative rates.
However, by doing so, we have introduced adversarial
learning issue — overemphasized weights.

REFERENCES

[1] T. Nash, “An Undirected Attack Against Critical
Infrastructure, Vulnerability & Risk Assessment Program”
(VRAP), Lawrence Livermore National Laboratory,
retrieved July 7, 2018.

[2] Offensive Security’s Exploit Database Archive,
https://www.exploit-db.com, last time visited October 15,
2018.

[3] M. A. Hall, L. A. Smith, “Practical feature subset
selection for machine learning”, In C. McDonald (Ed.),
Computer Science *98 Proceedings of the 21st Australasian
Computer Science Conference ACSC’98, Perth, 4-6
February, pp. 181-191, 1998, Berlin: Springer.

[4]. T. Mitchell, “Machine Learning”, McGraw-Hill
Science/Engineering/Math, page 2, 1997.

35

[5] Z. Ghahramani, “Unsupervised Learning”, In
Bousquet, O. et al. (Eds.), Machine Learning 2003, LNAI
3176, Springer-Verlag Berlin Heidelberg.

[6] V. Miskovic, M. Milosavljevi¢, S. Adamovi¢, A.
Jevremovié, “Application of Hybrid Incremental Machine
Learning Methods to Anomaly Based Intrusion Detection”,
Proceedings of 1st International Conference on Electrical,
Electronic and Computing Engineering ICETRAN 2014,
Vrnjacka Banja, Serbia, June 2-5, pp. VII2.3.1-6, 2014.

[7]1 S. Haykin, “Neural Networks: A Comprehensive
Foundation”, 2nd edition, Prentice Hall, 1998.

[8] V. Shawe-Taylor, N. Cristianini, “Kernel Methods for
Pattern Analysis”, Cambridge University Press, 2004.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone,
“Classification and Regression Trees”, Wadsworth,
Belmont.

[10] B. Predi¢, G. Dimié, D. Ranéié, P. Strbac, N. Macek,
“Improving Final Grade Prediction Accuracy in Blended
Learning Environment Using Voting Ensembles”,
Computer Applications in Engineering Education,
accepted for publication, in press.

[11] V. Cherkassky, F. M. Mulier, “Learning from Data:
Concepts, Theory and Methods”, 2nd ed., John Wiley -
IEEE Press, 2007.

[12] R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes
Classifiers: A Decision-Tree Hybrid”, In KDD, pp. 202-
207, 1996.

[13] P. Domingos, G. Hulten, “Mining high-speed data
streams”, In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pp. 71-80, 2000, ACM.

[14] L. Breiman, “Random Forests”, Machine learning,
45(1), pp. 5-32, 2001.

[15] N. Macek, “One class of adaptive network intrusion
detection systems”, Doctoral dissertation, Faculty of
informatics and computing, Singidunum University, 2013.

[16] V. Vapnik, “Statistical Learning Theory”, John Wiley
& Sons, 1998.

[17] C. Cortes, V. Vapnik, “Support-vector networks”,
Machine learning, 20(3), pp. 273-297, 1995.

