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Abstract: An exploit is software, a chunk of data, or a sequence of commands that takes advantage of a bug or 
vulnerability in operating system or other software products to cause unintended or unanticipated behaviour of computer 
software, hardware, or other electronic devices. Such behaviour includes actions like unauthorized gaining control of a 
computer system, unauthorized privilege escalation, or a denial-of-service attack. Although anti-malware products and 
signature-based intrusion detection systems provide reasonable level of security, they will not detect and prevent 
execution of new exploits or exploits that tend to evolve, as there is no signature in the anti-malware or intrusion detection 
database. To raise the overall level of security we have introduced one kernel-based machine learning method, named 
support vector machines, into an intrusion detection system that is capable of detecting exploits without employing 
signature database. Experimental evaluation of our solution is conducted on the custom dataset generated in isolated 
environment. 
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1. INTRODUCTION  

There is no concise definition of malicious software, 
frequently referred to as malware in the literature. Malware 
can roughly be defined as any software intentionally 
designed with the goal to cause damage to a computer, 
computer network or anything controlled by a computer 
system, even industrial power-plants. There are various 
types of malware, such as computer viruses, worms, Trojan 
horses, logic bombs, ransomware and cyber-weapons. 
Malware evolved from early infectious programs, which 
were written as academic experiments or pranks. Although 
most of those were typically harmless, they have set a solid 
ground for development of harmful ones. Today, malware 
is used by black hats and governments, to steal financial or 
business information, perform industrial espionage, etc. 
Further, malware is even used to perform attacks on 
antagonist country ran industrial plants. One of the first 
attempts of such activities is the infamous Stuxnet, which 
was designed to target SCADA systems and is believed to 
be responsible for causing substantial damage to Iran's 
nuclear program – over 58% of target system in the early 
days of infection resides in Iran. Due to the complexity of 

the malware itself, it is believed that it was built jointly by 
the United States of America and Israeli government 
institutions, yet neither country has admitted responsibility 
for the Stuxnet creation ever since.  

Malware does the damage after it is implanted or 
introduced in some way into a target’s computer and can 
take the form of executable code, scripts, active content, 
and other software [1]. The authors of malware seek out 
vulnerabilities in operating systems or computer software, 
such as buffer-overflow vulnerability that can be exploited. 
Therefore, one may say that malware is based on exploits, 
i.e. carefully crafted software chunks that exploit 
aforementioned vulnerabilities. After exploit is executed 
on the target system, attacker can take control over the 
victim, raise privileges, or run the payload attached to the 
malware, e.g. ransomware encryption module. 

A very detailed list of remote exploits, Web application 
exploits, local and privilege escalation exploits, denial of 
service and proof of concept exploits is available on 
Offensive Security’s Exploit Database Archive [2]. On 
July 7, 2018, there were 39,630 exploits archived in the 
database. Each exploit is very well documented (i.e. which 
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target it exploits, on which platform, who is the author, 
etc.), and available for free download as source code (in C, 
Python, Ruby, etc.) 

Although this database may help anti-malware software 
vendors to write signatures that will help the security 
software detect an exploit, there are two major issues open: 
(1) will signature based anti-malware software or intrusion 
detection system detect exploit-based malware that 
evolves, and (2) will signature based anti-malware 
software or intrusion detection system detect zero day 
exploits? The answer to both questions is, unfortunately, 
negative.  

Having that said, simple anti-malware software or 
intrusion detection system obviously do not provide 
sufficient level of defense, meaning that there is a need for 
additional security mechanisms. One way to add another 
layer of defense is to employ semi-supervised anomaly 
detection on the host. This process is based on training the 
learner with normal behavioral patterns. Although 
applicable in theory, there are several problems with this 
approach: it is very hard to obtain all records of normal 
behavior and draw the exact line between normal behavior 
and anomaly, normal behavior tends to evolve with time, a 
noise may exist in the data, etc. Having that said, one may 
conclude that this approach would lead to a large number 
of false positives, i.e. legitimate activities that are detected 
as anomalous. 

Another approach is to employ supervised machine 
learning methods, i.e. systems that are trained with both 
normal and exploitation data. Although this type of 
security mechanism can be implemented as host-based 
intrusion detection system, i.e. system that monitors 
activities like frequency of system calls and critical system 
infrastructures, one should note that remote exploit works 
over a network and exploits the security vulnerability 
without any prior access to the vulnerable system. Having 
that said, it is necessary to implement this security 
countermeasure on the network-level, i.e. create a network-
based intrusion detection system trained with data 
containing of labelled network traffic containing both 
exploits and normal traffic. As a machine learning 
classification algorithm we have chosen kernel-based 
method named Support Vector Machines. 

2. MACHINE LEARNING IN INTRUSION AND 
EXPLOITATION DETECTION 

Machine learning algorithms independently collect 
knowledge from the machine readable information, i.e. 
they learn from data. Such algorithms build a model from 
training inputs and use it to make decisions, or predictions 
[3]. Tom Mitchell provided a widely quoted, formal 
definition of machine learning: “A computer program is 
said to learn from experience E with respect to some class 
of tasks T and performance measure P, if its performance 
at tasks in T, as measured by P, improves with experience 
E” [4]. According to this formal definition, an intrusion 
detection system (IDS), which we employ to detect 
exploits, learns to classify events (task T); performance 
measure P of this task is the classification accuracy, and the 
experience E is the training set. Mitchell states that 
machine learning is suitable for application in software 

engineering when it is necessary to extract knowledge from 
large databases and when a high degree of adaptation to 
user needs is required. If we take into account the fact that 
IDS analyses a large set of events and that it is necessary 
to adapt IDS to the environment it protects, it can be 
concluded that machine learning is suitable for use in 
intrusion detection. 

There are two types of machine learning algorithms: 
unsupervised (no "teachers") and supervised (with 
"teachers"). Unsupervised algorithms learn from 
unlabelled examples; the objective of unsupervised 
learning may be to cluster examples together on the basis 
of their similarity [5]. Unsupervised learning is suitable for 
finding patterns in the data. Supervised learning algorithms 
build a model from a training set (given in the form of 
feature vectors) with class label assigned to each instance. 
Once trained, supervised algorithms assign class labels to 
previously unseen examples of the same task, on the basis 
of the trained model. Class labels assigned to instances in 
data sets that are used to train supervised learning based 
IDS indicate legitimate activities or certain types of 
intrusions. 

Machine learning methods used for classification can be 
divided into [6]: basic methods (artificial neural networks 
[7], Support Vector Machines [8], decision trees [9, 10], 
naive Bayes [11]), hybrid methods (for example, a hybrid 
of decision trees and naive Bayes – a regular univariate 
decision tree, where leaves contain a naive Bayes classifier 
built from the examples that fall at that leaf [12]), 
incremental methods (naive Bayes updatable), hybrid 
incremental methods (Hoeffding Tree [13]), basic 
ensembles (Random Forest [14]), hybrid ensembles 
(stacking) and hybrid incremental ensembles (Ada 
Hoeffding option tree). There is a large number of studies 
reported in the literature that investigate the performances 
of intrusion detection systems with classifiers based on 
artificial neural networks (multilayer perceptrons and self-
organizing maps), Support Vector Machines, decision 
trees, Random Forest, Bayesian networks, naive Bayes, 
hidden Markov models, inductive learning, clustering and 
nearest neighbors. For more details on findings reported in 
aforementioned literature, reader may consult [15]. 

One should note that the nature of input data will influence 
the choice of classifiers. For example, dimensionality of 
class label will lead to exclusion of linear regression, 
multiple linear regression and Support Vector Machines 
(SVMs), while orientation towards creating simple models 
lead to exclusion of artificial neural network [10]. 

3. SUPPORT VECTOR MACHINES 

Support Vector Machines are linear learning methods that 
seek out the decision function in the set of functions 
(hypothesis) that are linear combinations of input values. 
The data that is not linearly separable in the original input 
space is cast into high-dimensional feature space where it 
is linearly separable. The transformation from the input 
into the feature space increases the expressiveness of linear 
methods, but also leads to an increased risk of overfitting. 
The statistical learning theory [16] defines which 
parameters should be controlled in order to achieve an 
appropriate level of generalization and reduce the risk of 
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overfitting. Maximum margin classifier does not allow 
learning examples to be misclassified and can only be used 
with a data set that is linearly separable in the feature space. 
This constraint motivated the development of soft-margin 
classifier [17], a modified maximum margin idea that 
allows examples to be mislabelled. 

Support vector machines can be defined as “(1) learning 
algorithm that uses linear methods (2) in kernel induced 
feature space, (3) statistical learning theory to control 
generalization error and (4) optimization theory to solve 
convex quadratic programming problem; solving this 
problem equals learning with SVM.” 

4. FEATURE SELECTION 

Feature selection (e.g. features that describe the network 
connections in the training set) affects the classifier's 
performance. Although each feature contains a certain 
amount of knowledge that has an impact towards detection, 
two facts should be taken into account when selecting 
features that will be used to form a training set: (1) some 
features contribute significantly to the classification 
accuracy, while the influence of others might be almost 
negligible; (2) system based on an excessive number of 
features will most probably be CPU-demanding and 
practically useless if the network flow is heavy. 

IDS can be adapted to detect specific categories of attacks 
by re-adjusting feature weights. There are several methods 
that can be used to determine feature weights. One feature 
weight calculation method is based on that idea: the weight 
of feature is calculated according to the accuracy change of 
the classifier trained with a set from which feature is 
removed, compared to the classifier that takes all features 
in consideration. Another feature weights calculation 
method is based on F-score. Based on statistic 
characteristics, it is independent of the classifiers. F-score 
is a simple technique that measures the discrimination 
between a feature and the label. Feature's F-score is a ratio 
of discrimination between the positive and negative sets 
and discrimination within each of the two sets. The larger 
the F-score is, the more likely this feature is more 
discriminative. 

To design a high sensitivity exploit detection system based 
on support vectors, one should follow these steps: pre-
process the data (convert the features and normalize feature 
values), determine optimal hyper-parameters of the 
original model (optimal hyper-parameters provide a 
classifier that will predict unknown data most accurately), 
train the classifier, calculate feature weights, scale training 
and test set with feature weights (thus the relevance of 
features towards classification will be incorporated into a 
model that is trained in the final training step), determine 
optimal hyper-parameters of the new model, train the 
classifier with the scaled training set and finally test it. 

5. GENERATING THE DATASET 

The dataset used in this research is built from traffic 
captured on the simulated network, consisting of three 
computers. One computer was used as attacker, the other 
one as a Linux router which also captured the network 
traffic using PCAP library, while the third was used as a 
victim, running Windows and Linux operating systems and 

software that was found exploitable on Offensive 
Security’s Exploit Database Archive [2]. Synthetic dataset 
consists of normal, healthy traffic recorded during one day 
period and variety of simulated attacks, generated by 
compiled exploits from Exploit Database Archive, fired up 
with variety of open source and commercial software 
products. Both healthy and malicious traffic have been 
recorded separately and cleansed from other protocol and 
service leftovers (partial noisy data removal), thus leaving 
clean normal and anomalous PCAP files, which 
reassembles a scenario for supervised anomaly detection. 
QoSilent Argus software was used to extract features 
values from PCAPs and create data instances which were 
labelled and shuffled into a separate training and test sets. 
Features used in this research do not include source and 
destination IP addresses. However, they include flags, 
connection states, protocols, port numbers and lots of 
statistical data. Once the feature extraction was done, a 
sneak peek into the generated CSV certain incompleteness 
of the dataset. Since Support Vector Machines operate with 
numerical data, all features must be converted to numerical 
(scaled to range [0,1]) without missing values. This leaves 
a Support Vector Machine learner to be trained and 
evaluated with incomplete datasets, i.e. with some features 
removed. 

6. PERFORMANCE METRICS 

The efficiency of our exploit detection system is given by 
detection accuracy and false negative rates. True alarm 
(True Positive, TP) indicates that the system successfully 
detected the intrusion. False alarm (False Positive, FP) 
indicates that the system incorrectly identified legitimate 
activity, recognizing it as an intrusion. Missed alarm (False 
Negative, FN) indicates that the system incorrectly 
identified an intrusion, recognizing it as a legitimate 
activity. True Negative (TN) indicates that the system 
successfully identified the legitimate activity. 

Detection accuracy depends on all positive and negative 
results of the system and is defined as follows: 

 
TP TN

a
TP TP FP FN

+=
+ + +

 (1) 

False Negative Rate (FNR) is the ratio of false negatives 
and the sum of true positives and false negatives: 

 1
FP

FPR sensitivity
TP FN

= = −
+

 (2) 

Low incidence of false negative alarms indicates that a 
small amount of exploits is incorrectly identified as 
legitimate activities. System with low FNR can be used in 
critical areas of computer networks where an exploitation 
attempt may not pass undetected, as it may produce 
significant damage, while discrimination of legitimate 
activities can easily be corrected (for example, in a 
corporate network). 

7. EXPERIMENTAL EVALUATION 

Performance of the algorithms is experimentally evaluated 
using MATLAB R2016a with Statistical and Machine 
Learning Toolbox, version 10.2. Within this research the 
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following algorithms have been evaluated: Support Vector 
Machines on incomplete dataset and adaptive models 
based on Support Vectors built by empirical and F-score 
based re-weighting on incomplete dataset. Training 
datasets consisting of five thousand instances with 41 
features (incomplete) and 54 features (complete) were used 
for five-fold cross validation. Balanced sets with thousand 
instances were used as test-sets. Results for each classifier 
were listed in Table 1 (results of five-fold cross validation) 
and Table 2 (results on the test set). 

Table 1: Five-fold cross validation results (accuracy and 
false negative rates) 

Classifier Accuracy (%) FNR (%) 

SVM 92.81% 3.39% 

SVM (empirical) 94.38% 2.65% 

SVM (F-score) 94.76% 2.41% 

 

Table 2: Test results (accuracy and false negative rates) 
Classifier Accuracy (%) FNR (%) 

SVM 89.12% 4.27% 

SVM (empirical) 93.67% 3.11% 

SVM (F-score) 94.61% 3.07% 

 

5. CONCLUSION  

This paper evaluated the possibility of Support Vector 
Machines to discriminate exploitation code in network 
traffic from the rest of the data. The dataset for network-
based exploit detection was created on the basis of normal, 
healthy traffic, and exploits, downloaded and run from 
Offensive Security Database of Exploits. Due to 
irresolvable incompleteness problem, support vectors were 
trained with incomplete dataset with several features 
removed. By boosting feature weights we have managed to 
increase detection accuracy and reduce false negative rates. 
However, by doing so, we have introduced adversarial 
learning issue – overemphasized weights. 
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