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Abstract: Adversarial machine learning resides at the intersection of machine learning and computer security. Originally, 
machine learning techniques were designed for environments that do not assume the presence of an adversary. However, 
in the presence of intelligent adversaries, this working hypothesis is likely to be violated to at least to some degree, 
depending on the skillset of an adversary. A skilful adversary can carefully manipulate the input data exploiting specific 
vulnerabilities of learning algorithms. This results in misclassification of malicious instances, which may compromise 
the whole system security. For example, by carefully modifying values of features with largest weight without changing 
the outcome of malicious packet, an adversary may trick an intrusion detection system to allow malicious packet into the 
network. Solutions presented in research studies by other authors consider the classifier protection using re-weight 
strategies; typically, this results in compromise between accuracy and robustness. Unlike those, the research presented 
in this paper deals with a re-weight strategy based on hashing all the numeric features without classification accuracy 
degradation. System becomes robust as feature weights are even and avalanche effect makes virtually impossible for an 
attacker to modify the input data and trick the learner into misclassification. Research hypotheses are experimentally 
validated on custom intrusion detection dataset consisting of numeric features. 
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1. INTRODUCTION  

Machine learning algorithms independently collect 
knowledge from the machine readable information, i.e. 
they learn from data. Such algorithms build a model from 
example inputs and use it to make predictions or decisions 
[1]. Tom Mitchell provided a widely quoted, formal 
definition of machine learning: “A computer program is 
said to learn from experience E with respect to some class 
of tasks T and performance measure P, if its performance 
at tasks in T, as measured by P, improves with experience 
E” [2].  

There are two types of machine learning algorithms: 
unsupervised (no “teachers”) and supervised (with 
“teachers”). Unsupervised algorithms learn from unlabeled 
examples; the objective of unsupervised learning may be 

to cluster examples together on the basis of their similarity 
[3]. Unsupervised learning is suitable for finding patterns 
in the data. Supervised learning algorithms build a model 
from a training set (given in the form of feature vectors) 
with class label assigned to each instance. Once trained, 
supervised algorithms assign class labels to previously 
unseen examples of the same task, on the basis of the 
formed model [4]. 

In the case of machine learning, most classification 
algorithms were developed to learn and operate in secure, 
controlled environment. Transition from controlled 
environment to a potentially hostile environment may 
result in significant security failures [5].  

In adversarial classification tasks like spam filtering and 
intrusion detection, a skilful malicious adversary can 
carefully manipulate the input data exploiting specific 
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vulnerabilities of learning algorithms. Thus, aside from 
achieving good classification performances, machine 
learning algorithms have to be robust against adversarial 
data manipulation [6]. 

2. ADVERSARIAL LEARNIG: ATTACKS ON 
CLASSIFIERS AND COUNTERMEASURES 

Potential vulnerabilities of the learning system in 
adversarial environment can be categorized according to 
the influence on the classifier, security policy violation and 
specificity of the attack [7].  

According to the influence on the classifier, attacks can be 
either causative, if they are aimed at compromising the 
training phase of the classifier, or exploratory, if they are 
carried out at the classification phase, with the aim to 
gather knowledge about the classifier (the knowledge can, 
for example, be gathered from feedback on class labels 
assigned to malicious traffic instances.) According to the
security policy violation, attacks can be either integrity 
violation, if the adversary's goal is to have malicious 
instances classified as legitimate activity by the system, 
causing false negative rate to increase, or availability 
violation, if the adversary's goal is to perform DoS attacks 
and render the classifier useless. Specificity of the attack 
refers to the scope of malicious samples that will be 
misclassified as legitimate activities. According to the 
specificity, attacks can be either targeted, if the adversary's 
goal is to have a limited range of malicious instances 
misclassified, or indiscriminate, if the adversary's goal is to 
have all malicious samples misclassified as legitimate. 

When designing a machine learning based security 
mechanism, it is necessary to identify system 
vulnerabilities, the possibilities to execute attacks on a 
system that will exploit these vulnerabilities, and the 
consequences of successfully executed attacks. In other 
words, system architect should take the role of adversary 
and try to anticipate all possible attacks, such as 
compromising the training set or detection evasion. 

Several defence techniques against attacks on the classifier 
are proposed in [7]: regularization (defence from causative 
attacks), randomization (defence from targeted attacks) 
and information hiding or disinformation (defence from
exploratory attacks). In some circumstances, the learning 
system may alter the information seen by the adversary, 
thus providing the adversary with a misleading picture of 
the classifier. More sophisticated systems can lead the 
adversary to believe that a certain type of attack is not 
included in the training set. Allegedly “allowed attack” will 
lead the adversary to reveal himself.  

There are several ways to detect attacks on the classifier. 
For example, exploratory attacks can be identified by 
running a separate clustering algorithm against the 
classified data: the sudden appearance of a large cluster 
near the decision boundary could indicate probing attacks 
on machine learning based intrusion detection system. 
Detecting attacks on the classifier is very important 
because it provides information about adversary's 
capabilities; this information can be used to re-adapt 
defence strategies. 

3. RE-WEIGHT STRATEGIES  

One of the re-weight strategies that improves the 
robustness of linear classifiers in spam filters is proposed 
in [8]. The technique is based on the normalization of 
feature weights, thus avoiding over-emphasizing or under-
emphasizing feature weights. If there are features with 
over-emphasized weights, the adversary will adapt the 
values of most significant features (features with the 
highest impact on classifier decision) and trick the learner 
to classify malicious as legitimate instance. These attacks 
are typically executed on spam filters (for example, by 
increasing the number of innocent words), but are also 
feasible to evade detection by intrusion detection classifier. 

If the distribution of feature weights is uniform, an 
adversary will have to change more feature values to trick 
the classifier. If adaptation of each feature requires the 
same effort, then this re-weight strategy increases the 
robustness of the classifier, i.e. its resistance to attacks 
based on exploiting knowledge about the decision 
function. However, the proposed technique is a 
compromise between accuracy and robustness of the 
classification system. 

Re-weight strategy presented in this paper is based on 
hashing all the numeric features, both in the training and 
operational phase. By doing so, system becomes robust 
resulting feature weights become even and avalanche 
effect resulting from hash function is a huge troublemaker 
even for a skilled adversary. Aside, if generated hash is 
bitwise longer than the original input value, input data is 
virtually casted into higher-dimensional space (similar to 
Support Vector Machines’ kernel trick.) According to 
experimental evaluation given in this paper, we can 
conclude that this re-weight strategy is applicable to 
several machine learning based security mechanisms, 
including, but not limited to intrusion detection systems. 
The only downside of the proposed solution is that it 
operates only with numeric features, thus not being 
applicable to systems that operate with categorical features 
without additional feature vector transformation. 

4. APPLICATION TO CUSTOM INTRUSION 
DETECTION DATASET 

The intrusion detection dataset used in this research is built 
from traffic captured on the simulated virtualized 
networking environment. Synthetic dataset consists of 
normal, healthy traffic and a number of successful 
exploitations of unpatched Windows XP operating system, 
executed with variety of open source and commercial 
software products. Both healthy and malicious traffic have 
been recorded separately and cleansed from virtualization 
protocol and service leftovers (noise removal). This 
reassembles a scenario for two-class supervised learning 
problem. Numerical features (representing statistical data) 
were extracted from PCAP files and data instances were 
created, labelled and shuffled into a separate training and 
test sets, both consisting of 10.000 instances. 

Following machine learning algorithms were used to train 
models and classify test sets: decision trees [9, 10], Naive 
Bayes [11, 12], Random Forest [13] and AdaBoost [14] 
using C4.5 decision tree as the base learner. See references 
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[9-14] for more details on aforementioned algorithms. 
Hashed values were calculated using MD5 and Secure 
Hash Algorithm (SHA-2). 

Let TP, TN, FP and FN denote number of true positives, 
true negatives, false positives and false negatives [15]. 
Accuracy of the classifier is calculated with the following 
equation: 

 



  

TP TN
a

TP TP FP FN
. (1) 

A simple algorithm used to calculate feature weights 
operates follows [15]: let a denote the accuracy of classifier 
trained with all features, and let ai denote the accuracy of a 
classifier trained with all features except feature i. 
Accuracy change for that classifier is given with the 
expression: 

– i ia a a . (2) 

The smallest and the largest accuracy changes are given 
with expressions (3) and (4): 

  , 1,  ...    min ia min a i n  (3) 

  , 1,  ...    max ia max a i n , (4) 

where n denotes the number of features in the dataset. 
Feature weight wi of the feature i is given with the equation: 

–  
 

–  

 

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max min

a a
w

a a
. (5) 

All feature weights are scaled to a range [0, 1]. Classifier 
used to calculate weights is C4.5 decision tree. 

Experiments with original input data 

Models have been trained and tested using Python with 
scikit-learn. The first set of models have been trained with 
the original datasets (feature values have not been hashed). 
Test set classification accuracy is given in the table 1. 

Table 1: Classification accuracy (original input data) 

Algorithm Accuracy (%) 

C4.5 81,43% 

Naive Bayes 85,68% 

Random Forest 95,19% 

AdaBoost 93,87% 

Feature weights of 27 features are presented on graph on 
Image 1. As one may see, the distribution of feature 
weights is not uniform, as there are features with over-
emphasizing or under-emphasizing weights. In this 
scenario, the adversary familiar with the classifier and 
statistical features of data instances will adapt the values of 
most significant features and trick the learner to classify 
malicious as legitimate instance. 

Image 1: Feature weights scaled to range [0, 1], original 
input data 

Experiments with hashed input data 

The second set of models have been trained with two 
datasets containing values from original dataset processed 
with MD5 and SHA-2 hash functions. Feature values in the 
test sets have been also processed with the aforementioned 
hash functions. Test set classification accuracy is given in 
the table 2. According to the result, one may notice that the 
degradation of accuracy is almost negligible. 

Table 2: Classification accuracy (hashed input data)  

 Accuracy (%) 

Algorithm MD5 SHA-2 

C4.5 79,95% 79,89% 

Naive Bayes 84,52% 85,01% 

Random Forest 94,07% 93,87% 

AdaBoost 91,77% 90,82% 

Feature weights of 27 features are presented on graph on 
Image 2. As one may see, the distribution of feature 
weights is now uniform, as there are no features with over-
emphasizing or under-emphasizing weights. Due to 
uniform distribution is uniform, an adversary will have to 
change more feature values to trick the classifier. As the 
classifier operates with hash values it may be concluded 
that (1) adaptation of each feature requires the same effort 
and that (2) due to the avalanche effect, minor adaptations 
in original data before hashing in the IDS will result in 
major change in the resulting data, making it virtually 
impossible for a skilled attacker to trick the classifier. 

Image 2: Feature weights scaled to range [0, 1], hashed 
input data 
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5. CONCLUSION  

In this paper we have presented an approach to feature re-
weight strategy based on hashing all the numeric feature 
values. Classifier is trained and tested with all feature 
values of each instance being previously processed by a 
hash function. Hashing provides a robust classifier as 
resulting feature weight distribution is uniform and 
avalanche effect resulting from hash function is an obstacle 
even for a skilled adversary. Re-weight strategy presented 
in this paper is applicable to several machine learning 
based security mechanisms. However, the downside of the 
proposed solution is that it operates only with numeric 
features, which means that additional feature vector 
transformation is required if categorical features exist. 
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