The 9" International Conference on Business Information Security
(BISEC-2017), 18" October 2017, Belgrade, Serbia

@BISEC

BUSINESS INFORMATION SECURITY
COMNFERENCE

SECURING MACHINE LEARNING CLASSIFIERS WITH INPUT HASHING
RE-WEIGHT STRATEGY

IGOR FRANC
Belgrade Metropolitan University, Faculty of Information Technologies and SECIT Security Consulting,
igor.franc @metropolitan.ac.rs

NEMANJA MACEK
School of Electrical and Computer Engineering of Applied Studies, Belgrade and eSigurnost Association, Belgrade,
macek.nemanja@ gmail.com

MILAN GNJATOVIC
University of Novi Sad, Faculty of Technical Sciences, milangnjatovic @uns.ac.rs

BRANIMIR TRENKIC
School of Electrical and Computer Engineering of Applied Studies, btrenkic @viser.edu.rs

MITKO BOGDANOSKI
Military Academy General Mihailo Apostolski, Skoplje, Macedonia, mitko.bogdanoski @ugd.edu.mk

DRAGAN DOKIC
Belgrade Metropolitan University, Faculty of Information Technologies, dragan.djokic @metropolitan.ac.rs

Abstract: Adversarial machine learning resides at the intersection of machine learning and computer security. Originally,
machine learning techniques were designed for environments that do not assume the presence of an adversary. However,
in the presence of intelligent adversaries, this working hypothesis is likely to be violated to at least to some degree,
depending on the skillset of an adversary. A skilful adversary can carefully manipulate the input data exploiting specific
vulnerabilities of learning algorithms. This results in misclassification of malicious instances, which may compromise
the whole system security. For example, by carefully modifying values of features with largest weight without changing
the outcome of malicious packet, an adversary may trick an intrusion detection system to allow malicious packet into the
network. Solutions presented in research studies by other authors consider the classifier protection using re-weight
strategies; typically, this results in compromise between accuracy and robustness. Unlike those, the research presented
in this paper deals with a re-weight strategy based on hashing all the numeric features without classification accuracy
degradation. System becomes robust as feature weights are even and avalanche effect makes virtually impossible for an
attacker to modify the input data and trick the learner into misclassification. Research hypotheses are experimentally
validated on custom intrusion detection dataset consisting of numeric features.

Keywords: Machine Learning, Adversarial Learning, Hashing

to cluster examples together on the basis of their similarity
[3]. Unsupervised learning is suitable for finding patterns
in the data. Supervised learning algorithms build a model
from a training set (given in the form of feature vectors)
with class label assigned to each instance. Once trained,

1. INTRODUCTION

Machine learning algorithms independently collect
knowledge from the machine readable information, i.e.
they learn from data. Such algorithms build a model from

example inputs and use it to make predictions or decisions
[1]. Tom Mitchell provided a widely quoted, formal
definition of machine learning: “A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance
at tasks in 7, as measured by P, improves with experience
E” [2].

There are two types of machine learning algorithms:
unsupervised (no “teachers”) and supervised (with
“teachers”). Unsupervised algorithms learn from unlabeled
examples; the objective of unsupervised learning may be

supervised algorithms assign class labels to previously
unseen examples of the same task, on the basis of the
formed model [4].

In the case of machine learning, most classification
algorithms were developed to learn and operate in secure,
controlled environment. Transition from controlled
environment to a potentially hostile environment may
result in significant security failures [5].

In adversarial classification tasks like spam filtering and
intrusion detection, a skilful malicious adversary can
carefully manipulate the input data exploiting specific

82



vulnerabilities of learning algorithms. Thus, aside from
achieving good classification performances, machine
learning algorithms have to be robust against adversarial
data manipulation [6].

2. ADVERSARIAL LEARNIG: ATTACKS ON
CLASSIFIERS AND COUNTERMEASURES

Potential vulnerabilities of the learning system in
adversarial environment can be categorized according to
the influence on the classifier, security policy violation and
specificity of the attack [7].

According to the influence on the classifier, attacks can be
either causative, if they are aimed at compromising the
training phase of the classifier, or exploratory, if they are
carried out at the classification phase, with the aim to
gather knowledge about the classifier (the knowledge can,
for example, be gathered from feedback on class labels
assigned to malicious traffic instances.) According to the
security policy violation, attacks can be either integrity
violation, if the adversary's goal is to have malicious
instances classified as legitimate activity by the system,
causing false negative rate to increase, or availability
violation, if the adversary's goal is to perform DoS attacks
and render the classifier useless. Specificity of the attack
refers to the scope of malicious samples that will be
misclassified as legitimate activities. According to the
specificity, attacks can be either targeted, if the adversary's
goal is to have a limited range of malicious instances
misclassified, or indiscriminate, if the adversary's goal is to
have all malicious samples misclassified as legitimate.

When designing a machine learning based security
mechanism, it is necessary to identify system
vulnerabilities, the possibilities to execute attacks on a
system that will exploit these vulnerabilities, and the
consequences of successfully executed attacks. In other
words, system architect should take the role of adversary
and try to anticipate all possible attacks, such as
compromising the training set or detection evasion.

Several defence techniques against attacks on the classifier
are proposed in [7]: regularization (defence from causative
attacks), randomization (defence from targeted attacks)
and information hiding or disinformation (defence from
exploratory attacks). In some circumstances, the learning
system may alter the information seen by the adversary,
thus providing the adversary with a misleading picture of
the classifier. More sophisticated systems can lead the
adversary to believe that a certain type of attack is not
included in the training set. Allegedly “allowed attack™ will
lead the adversary to reveal himself.

There are several ways to detect attacks on the classifier.
For example, exploratory attacks can be identified by
running a separate clustering algorithm against the
classified data: the sudden appearance of a large cluster
near the decision boundary could indicate probing attacks
on machine learning based intrusion detection system.
Detecting attacks on the classifier is very important
because it provides information about adversary's
capabilities; this information can be used to re-adapt
defence strategies.

3. RE-WEIGHT STRATEGIES

One of the re-weight strategies that improves the
robustness of linear classifiers in spam filters is proposed
in [8]. The technique is based on the normalization of
feature weights, thus avoiding over-emphasizing or under-
emphasizing feature weights. If there are features with
over-emphasized weights, the adversary will adapt the
values of most significant features (features with the
highest impact on classifier decision) and trick the learner
to classify malicious as legitimate instance. These attacks
are typically executed on spam filters (for example, by
increasing the number of innocent words), but are also
feasible to evade detection by intrusion detection classifier.

If the distribution of feature weights is uniform, an
adversary will have to change more feature values to trick
the classifier. If adaptation of each feature requires the
same effort, then this re-weight strategy increases the
robustness of the classifier, i.e. its resistance to attacks
based on exploiting knowledge about the decision
function. However, the proposed technique is a
compromise between accuracy and robustness of the
classification system.

Re-weight strategy presented in this paper is based on
hashing all the numeric features, both in the training and
operational phase. By doing so, system becomes robust
resulting feature weights become even and avalanche
effect resulting from hash function is a huge troublemaker
even for a skilled adversary. Aside, if generated hash is
bitwise longer than the original input value, input data is
virtually casted into higher-dimensional space (similar to
Support Vector Machines’ kernel trick.) According to
experimental evaluation given in this paper, we can
conclude that this re-weight strategy is applicable to
several machine learning based security mechanisms,
including, but not limited to intrusion detection systems.
The only downside of the proposed solution is that it
operates only with numeric features, thus not being
applicable to systems that operate with categorical features
without additional feature vector transformation.

4. APPLICATION TO CUSTOM INTRUSION
DETECTION DATASET

The intrusion detection dataset used in this research is built
from traffic captured on the simulated virtualized
networking environment. Synthetic dataset consists of
normal, healthy traffic and a number of successful
exploitations of unpatched Windows XP operating system,
executed with variety of open source and commercial
software products. Both healthy and malicious traffic have
been recorded separately and cleansed from virtualization
protocol and service leftovers (noise removal). This
reassembles a scenario for two-class supervised learning
problem. Numerical features (representing statistical data)
were extracted from PCAP files and data instances were
created, labelled and shuffled into a separate training and
test sets, both consisting of 10.000 instances.

Following machine learning algorithms were used to train
models and classify test sets: decision trees [9, 10], Naive
Bayes [11, 12], Random Forest [13] and AdaBoost [14]
using C4.5 decision tree as the base learner. See references

83



[9-14] for more details on aforementioned algorithms.
Hashed values were calculated using MD5 and Secure
Hash Algorithm (SHA-2).

Let TP, TN, FP and FN denote number of true positives,
true negatives, false positives and false negatives [15].
Accuracy of the classifier is calculated with the following
equation:

y TP +TN 0
TP+TP+FP+FN

A simple algorithm used to calculate feature weights
operates follows [15]: let a denote the accuracy of classifier
trained with all features, and let a; denote the accuracy of a
classifier trained with all features except feature i.
Accuracy change for that classifier is given with the
expression:

Aa,=a—a;. ()

The smallest and the largest accuracy changes are given
with expressions (3) and (4):

Aa . = min(Aa,.),i=1, ) 3)

‘min

Aam: max(Aal.),iZI, ..n, 4)
where n denotes the number of features in the dataset.
Feature weight w; of the feature i is given with the equation:

Aa, — Aa,,
W,' — i min ) (5)
Aamax - Aamin

All feature weights are scaled to a range [0, 1]. Classifier
used to calculate weights is C4.5 decision tree.

Experiments with original input data

Models have been trained and tested using Python with
scikit-learn. The first set of models have been trained with
the original datasets (feature values have not been hashed).
Test set classification accuracy is given in the table 1.

Table 1: Classification accuracy (original input data)

Algorithm Accuracy (%)
C4.5 81,43%
Naive Bayes 85,68%
Random Forest 95,19%
AdaBoost 93,87%

Feature weights of 27 features are presented on graph on
Image 1. As one may see, the distribution of feature
weights is not uniform, as there are features with over-
emphasizing or under-emphasizing weights. In this
scenario, the adversary familiar with the classifier and
statistical features of data instances will adapt the values of
most significant features and trick the learner to classify
malicious as legitimate instance.

Image 1: Feature weights scaled to range [0, 1], original
input data

Experiments with hashed input data

The second set of models have been trained with two
datasets containing values from original dataset processed
with MD5 and SHA-2 hash functions. Feature values in the
test sets have been also processed with the aforementioned
hash functions. Test set classification accuracy is given in
the table 2. According to the result, one may notice that the
degradation of accuracy is almost negligible.

Table 2: Classification accuracy (hashed input data)

Accuracy (%)
Algorithm MD5 SHA-2
C4.5 79,95% 79,89%
Naive Bayes 84,52% 85,01%
Random Forest | 94,07% 93,87%
AdaBoost 91,77% 90,82%

Feature weights of 27 features are presented on graph on
Image 2. As one may see, the distribution of feature
weights is now uniform, as there are no features with over-
emphasizing or under-emphasizing weights. Due to
uniform distribution is uniform, an adversary will have to
change more feature values to trick the classifier. As the
classifier operates with hash values it may be concluded
that (1) adaptation of each feature requires the same effort
and that (2) due to the avalanche effect, minor adaptations
in original data before hashing in the IDS will result in
major change in the resulting data, making it virtually
impossible for a skilled attacker to trick the classifier.

Image 2: Feature weights scaled to range [0, 1], hashed
input data

84



5. CONCLUSION

In this paper we have presented an approach to feature re-
weight strategy based on hashing all the numeric feature
values. Classifier is trained and tested with all feature
values of each instance being previously processed by a
hash function. Hashing provides a robust classifier as
resulting feature weight distribution is uniform and
avalanche effect resulting from hash function is an obstacle
even for a skilled adversary. Re-weight strategy presented
in this paper is applicable to several machine learning
based security mechanisms. However, the downside of the
proposed solution is that it operates only with numeric
features, which means that additional feature vector
transformation is required if categorical features exist.

REFERENCES

[1] M. A. Hall and L. A. Smith, “Practical feature subset
selection for machine learning,” in C. McDonald (Ed.),
Computer Science "98 Proceedings of the 21st Australasian
Computer Science Conference ACSC’98, Perth, 4-6
February, 1998, pp. 181-191. Berlin: Springer.

[2] T, Mitchell, “Machine Learning”, McGraw-Hill
Science/Engineering/Math, page 2, 1997.

[3] Z. Ghahramani, “Unsupervised Learning,” in O.
Bousquet et al. (Eds.): “Machine Learning”, LNAI 3176,
Springer-Verlag Berlin Heidelberg, 2003.

[4] 1. Hendrickx, “Local Classification and Global
Estimation: Explorations of the k-nearest neighbor
algorithm”, PhD Thesis, Tilburg University, 2005.

[5]1 T. Woods, M. Evans, D. Rust, and B. Podoll, “Security
in Machine Learning: Measuring the relative sensitivity of
classifiers to adversary-selected training data,” CSCI 5271
Project Final Draft, University of Minnesota, Minneapolis,
USA, 2008.

[6] B. Biggio, B. Nelson, and P. Laskov, “Support vector
machines under adversarial label noise,” in Asian
Conference on Machine Learning, pp. 97-112, November,
2011,

[7] M. Barreno, B. Nelson. R. Sears, A. D. Joseph and J.
D. Tygar, “Can machine learning be secure?”, in
Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, pp. 16-25), 2006.

[8] A. Kotcz, and C. H. Teo, “Feature weighting for
improved classifier robustness”, in CEAS’09: sixth
conference on email and anti-spam, 2009, no pagination.

[9] L. Breiman, J. H. Friedman, R. A. Olshen and C. J.
Stone, “Classification and Regresssion Trees”,
‘Wadsworth, Belmont, 1984.

[10] R. Quinlan, “C4.5: Programs for machine learning”,
Morgan Kaufmann Publishers, Inc., 1993.

[11] V. Cherkassky and F. M. Mulier, “Learning from
Data: Concepts, Theory and Methods. 2nd ed.”, John
Wiley - IEEE Press, 2007.

[12] I. H. Witten, E. Frank and M. A. Hall, “Data Mining:
Practical machine Learning Tools and Techniques, 3rdEd”,
Elsevier Inc., 2011.

[13] L. Breiman, “Random Forests”, Machine learning,
45(1), pp- 5-32, 2001.

[14] [21] B. Kégl, “The return of AdaBoost.MH: multi-
class Hamming trees”, arXiv: 1312.6086, Dec. 20. Last
time visited: Aug 15, 2016..

[15] N. Macek, B. Bordevi¢, V. Tim¢enko, M. Bojovi¢, M.
Milosavljevi¢, “Improving Intrusion Detection with
Adaptive Support Vector Machines”, Elektronika ir
elektrotechnika, Vol. 20, No. 7, pp. 57-60, 2014.

85



