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Abstract

Performance-Based Logistics (PBL) frameworks prioritize system availability by optimizing

maintenance strategies, with repair rate estimation playing a critical role in predictive

maintenance planning. This study proposes a machine learning-based approach for repair

rate prediction, leveraging fully connected neural networks (FCNNs) and Long Short-Term

Memory (LSTM) networks trained on repair rate samples generated from a stochastic model.

The FCNN estimates maximum repair rates, while the LSTM predicts minimum repair

rates, capturing both steady-state and sequential dependencies in repair rate variations. By

eliminating the need for complex mathematical formulations, the proposed methodology

provides a scalable and computationally efficient alternative to traditional stochastic models.

Extensive performance evaluations demonstrate that the neural networks achieve higher

accuracy and lower computational costs compared to stochastic approaches, making them

well-suited for real-time predictive maintenance applications. This research enhances

decision-making in maintenance planning, optimizes resource allocation, and improves

overall system reliability within PBL frameworks.

Keywords: neural networks; repair rate estimation; Performance-Based Logistics (PBL);

predictive maintenance; repair rate

1. Introduction

Modern industrial and defense systems demand high availability and reliability,

requiring efficient maintenance strategies to minimize downtime and optimize resource

allocation. Performance-Based Logistics (PBL) frameworks have emerged as a preferred

approach, shifting the focus from managing spare part inventories to ensuring operational

readiness. A critical aspect of PBL-driven maintenance planning is the accurate estimation

of repair rates, which directly influences system availability and maintenance scheduling.

Traditional stochastic models for repair rate estimation rely on complex probability

density functions (PDFs) and cumulative distribution functions (CDFs) to characterize

repair time distributions. While these models provide mathematically rigorous formula-

tions, they suffer from key limitations: (1) computational complexity: analytical solutions

often require iterative numerical computations, making them impractical for real-time

decision-making; (2) limited adaptability: stochastic models assume fixed probabilistic

structures, which may not generalize well to dynamic maintenance environments with

varying operational conditions; (3) difficult parameter estimation: accurate parameter
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selection requires historical failure data and expert domain knowledge, posing challenges

in data-limited scenarios.

A recent paper [1] introduces a structured methodology for generating repair rate

samples, which serve as the basis for this research. Instead of directly applying stochastic

models in future repair rate estimations, we propose training machine learning models

on these generated samples to facilitate rapid and adaptable predictions. This approach

bridges the gap between theoretical stochastic modeling and practical predictive main-

tenance applications, enabling computational efficiency and flexibility. In the literature,

recent advancements in reliability-based optimization models have been explored in the

context of railway vehicle maintenance. A study by Milković et al. (2024) [2] presents

a reliability-based model for optimizing resource allocation in railway vehicle mainte-

nance, demonstrating the applicability of predictive modeling in enhancing operational

efficiency and reducing maintenance costs. Their approach aligns with the objectives

of this research, reinforcing the potential of machine learning techniques in predictive

maintenance applications.

Several studies have explored the application of machine learning in predictive main-

tenance and repair rate estimation. Numsong et al. (2023) [3] introduced an artificial neural

network (ANN)-based model for estimating repair costs in agricultural machinery, demon-

strating low error rates. Ouadah (2022) [4] discussed predictive maintenance approaches

using machine learning, emphasizing the advantages over traditional maintenance mod-

els. Dhada et al. (2022) [5] investigated failure rate modeling using recurrent neural

networks (RNNs), demonstrating the effectiveness of RNNs in capturing temporal depen-

dencies. Predictive maintenance strategies have also evolved through a combination of

advanced modeling techniques, including fuzzy logic, machine learning, and mathematical

optimization [6–11].

In line with these developments, recent studies have further advanced predictive

maintenance through the integration of deep learning and data driven methods. Li et al.

(2024) [12] presented a comprehensive survey of deep learning driven architectures for pre-

dictive maintenance, highlighting their scalability, adaptability, and efficiency in complex

industrial environments. Benhanifia et al. (2025) [13] conducted a systematic review of

predictive maintenance applications in manufacturing, demonstrating the effectiveness of

artificial intelligence (AI) and Internet of Things (IoT) integration in improving reliability

and operational sustainability. Kim et al. (2024) [14] proposed an LSTM-based approach

for predicting maintenance costs in infrastructure management, achieving substantial im-

provements in forecast accuracy. Aminzadeh et al. (2025) [15] developed an IoT-enabled

predictive maintenance framework using machine learning and cloud analytics for indus-

trial air-compressor systems, confirming the benefits of real-time sensor data analytics

for fault prediction. In [16] compared various deep learning models for predictive main-

tenance in manufacturing, concluding that hybrid neural architectures provide superior

performance in fault diagnosis and maintenance optimization.

These findings support the motivation of the our research, which applies NN archi-

tectures to improve repair rate estimation accuracy and computational efficiency within

PBL systems.

Previous studies have also addressed availability-based maintenance analysis for

systems operating under repair time thresholds, offering additional insights into optimizing

maintenance planning within PBL frameworks [17]. These studies provide theoretical

support for linking availability targets with repair rate estimation, which aligns with the

objectives of the present research.

To address the limitations of traditional stochastic approaches, this study proposes a

data driven alternative using deep neural networks (DNNs) trained on repair rate samples
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derived from a stochastic model. The objective is to enable rapid and accurate repair

rate predictions while maintaining adaptability to different system configurations and

operational environments. The proposed methodology focuses on two NN architectures:

(1) a Fully Connected Neural Network (FCNN) that predicts maximum repair rates, cap-

turing steady-state maintenance behaviors, and (2) a Long Short-Term Memory (LSTM)

network that estimates minimum repair rates by leveraging sequential learning to model

temporal dependencies in repair processes. This separation is also practically motivated:

maximum repair rates reflect long-term maintenance capacity, whereas minimum repair

rates fluctuate with short-term operational variability, making the two indicators funda-

mentally different in behavior.

The main contributions of this research are as follows:

1. An NN-based framework for repair rate estimation within PBL systems, trained on

samples generated from a stochastic model.

2. A detailed comparative analysis of FCNN and LSTM architectures across different

dataset sizes and training configurations.

3. Evidence that the proposed approach provides high predictive accuracy and scalability

while significantly reducing computational cost.

4. A discussion on the practical implications and potential integration of the proposed

framework into real-time predictive maintenance systems.

This paper contributes to advancing predictive maintenance research by demonstrat-

ing the effectiveness of deep learning for accurate and efficient repair rate estimation within

PBL systems. Unlike existing predictive maintenance studies, our work focuses specifically

on the joint estimation of maximum and minimum repair rates within PBL frameworks,

which to the best of our knowledge has not been addressed using deep learning techniques.

For clarity and ease of reference, Table 1 provides a summary of the main symbols and

abbreviations used throughout the paper.

Table 1. Summary of symbols and abbreviations used in the paper.

Symbol/Abbreviation Description

A Target system availability
x Rayleigh distribution parameter
x0 Expected value of the Rayleigh parameter x
y Random variable uniformly distributed on [0, 1]
µr Repair rate (1/MTTR)
MTBF Mean Time Between Failures
MTTR Mean Time To Repair
CDF Cumulative Distribution Function
DNN Deep Neural Network
FCNN Fully Connected Neural Network
LSTM Long Short-Term Memory Network
MAE Mean Absolute Error
MSE Mean Squared Error
NN Neural Network
PBL Performance-Based Logistics
PDF Probability Density Function
RMSE Root Mean Squared Error
R-squared Coefficient of Determination
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2. System Model

2.1. Overview of the Used Stochastic Model

Building directly on the context established in the previous sections, the stochastic

model proposed by Kontrec et al. (2018) [1] serves as a foundational step toward improving

repair rate estimations within performance-based logistics frameworks. In this study,

the authors specifically consider a system composed of several distinct components, each

characterized by its own failure rate. This modeling approach assumes that failure times

follow a Rayleigh distribution, commonly utilized in reliability engineering. The model

introduces key probabilistic measures, such as the repair rate PDF and CDF, to determine

the likelihood of different repair rates occurring.

The Rayleigh model describes the stochastic nature of failure processes, where the

repair rate is treated as a random variable dependent on system availability. The failure-

time variable x is modeled using the Rayleigh distribution with scale parameter x0, whose

probability density function is given by [1]:

fX(x | x0) =
2x

x0
exp

(

−
x2

x0

)

, x > 0. (1)

The following equations summarize the analytical form of the model and its proba-

bilistic interpretation. This distribution is widely used in reliability engineering because its

linearly increasing hazard rate effectively captures degradation driven failure mechanisms.

Moreover, it is a special case of the Weibull family with generalized value of shape parame-

ter, making it a standard benchmark for lifetime modeling. Its analytical tractability enables

transparent comparison between classical stochastic estimators and the proposed NN based

approach. For the underlying failure-time model, we assume a Rayleigh distribution with

scale parameter x0. This choice leads to a closed-form expression for the repair-rate density

pµr (µr) in Equation (4) via a change of variables transformation. In practical terms, the only

parameter that needs to be estimated from data is the Rayleigh scale x0. Given a sample

{x1, . . . , xn} of failure times, the log-likelihood of x0 is:

ℓ(x0) = n ln 2 +
n

∑
i=1

ln xi − n ln x0 −
1

x0

n

∑
i=1

x2
i , (2)

which yields the well-known maximum likelihood estimator:

x̂0 =
1

n

n

∑
i=1

x2
i . (3)

In practical applications, Rayleigh distributed failure-time observations may be used to

estimate the scale parameter x0 through the MLE expression given above. However, in this

study we follow the standard stochastic formulation adopted in the literature: the values of

and the availability parameter x0 and A are taken directly from validated analytical models

in the literature. These fixed parameters are then used to generate repair rate samples by

applying inverse transform sampling to the closed-form CDF in Equation (6), ensuring

full consistency with the theoretical repair-rate distribution. The repair rate distribution in

Equation (4) is then obtained analytically by substituting this estimate into the closed-form

expression for pµr (µr); since µr is derived through a change of variables transformation, no

separate likelihood for µr is required.

The PDF of the repair rate µr is determined as in [1]:

pµr (µr) =
8A2

(1 − A)3µ3
r πx0

exp

(

−
4A2

(1 − A)2 µ2
r πx0

)

. (4)



Information 2025, 16, 1031 5 of 22

This equation expresses the PDF of the repair rate µr, showing how the likelihood

of a certain repair rate depends on the system availability A, the Rayleigh distribution

parameter x0, and the shape of the exponential term. Higher availability values increase

the concentration of the PDF around larger repair rates, meaning that systems with stricter

reliability requirements require faster or more frequent repairs.

The corresponding CDF integrates the PDF and represents the probability that the

repair rate is less than or equal to a given value. It therefore provides a convenient way to

determine cumulative probabilities and to generate random samples. The CDF formula is

given as in [1]:

Fµr (µr) = 1 − exp

(

−4A2

(1 − A)2µ2
r πx0

)

(5)

From this expression, repair rate samples can be generated using the inverse transform

sampling method, where a random variable y uniformly distributed in the range [0, 1] is

substituted into the inverse of the CDF. This allows the generation of realistic stochastic

repair rate data for numerical simulations.

The repair rate samples can be represented as [1]:

µr =

√

−
(1 − A)2µ2

r πx0

4A2
ln(1 − F−1

µr (µr)) =

√

−
(1 − A)2µ2

r πx0

4A2
ln(1 − y) (6)

where y is a random number from a uniformly distribution. This sampling method provides

a straightforward way to create numerical datasets that reflect the stochastic variability

of the repair process, which can later be used to train and validate predictive machine

learning models.

To validate the stochastic model described in [1], numerical simulations were con-

ducted on a system comprising three distinct components with failure rates: 0.29, 0.58,

and 0.84. Each component was analyzed under three different system availability levels:

0.7, 0.8, and 0.9. The PDF and CDF were computed for each case to examine the behavior

of repair rates under varying reliability constraints.

The following discussion summarizes the main simulation results to illustrate how

the model behaves under different conditions.

The PDF plots illustrate the probability distribution of repair rates, showing how

system availability affects the required maintenance efforts. As can be noticed from

Figures 1–3, higher availability levels (A = 0.9) lead to a shift in the PDF toward higher

repair rates, indicating a need for more frequent and efficient maintenance interventions.

Lower availability levels (A = 0.7 and A = 0.8) allow for broader distributions, where

lower repair rates remain more probable. Components with higher failure rates (0.84) ex-

hibit a more narrow and peaked PDF, meaning that their repair rates are more predictable

and concentrated within a certain range.

The CDF plots provide insight into the cumulative probability of the repair rate being

below a certain threshold. Steeper CDF curves for A = 0.9 suggest that high repair rates are

required with greater certainty, as maintaining high availability imposes strict maintenance

requirements. More gradual CDF curves for A = 0.7 and A = 0.8 indicate that lower repair

rates are more common, reducing the intensity of required maintenance interventions.

Across all cases, higher failure rates result in steeper CDFs, confirming that more frequent

repairs are essential for components with high failure probabilities. These are presented

in Figures 4–6.
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Figure 1. PDF of the repair rate for the first part (failure rate = 0.29).
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Figure 2. PDF of the repair rate for the second part (failure rate = 0.58).
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Figure 3. PDF of the repair rate for the third part (failure rate = 0.84).
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Figure 4. CDF of the repair rate for the first part (failure rate = 0.29).
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Figure 5. CDF of the repair rate for the second part (failure rate = 0.58).
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Figure 6. CDF of the repair rate for the third part (failure rate = 0.84).

The numerical results confirm that the stochastic model accurately predicts repair

rate distributions under different operating conditions. Specifically, higher failure rates

necessitate higher repair rates, validating the theoretical assumptions of the model. In-

creased availability constraints shift the repair rate distributions, aligning with expectations
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that greater availability requires more proactive maintenance. PDF and CDF trends follow

standard probabilistic behavior, demonstrating the reliability of the model in estimating

repair rates. The numerical analysis supports the effectiveness of the stochastic model in

predicting repair rate distributions for different system configurations. The results confirm

that both failure rates and availability levels significantly impact repair rate requirements,

reinforcing the applicability of the model in predictive maintenance planning and logistics

optimization. This validation further strengthens the case for integrating machine learning

techniques to enhance repair rate estimations and automate maintenance decision-making.

To further support predictive maintenance strategies, extreme values such as

maximum and minimum repair rates are also computed. The maximum repair rate

xmax = max(µr1
, µr2 , . . . , µrn) and minimum repair rate xmin = min(µr1

, µr2 , . . . , µrn) play

a crucial role in evaluating the robustness and efficiency of repair processes in PBL systems.

These extreme values provide insights into the best-case and worst-case repair scenarios,

which are essential for risk assessment, maintenance scheduling, and predictive modeling.

The minimum repair rate xmin represents the longest expected repair duration, correspond-

ing to situations where system recovery is slow due to operational constraints, resource

limitations, or unexpected failures. This value helps in defining worst case maintenance

scenarios and ensuring that systems remain operational even under adverse conditions.

Conversely, the maximum repair rate xmax represents the shortest expected repair time,

which is important for identifying optimal maintenance conditions and achievable system

recovery performance. By analyzing xmax, maintenance planners can assess whether a

given system meets contractual availability targets and optimize maintenance resource

allocation. By considering both xmax and xmin, decision-makers can establish realistic

repair time expectations, optimize maintenance cycles, and design predictive maintenance

strategies that account for variability in repair durations, ultimately enhancing system

reliability and operational efficiency. In [9] a novel method for the determination of the

maximum and minimum repair rates of the entity comprising the observed units is pre-

sented. The obtained generalized PDF expressions can be used to predict total repair

time. The presented method provides two new measures that comprehensively define the

total repair time and have not been studied in this way before. In the numerical section,

the proposed model was applied to the before mention system consisting of three key com-

ponents. PDFs of repair rate for each component, as well as the PDF and CDF maximum

and minimum repair rates for the entire system. In this case selection of three random

variables (µr1
, µr2 , µr3) for computing the maximum and minimum repair rates is based on

the practical constraints of system redundancy and maintenance decision-making. Many

real-world systems operate with a limited number of redundant components or subsystems

(typically three or fewer), where each component undergoes independent repair processes

under varying operational conditions. Observing a higher number of random variables

would increase computational complexity without significantly improving the accuracy of

repair rate estimation, as beyond a certain threshold, additional components contribute

diminishing returns in predictive maintenance optimization. To accurately model the

stochastic nature of the system repair rate, we implement a sampling-based approach

that generates random repair rate samples for different system availabilities A1, A2, A3.

This process enables us to analyze the variability in repair rate estimations under different

operational conditions. Given the system parameters representing different component

characteristics, and availability levels A1, A2, A3, the repair rate samples are computed

separately for different components of the system, resulting in three vectors of repair rate

realizations: µr1
= [µ11, µ12, µ13], µr2 = [µ21, µ22, µ23], µr3 = [µ31, µ32, µ33], where each

vector represents repair rates for different configurations of system availability. To analyze
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the best-case and worst-case scenarios, we compute the minimum and maximum repair

rates across the three sampled vectors:

xmin = min(µr1
, µr2 , µr3) (7)

and

xmax = max(µr1
, µr2 , µr3) (8)

These computations provide insight into the lower and upper bounds of repair

rate estimates under varying operational conditions, ensuring robust predictive main-

tenance planning.

The obtained stochastic repair rate samples, including their minimum and maxi-

mum values, serve as the foundation for training data in the subsequent NN analysis.

By connecting the analytical framework of the stochastic model with data-driven predictive

modeling, this approach enables efficient estimation of repair rates under varying opera-

tional conditions. The following subsection introduces the NN architectures developed for

this purpose.

2.2. Neural Network Architecture

An empirical inspection of the simulated repair rate samples confirms the rationale

for employing two separate neural models. Maximum repair rate values tend to cluster

around their upper stochastic limits and vary smoothly, without exhibiting sequential

irregularities, therefore a feed-forward FCNN is sufficient for capturing their steady state

behavior. Minimum repair-rate values, however, display pronounced local fluctuations and

occasional abrupt drops, making their prediction more sensitive to short-term variations.

Such fluctuation patterns are more effectively handled by an LSTM architecture, which is

designed to model irregular or context dependent changes across adjacent samples even

when the overall sequence is not strongly time dependent.

Building on the stochastic model results, two NN architectures were developed to

predict repair rates more efficiently and adaptively. The generated repair rate samples were

used as inputs, allowing the networks to learn complex nonlinear relationships between

system availability and repair performance.

The first model is an FCNN, designed to predict the maximum repair rates (x1max,

x2max, x3max) based on nine input features. Its architecture, shown in Figure 7, consists

of three fully connected (linear) layers. The first layer comprises 128 neurons, the second

layer 64 neurons, while the output layer contains three neurons responsible for predicting

the target values. Each hidden layer utilizes the Rectified Linear Unit (ReLU) activation

function, which facilitates efficient learning of nonlinear relationships in the data. The ReLU

activation function is defined as follows [18]:

ReLU(z) = max(0, z) (9)

where z is the input to the neurons. This model is well-suited for regression tasks since the

output layer does not employ an activation function, allowing for continuous value predic-

tions. The network is trained using the Mean Squared Error (MSE) loss function, which

minimizes the squared differences between the actual and predicted values. In addition

to the MSE loss function, other metrics were used to further evaluate the model’s perfor-

mance: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient

of determination (R-squared). MAE measures the average absolute prediction error, while

RMSE emphasizes larger errors by penalizing them through squaring. R-squared assesses

how well the model explains the variability in the data, with values closer to 1 indicating

better model fit.
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To improve training stability, batch normalization was also tested after each fully

connected layer. This technique normalizes activations across mini-batches, reducing

internal covariant shift and allowing for higher learning rates [19]. However, the results

did not improve as expected, and in some cases, performance slightly degraded. Therefore,

batch normalization was ultimately not included in the final model configuration.

Figure 7. FCNN Architecture.

The optimization of parameters is performed using the Adaptive Moment Estimation

(Adam) algorithm with an initial learning rate of 0.001 and L2 regularization (weight decay)

of 10−4, which helps mitigate overfitting. Adam combines the benefits of momentum and

adaptive learning rates, enabling more stable and efficient convergence [20].

Before training, all input data were standardized using the Standard Scaler (SS) method

to avoid feature imbalance and accelerate convergence. This transformation ensures that

the data have a zero mean and unit standard deviation, facilitating faster and more efficient

model learning. The transformation is performed using the formula:

x∗ =
x − µ

σ
(10)

where µ and σ represent the mean and standard deviation of each feature, respectively [21].

The dataset was divided into training and testing subsets, with 80% used for model

fitting and 20% reserved for performance evaluation. This ensured objective validation of

the model’s generalization capability.

To ensure a fair comparison between the proposed neural networks and the stochastic

baseline estimators, all models were evaluated using the exact same simulation samples

and under identical computational conditions. The stochastic MLE estimators and both

neural architectures were exposed to the same number of repair rate realizations, identical

Rayleigh parameter distributions, and consistent runtime constraints. This guarantees that

any observed differences in performance arise solely from methodological effectiveness

rather than dataset variation or computational advantage.

3. Results and Discussion

In this study, both FCNN and the LSTM NN demonstrated excellent performance

in estimating the maximum and minimum repair rates, respectively. The performance

of these NNs was evaluated across various configurations by modifying the optimizer,

the number of neurons, and the learning rate. Four optimization algorithms were consid-

ered: Adam, SGD, RMSprop, and Adagrad. Experiments were conducted with network
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architectures consisting of 64, 128, and 256 neurons. For the FCNN, the learning rates

were set to 0.01, 0.001, and 0.0001, whereas for the LSTM network, they were adjusted to

0.025, 0.0025, and 0.00025. The initial training and validation were performed on a dataset

containing 10,000 samples, followed by further evaluations on larger datasets with 100,000

and 1,000,000 samples to assess the generalization capability of the models. In the case of

the FCNN, the Adam optimizer exhibited the best overall performance across all tested

configurations. This was evident from its consistently lower MSE, MAE, and RMSE values,

as well as its higher R-squared score compared to the other optimizers. Adam’s ability to

adapt learning rates dynamically for each parameter allowed it to converge more efficiently

while avoiding the pitfalls of suboptimal local minima. In contrast, SGD and RMSprop

struggled with convergence stability, and Adagrad, while performing reasonably well,

exhibited slower learning behavior, particularly in later training stages. These findings

indicate that Adam provides a well-balanced combination of stability and rapid conver-

gence, making it the most suitable optimizer for training the FCNN model in this study.

The results of this analysis are summarized in Table 2, which presents the performance

metrics obtained for different optimizers.

Table 2. Performance comparison of optimizers (Adam, SGD, RMSprop, Adagrad) on the FCNN

model (N = 10 k).

Test Metric ADAM SGD RMSprop Adagrad

Test 1. (100 epochs)

MSE 0.0183 0.0040 0.0044 0.0010
MAE 0.1073 0.0357 0.0482 0.0239
RMSE 0.1354 0.0635 0.0660 0.0315
R-squared 0.9850 0.9967 0.9964 0.9992

Test 2. (400 epochs)

MSE 0.0001 0.0001 0.0067 0.0002
MAE 0.0058 0.0078 0.0544 0.0095
RMSE 0.0087 0.0106 0.0818 0.0124
R-squared 0.9999 0.9999 0.9945 0.9999

Test 3. (700 epochs)

MSE 0.0001 0.0001 0.0062 0.0001
MAE 0.0043 0.0044 0.0585 0.0042
RMSE 0.0057 0.0063 0.0786 0.0058
R-squared 1.0000 1.0000 0.9949 1.0000

To further improve the performance of the FCNN, the impact of batch normalization

and L2 regularization was investigated. The Adam optimizer was selected as the base-

line, given its superior performance in the previous analysis. The analysis included four

configurations: with batch normalization and L2 regularization, with batch normalization

and without L2 regularization, without batch normalization and with L2 regularization,

and without both batch normalization and L2 regularization. The results of this comparison

are presented in Table 3.

Among these configurations, the best performance was observed in the model trained

without batch normalization but with L2 regularization. This suggests that L2 regularization

effectively prevents overfitting by penalizing large weights, leading to a more stable

and generalizable model. On the other hand, batch normalization did not contribute

significantly to performance improvement in this specific case, possibly due to the fully

connected network structure and the nature of the dataset. These results indicate that,

for the FCNN, L2 regularization should be prioritized over batch normalization when

optimizing model performance. Consequently, best configuration for the FCNN model

was found to be without batch normalization but with L2 regularization, achieving near

perfect R-squared values and the lowest error metrics. The unexpectedly poor performance

of batch normalization at 100 epochs may suggest that early-stage normalization disrupts
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stable weight updates, while its lack of effectiveness at 400+ epochs indicates that L2

regularization alone is sufficient to prevent overfitting. These findings reinforce that batch

normalization is not always beneficial in deep learning models and that its impact should

be carefully evaluated depending on the architecture and training conditions.

Table 3. Comparison of FCNN configurations with and without batch normalization and L2 regular-

ization (ADAM, N = 10 k).

Test Metric

Configuration

Batch Norm,
L2 Reg

Batch Norm,
No L2 Reg

No Batch Norm,
L2 Reg

No Batch Norm,
No L2 Reg

Test 1. (100 epochs)

MSE 0.3110 0.1971 0.0068 0.0183
MAE 0.3821 0.2966 0.0605 0.1073
RMSE 0.5577 0.4439 0.0826 0.1354
R-squared 0.7452 0.8385 0.9944 0.9850

Test 2. (400 epochs)

MSE 0.0030 0.0011 0.0000 0.0001
MAE 0.0433 0.0236 0.0021 0.0058
RMSE 0.0550 0.0332 0.0028 0.0087
R-squared 0.9975 0.9991 1.0000 0.9999

Test 3. (700 epochs)

MSE 0.0010 0.0037 0.0001 0.0001
MAE 0.0232 0.0333 0.0016 0.0043
RMSE 0.0312 0.0608 0.0024 0.0057
R-squared 0.9992 0.9970 1.0000 1.0000

After determining that Adam was the best-performing optimizer, further optimization

was conducted by analyzing the impact of different learning rates (0.01, 0.001, and 0.0001)

across networks with 64, 128, and 256 neurons. The results confirm that Adam consistently

produced superior performance across all configurations. Specifically:

• Learning rates of 0.01 and 0.001 yielded excellent results, with MSE values close to

zero and R-squared = 1.0000, indicating near perfect model accuracy.

• A learning rate of 0.0001 significantly degraded performance, leading to higher MSE,

MAE, and RMSE values, along with reduced R-squared scores. This suggests that the

learning rate was too small, preventing the model from converging efficiently.

• Networks with 128 and 256 neurons achieved the best results, particularly at lr = 0.01

and lr = 0.001, where the error metrics were minimal and R-squared remained

at 1.0000.

While SGD and RMSprop also performed well, their results were slightly less con-

sistent than Adam’s. In contrast, Adagrad showed poor generalization, with negative

R-squared values at lr = 0.0001 for 128 and 256 neurons, indicating a failure to capture

meaningful relationships in the data, likely due to its aggressive learning rate decay, which

prevents effective weight updates. These findings further confirm that Adam, with a learn-

ing rate of 0.01 or 0.001, is the most suitable choice for training the FCNN. The complete

results of this analysis are summarized in Table 4. The results confirm that Adam is the

most effective optimizer, achieving near-perfect performance across all configurations.

While SGD improves with more training and larger networks, RMSprop shows inconsistent

results, suggesting that it is highly sensitive to hyperparameters. These findings highlight

the importance of careful optimizer selection and hyperparameter tuning to ensure model

stability and convergence.
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Table 4. Performance comparison of Adam, SGD, RMSprop, and Adagrad optimizers with different

learning rates and network sizes for the FCNN model (N = 10 k).

Test Epochs Metric
Optimizer

ADAM SGD RMSprop Adagrad

Test 31.

700, lr = 0.0100, 64 neurons

MSE 0.0001 0.0001 0.0320 0.0002
MAE 0.0027 0.0042 0.1349 0.0107
RMSE 0.0122 0.0042 0.1790 0.0151
R-squared 0.9999 0.9999 0.9737 0.9998

700, lr = 0.0010, 64 neurons

MSE 0.0001 0.0017 0.0012 1.5352
MAE 0.0024 0.0228 0.0232 0.9576
RMSE 0.0035 0.0407 0.0342 1.2390
R-squared 1.0000 0.9986 0.9990 −0.2578

700, lr = 0.0001, 64 neurons

MSE 0.8755 0.4151 0.9139 4.7482
MAE 0.7373 0.5027 0.7250 1.7020
RMSE 0.9357 0.6443 0.9560 2.1790
R-squared 0.2827 0.6599 0.2512 −2.8903

Test 32.

700, lr = 0.0100, 128 neurons

MSE 0.0001 0.0001 0.0377 0.0001
MAE 0.0011 0.0025 0.1601 0.0049
RMSE 0.0017 0.0038 0.1943 0.0069
R-squared 1.0000 1.0000 0.9691 1.0000

700, lr = 0.0010, 128 neurons

MSE 0.0001 0.0006 0.0072 0.3010
MAE 0.0018 0.0161 0.0599 0.3936
RMSE 0.0026 0.0241 0.0849 0.5487
R-squared 1.0000 0.9995 0.9942 0.7534

700, lr = 0.0001, 128 neurons

MSE 0.0583 0.2636 0.0339 4.8856
MAE 0.1398 0.4029 0.1109 1.8098
RMSE 0.2414 0.5134 0.1840 2.2103
R-squared 0.9522 0.7840 0.9723 −3.0028

Test 33.

700, lr = 0.0100, 256 neurons

MSE 0.0001 0.0001 0.0849 0.0000
MAE 0.0011 0.0033 0.2240 0.0029
RMSE 0.0015 0.0045 0.2914 0.0047
R-squared 1.0000 1.0000 0.9304 1.0000

700, lr = 0.0010, 256 neurons

MSE 0.0001 0.0012 0.0008 0.0404
MAE 0.0016 0.0239 0.0254 0.1133
RMSE 0.0023 0.0344 0.0288 0.2009
R-squared 1.0000 0.9990 0.9993 0.9669

700, lr = 0.0001, 256 neurons

MSE 0.0137 0.2597 0.0006 3.8895
MAE 0.0629 0.4057 0.0190 1.5770
RMSE 0.1171 0.5096 0.0246 1.9722
R-squared 0.9888 0.7872 0.9995 −2.1867

To verify the generalization capability of the NN, the best-performing configuration—Adam

optimizer with and without batch normalization and L2 regularization—was evaluated on

larger datasets containing 100,000 and 1,000,000 samples. The objective was to determine

whether the optimal training conditions observed on 10,000 samples would scale effectively

to more extensive datasets. The results reaffirmed previous findings:

• Networks trained without batch normalization and with L2 regularization (weight

decay) consistently achieved the best performance, maintaining low MSE, MAE,

and RMSE values, while preserving an R-squared value close to 1.0000. Batch nor-

malization did not improve accuracy on larger datasets and, in some cases, led to

slightly worse generalization performance. This suggests that for this specific problem,
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batch normalization does not provide a significant advantage and may even introduce

unnecessary variance.

• Increasing the dataset size improved model stability, reducing variability in perfor-

mance across different training runs. This confirms that the selected model configura-

tion scales effectively and maintains robustness even with significantly larger datasets.

These findings indicate that L2 regularization is essential for preventing overfitting,

especially as dataset size increases, while batch normalization does not contribute to

performance improvements in this case. The detailed results of this evaluation are provided

in Table 5.

Table 5. Evaluation of FCNN configuration on larger datasets (ADAM, 700 epochs).

Test Dataset Metric
Configuration

Batch, L2 Reg Batch, No L2 Reg No Batch, L2 Reg No Batch, No L2 Reg

Test 13. 100k

MSE 0.0036 0.0001 0.0000 0.0001
MAE 0.0465 0.0062 0.0013 0.0046
RMSE 0.0597 0.0087 0.0020 0.0076
R-squared 0.9971 0.9999 1.0000 1.0000

Test 14. 1M

MSE 0.0002 0.0001 0.0000 0.0000
MAE 0.0109 0.0085 0.0015 0.0022
RMSE 0.0153 0.0118 0.0021 0.0033
R-squared 0.9998 0.9999 1.0000 1.0000

The results were excellent, and determining the best model was challenging due to the

similar performance across configurations. The optimal model utilized the Adam optimizer,

a learning rate of 0.01 (as seen in Test 31, Test 32, and Test 33, where the MSE is almost

0 and R-squared is nearly 1), with L2 regularization and no batch normalization, trained

for 700 epochs on datasets of 10,000 samples. Additionally, the model with 128 neurons

produced slightly better results compared to the 256-neuron configuration for all optimizers

and learning rates tested. The loss throughout the epochs is shown in Figure 8, illustrating

the convergence pattern of the training loss. The training loss decreases rapidly at the

beginning, demonstrating the model’s ability to efficiently learn from the training data.

Interestingly, the combination of batch normalization with L2 regularization resulted in

slightly higher MSE at 100,000 samples, suggesting that early-stage weight normalization

may introduce additional variance. However, as the dataset size increases to 1M samples,

all configurations achieve near-perfect R-squared values (1.0000), demonstrating that larger

datasets enhance model stability and generalization. These findings reinforce that L2

regularization should be prioritized over batch normalization in FCNN for predictive

maintenance applications. In Figure 9, a comparison between the true and predicted values

is displayed, highlighting how closely the model’s predictions align with the actual values

after training. This comparison emphasizes the model’s performance and its capacity to

generalize effectively to unseen data. For the LSTM network, similar to the FCNN, various

configurations were tested to assess the impact of optimizers, number of neurons, learning

rates, and regularization techniques. The performance of the LSTM network was evaluated

with the same four optimizers (Adam, SGD, RMSprop, and Adagrad) and with different

network architectures, including 64, 128, and 256 neurons. The learning rates were set to

0.025, 0.0025, and 0.00025 to explore the effect of different step sizes during training.
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Figure 8. Loss curve during training (700 epochs) for the FCNN model with Adam optimizer and

L2 regularization.

Figure 9. Comparison of true and predicted values for maximum repair rates.

The Adam optimizer again yielded the best performance across all tested configura-

tions for the LSTM network. Its ability to adapt the learning rate dynamically for each

parameter resulted in fast convergence, while also maintaining stability during the training

process. Adam showed consistently lower MSE, MAE, and RMSE values, as well as higher

R-squared scores, compared to other optimizers. This performance pattern was observed

across various combinations of neurons and learning rates, reinforcing the findings from

the FCNN analysis. In contrast, SGD and RMSprop showed less stability in terms of

accuracy, while Adagrad, although performing reasonably well, faced challenges in some

configurations. The results of this analysis are summarized in Table 6. SGD performs

significantly worse at 100 epochs, with an MSE of 0.2485 and an R-squared value of only

0.0967, indicating that it requires longer training times to converge properly. Interestingly,

Adagrad starts with higher error values at 100 epochs but improves significantly over

longer training durations, suggesting that it benefits from extended training cycles but

struggles in early learning stages. These findings highlight the importance of selecting opti-

mizers based on training duration, with Adam providing the best balance of convergence

speed and accuracy for this predictive maintenance application.

Next, the impact of regularization techniques was examined for the LSTM network.

The results indicated that the best performance was achieved in the configuration without

batch normalization and without L2 regularization, as shown in Table 7. This configu-

ration demonstrated the lowest error metrics (MSE, MAE, and RMSE) and maintained

high R-squared values, suggesting that for this specific task, L2 regularization and batch

normalization did not contribute significantly to improving performance. While L2 regular-

ization often helps prevent overfitting, its effect was not as pronounced in the LSTM model
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as it was in the FCNN. Additionally, batch normalization did not provide a noticeable

improvement in generalization for the LSTM network, supporting the conclusion that it is

not always beneficial for every type of network architecture. The best configuration was

found to be without batch normalization and without L2 regularization, achieving the

lowest MSE and highest R-squared values. Surprisingly, batch normalization combined

with L2 regularization resulted in the highest error values at 100 epochs, suggesting that

batch normalization interferes with the sequential nature of LSTMs, disrupting informa-

tion flow between time steps. Additionally, L2 regularization appears to be less effective

for LSTMs than for FCNNs, likely because LSTMs already include internal mechanisms

(gates) that regulate weight updates and prevent overfitting. These findings highlight that

regularization techniques that work well for FCNNs may not necessarily benefit recurrent

architectures like LSTMs.

Table 6. Performance comparison of optimizers (Adam, SGD, RMSprop, Adagrad) on the LSTM

model (N = 10 k).

Test Epochs Metric
Optimizer

ADAM SGD RMSprop Adagrad

Test 1. 100

MSE 0.0003 0.2485 0.0015 0.0026
MAE 0.0123 0.3665 0.0272 0.0344
RMSE 0.0184 0.4985 0.0386 0.0506
R-squared 0.9988 0.0967 0.9946 0.9907

Test 2. 400

MSE 0.0003 0.0082 0.0015 0.0001
MAE 0.0111 0.0491 0.0283 0.0067
RMSE 0.0139 0.0905 0.0388 0.0109
R-squared 0.9993 0.9703 0.9945 0.9996

Test 3. 700

MSE 0.0001 0.0040 0.0008 0.0002
MAE 0.0049 0.0361 0.0196 0.0116
RMSE 0.0073 0.0632 0.0279 0.0154
R-squared 0.9998 0.9855 0.9972 0.9991

Table 7. Comparison of LSTM NN configurations with and without batch normalization and L2

regularization (ADAM, N = 10 k).

Test Epochs Metric
Configuration

Batch, L2 Reg Batch, No L2 Reg No Batch, L2 Reg No Batch, No L2 Reg

Test 1. 100

MSE 0.0036 0.0007 0.0004 0.0003
MAE 0.0387 0.0132 0.0134 0.0123
RMSE 0.0603 0.0259 0.0200 0.0184
R-squared 0.9868 0.9976 0.9985 0.9988

Test 2. 400

MSE 0.0022 0.0003 0.0027 0.0003
MAE 0.0381 0.0120 0.0386 0.0111
RMSE 0.0472 0.0159 0.0521 0.0139
R-squared 0.9919 0.9991 0.9901 0.9993

Test 3. 700

MSE 0.0018 0.0001 0.0001 0.0001
MAE 0.0296 0.0058 0.0074 0.0049
RMSE 0.0422 0.0109 0.0111 0.0073
R-squared 0.9935 0.9996 0.9996 0.9998

The optimal results for the LSTM model were achieved using the Adam optimizer

with a learning rate of 0.025, no batch normalization, and no L2 regularization. Networks

with 128 neurons produced the best results, yielding minimal errors and maintaining a
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near-perfect R-squared score. These findings are summarized in Table 8. Adam is the best

optimizer for LSTM networks, achieving the lowest MSE and highest R-squared values

across different learning rates and network sizes. SGD performs poorly at low learning

rates, indicating that it does not adapt well to the sequential nature of LSTMs without

momentum tuning. Adagrad completely fails at lr = 0.00025, showing negative R-squared

values due to excessive learning rate decay, which causes the model to stop learning.

RMSprop exhibits inconsistent behavior, performing well in some cases but struggling in

others, suggesting that it requires precise tuning for effective LSTM training. These findings

highlight that Adam provides the best balance of stability and performance, while other

optimizers require careful tuning to be effective.

Table 8. Performance comparison of Adam, SGD, RMSprop, and Adagrad optimizers with different

learning rates and network sizes for the LSTM NN model (N = 10 k).

Test Epochs Learning Rate Neurons Metric
Optimizer

ADAM SGD RMSprop Adagrad

Test 31. 700

0.025 64

MSE 0.0011 0.0161 0.0105 0.0012
MAE 0.0217 0.0776 0.0860 0.0284
RMSE 0.0325 0.1270 0.1026 0.0342
R-squared 0.9962 0.9414 0.9617 0.9957

0.0025 64

MSE 0.0012 0.2448 0.0026 0.0073
MAE 0.0246 0.3621 0.0385 0.0591
RMSE 0.0350 0.4947 0.0509 0.0852
R-squared 0.9955 0.1102 0.9906 0.9736

0.00025 64

MSE 0.0092 0.3443 0.0014 0.8367
MAE 0.0695 0.4085 0.0295 0.6814
RMSE 0.0961 0.5868 0.0377 0.9147
R-squared 0.9665 −0.2518 0.9948 −2.0417

Test 32. 700

0.025 128

MSE 0.0010 0.0028 0.0105 0.0001
MAE 0.0233 0.0281 0.0794 0.0076
RMSE 0.0319 0.0529 0.1023 0.0111
R-squared 0.9963 0.9898 0.9620 0.9996

0.0025 128

MSE 0.0001 0.1620 0.0027 0.0007
MAE 0.0080 0.2906 0.0437 0.0164
RMSE 0.0107 0.4024 0.0520 0.0261
R-squared 0.9996 0.4112 0.9902 0.9975

0.00025 128

MSE 0.0003 0.2988 0.0001 0.7653
MAE 0.0092 0.3854 0.0050 0.7051
RMSE 0.0160 0.5466 0.0074 0.8748
R-squared 0.9991 −0.0863 0.9998 −1.7822

Test 33. 700

0.025 256

MSE 0.0002 0.0021 0.0162 0.0004
MAE 0.0116 0.0223 0.1009 0.0138
RMSE 0.0157 0.0457 0.1271 0.0190
R-squared 0.9991 0.9924 0.9412 0.9987

0.0025 256

MSE 0.0001 0.1896 0.0022 0.0002
MAE 0.0065 0.3197 0.0331 0.0094
RMSE 0.0084 0.4354 0.0470 0.0123
R-squared 0.9997 0.3108 0.9920 0.9995

0.00025 256

MSE 0.0003 0.3202 0.0001 0.4697
MAE 0.0106 0.3941 0.0047 0.5983
RMSE 0.0159 0.5658 0.0073 0.6853
R-squared 0.9991 −0.1639 0.9998 −0.7075
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Overall, these results confirm the superiority of the Adam optimizer for training both

FCNN and LSTM models, highlighting its efficiency in handling various architectures

and learning rates. Additionally, for the LSTM network, the absence of batch normaliza-

tion and L2 regularization proved to be the most effective configuration, aligning with

the findings from the FCNN model. The results for the larger datasets of 100,000 and

1,000,000 samples are summarized in Table 9, where the metric values show consistency

with those achieved using the 10,000 sample dataset, further validating the model’s robust

generalization capabilities. LSTM models perform best without batch normalization and

L2 regularization, with near-zero error metrics across configurations. The slightly higher

MSE for batch normalization + L2 regularization at 100,000 samples suggests that batch

normalization disrupts temporal learning in LSTMs, while L2 regularization adds little ben-

efit due to the model’s built-in gating mechanisms. However, as the dataset size increases

to 1M samples, all configurations achieve near-perfect R-squared values (1.0000), demon-

strating that large datasets enhance model stability and reduce the need for additional

regularization techniques.

Table 9. Evaluation of LSTM configuration on larger datasets (ADAM, 700 epochs).

Test Dataset Metric
Configuration

Batch, L2 Reg Batch, No L2 Reg No Batch, L2 Reg No Batch, No L2 Reg

Test 13. 100k

MSE 0.0026 0.0001 0.0007 0.0002
MAE 0.0398 0.0080 0.0189 0.0095
RMSE 0.0513 0.0108 0.0264 0.0138
R-squared 0.9905 0.9996 0.9975 0.9993

Test 14. 1M

MSE 0.0269 0.0268 0.0001 0.0001
MAE 0.1021 0.1020 0.0068 0.0068
RMSE 0.1639 0.1636 0.0101 0.0100
R-squared 0.9028 0.9026 0.9996 0.9996

Figure 10 depicts the loss across epochs, highlighting the convergence trend of the

training loss. In Figure 11, a comparison of the true and predicted values for the minimum

repair rates is presented, showcasing how accurately the LSTM model predicts the actual

values after training.

Figure 10. Loss curve during training (700 epochs) for the LSTM model with Adam optimizer.
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Figure 11. Comparison of true and predicted values for minimum repair rates.

The sensitivity analysis presented in Table 10 illustrates the behavior of both the FCNN

and LSTM models under different values of the availability parameter A. By varying A

values across three representative scenarios, we observe that the prediction accuracy of

both models remains stable for observed availability levels, with performance degradation

becoming noticeable only for extreme values. These findings confirm that the models

are robust to variations in system availability and therefore well suited for practical im-

plementation in environments where operational conditions may fluctuate. Furthermore,

the comparative behavior across architectures provides empirical justification for the model-

ing choices: while the FCNN performs reliably in non-sequential settings, the LSTM yields

superior accuracy in regimes where temporal dependencies within repair-rate sequences

play a significant role.

Table 10. Test performance of the FCNN and LSTM models across three A-parameter scenarios

(N = 10 k).

Model A-Set MSE MAE RMSE Train Time (s)

FCNN 0.70, 0.80, 0.90 0.0305 0.1338 0.1746 10.33
FCNN 0.75, 0.85, 0.95 0.1117 0.2526 0.3343 10.33
FCNN 0.60, 0.79, 0.99 0.6335 0.6039 0.7959 10.33

LSTM 0.70, 0.80, 0.90 0.0007 0.0160 0.0256 162.81
LSTM 0.75, 0.85, 0.95 0.1164 0.2791 0.3411 162.81
LSTM 0.60, 0.79, 0.99 0.6036 0.6292 0.7769 162.81

In addition to accuracy metrics, Table 10 reports the corresponding training times

and convergence epochs, offering a clear view of the computational feasibility of the pro-

posed approach. The FCNN achieves faster convergence due to its feed-forward structure,

whereas the LSTM requires longer training times as a consequence of its recurrent gating

operations. Despite this difference, both models maintain execution times compatible with

real-time predictive maintenance scenarios, confirming their suitability for deployment in

practical environments. This analysis demonstrates that the proposed NNs generalize con-

sistently across varying availability conditions without signs of overfitting, and it provides

further justification for selecting FCNN and LSTM architectures as efficient and scalable

alternatives to classical stochastic estimators.

Compared with classical Monte Carlo estimation, whose convergence requires a large

number of samples, and Bayesian methods that rely on explicit likelihood updates, the pro-

posed neural architectures deliver instant predictions and bypass the need for iterative

probabilistic inference. This makes them highly suitable as fast surrogate estimators for

real-time repair rate prediction in maintenance planning systems.
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Figures 12 and 13 illustrate the comparison between the actual and predicted PDFs

for maximum and minimum repair rates, respectively. These graphs demonstrate the

effectiveness of the proposed NN-based optimization approach in estimating repair rate

distributions within a performance-based logistics system. In Figure 12, the predicted PDF

closely follows the actual PDF for maximum repair rates, indicating a high level of accuracy

in capturing the underlying distribution of the data.

Figure 12. Comparison of actual and predicted probability density functions (PDFs) for maximum

repair rates.

Similarly, Figure 13 presents the comparison for minimum repair rates, showing a

strong alignment between predicted and actual values. The minor deviations observed

in both graphs suggest that the model effectively generalizes across different repair rate

scenarios while maintaining a low error margin. These results confirm that the NN-based

approach is capable of accurately estimating repair rate distributions, making it a reliable

tool for predictive maintenance and logistics optimization.

Figure 13. Comparison of actual and predicted probability density functions (PDFs) for minimum

repair rates.

4. Conclusions and Future Work

This paper presents a novel NN-based framework for repair rate estimation in PBL

systems, bridging the gap between traditional stochastic modeling and modern data-driven

predictive maintenance. By training FCNN and LSTM networks on repair rate samples

generated from a stochastic model, the framework offers a computationally efficient and

flexible alternative to traditional analytical formulations. Unlike conventional analytical ap-
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proaches, the proposed method eliminates the need for complex mathematical derivations

and provides a scalable, real-time solution that can adapt to diverse operational conditions.

The results suggest that both NN architectures achieve high predictive accuracy,

with low error metrics and strong generalization across different dataset sizes and system

configurations. The FCNN is effective in modeling maximum repair rates, while the

LSTM captures sequential patterns associated with minimum repair rates. Together, these

architectures demonstrate that deep learning can replicate and surpass the performance

of analytical estimators while drastically reducing computation time, which is critical for

real-time repair planning and predictive maintenance applications. These findings indicate

that deep learning provides a promising complement to conventional stochastic approaches

by reducing computational complexity and enabling near-real-time estimation capabilities.

The primary strengths of this study lie in its integration of reliability engineering

principles with advanced AI architectures and its demonstration of strong scalability across

multiple availability scenarios. The predicted repair rates offer direct utility in scheduling

maintenance interventions, planning spare parts inventory, and managing system availabil-

ity. By leveraging the predictive precision and fast inference of FCNN and LSTM models,

maintenance planners can improve decision-making, minimize downtime, and optimize

resource allocation, leading to measurable cost and time efficiencies. In addition to per-

formance improvements, this research demonstrates the potential of integrating machine

learning with reliability engineering to support predictive maintenance decision-making

within PBL frameworks. The models’ adaptability and scalability make them suitable candi-

dates for deployment in maintenance planning and logistics optimization. Across all tested

availability scenarios, the FCNN and LSTM architectures consistently achieved higher

predictive accuracy and superior numerical stability relative to the stochastic baseline,

confirming the practical advantages of data-driven estimation methods.

The present study intentionally employs a minimal feature set composed solely of

repair rate samples in order to isolate and evaluate the predictive capabilities of the pro-

posed neural architectures without confounding effects from auxiliary variables. This

controlled environment enabled a transparent and rigorous comparison between classical

stochastic estimators and the proposed neural models. While this provides a clean and

controlled benchmark, future work could benefit from expanding the input space to include

operational, environmental, and condition monitoring variables, enabling richer feature

representations and improving applicability in real maintenance environments. Further

the proposed models could be tested on actual maintenance records through pilot studies

within PBL maintenance systems to evaluate real-world applicability and accuracy. Once

trained, both architectures are capable of real-time inference, enabling integration into pre-

dictive maintenance decision support tools for dynamic repair planning. Future research

should therefore incorporate empirical maintenance records to validate the models under

realistic conditions and to identify domain-specific patterns not observable in simulations.

Such extensions would also facilitate the development of hybrid neural–stochastic frame-

works that combine the interpretability of analytical models with the predictive power

demonstrated by deep learning in this study.
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