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Abstract: Magnetic resonance imaging (MRI)-only radiotherapy planning seeks to replace 

computed tomography (CT) by generating synthetic CT (sCT) images directly from MRI, 

exploiting MRI’s superior soft-tissue contrast; however, MRI lacks the electron density 

information required for accurate dose calculation, necessitating a dual-modality CT–MRI 

workflow that increases scanning time and registration uncertainty. This CT–MRI paradigm 

subjects patients to additional radiation and prolonged imaging sessions, which can degrade 

planning accuracy, making a reliable MRI-only solution critical for safer, faster, and more precise 

radiotherapy. To address this, an end-to-end CycleGAN framework is presented to synthesize CT 

images from routine T1-weighted brain MRI using unpaired data, eliminating the need for exact 

MRI–CT pairs; the architecture employs U-Net-based generators and PatchGAN discriminators 

with cycle-consistency and identity losses for robust domain translation. On 100 held-out paired 

MR–CT slices, the generated sCT achieved a mean absolute error of 58 ± 10 HU and a structural 

similarity index of 0.92 ± 0.03 compared to ground-truth CT, preserving bone interfaces, air 

cavities, and soft-tissue boundaries, thus demonstrating suitability for dosimetric integration. 
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1. Introduction 

 

Radiotherapy planning relies critically on accurate electron density maps for dose 

calculation, traditionally obtained from CT scans. While MRI provides superior soft-

tissue contrast for target delineation, particularly in brain tumors, it cannot directly 

quantify tissue electron density. This limitation necessitates a dual-modality workflow, 
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where patients undergo both CT (for dose planning) and MRI (for target definition). To 

enable MRI-only radiotherapy, sCT generation from MRI has emerged as a pivotal 

research area. Early methods, such as atlas-based segmentation and voxel-wise 

regression, often struggle with anatomical variability and require time-consuming 

manual corrections. Deep learning approaches, particularly generative adversarial 

networks (GANs), have shown promise in overcoming these limitations by learning 

data-driven mappings between MRI and CT domains [1]. Among these, CycleGAN 

offers a distinct advantage: it trains on unpaired MRI and CT data, bypassing the need for 

perfectly aligned datasets that are rare in clinical practice [2]. However, existing 

CycleGAN implementations for sCT generation often exhibit blurring of bone interfaces 

or inaccurate Hounsfield unit (HU) values in heterogeneous regions (e.g., sinuses or 

tumor beds), which may propagate errors into dose calculations [3]. 

In this work, we present an optimized CycleGAN pipeline for synthesizing 

diagnostically acceptable sCT images from routine T1-weighted brain MRI.  

 

2. Methodology 

The proposed workflow for generating sCT images from MRI data consists of three 

main stages: data preparation, domain translation using a CycleGAN model, and post-

processing for integration into Monte Carlo dose simulation using FOTELP-VOX 

software [4] (Figure 1). 

 
Figure 1. Pipeline for synthetic CT and dose calculation. (A) CycleGAN training on MRI and 

unpaired public CT. (B) sCT→FOTELP‐VOX Monte Carlo dose simulation. 

 

2.1 Data Preparation 

The study utilized brain MRI scans from the publicly available Brain Tumor MRI 

Classification Dataset on Kaggle [5]. All images underwent standardized preprocessing: 

(1) spatial normalization through resampling to 256×256 resolution and brain-region 

center cropping; (2) intensity normalization with MRI values scaled to [0,1] using 1st-

99th percentiles and CT values calibrated to [-1000,1500] HU range; (3) noise reduction 
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via 3×3 median filtering while preserving anatomical edges. During training, we 

implemented on-the-fly augmentation, including random horizontal flips and ±10° 

rotations to enhance model robustness.  

 

2.2 sCT Generation Using CycleGAN 

Unpaired domain translation from MRI to CT was performed using a Cycle-

Consistent Generative Adversarial Network (CycleGAN). The forward generator G, 

which learns the mapping from MRI to sCT, employs a U-Net backbone augmented 

with nine residual blocks; the inverse generator F maps sCT back to MRI using a 

symmetric U-Net. Two PatchGAN discriminators (70 × 70 receptive field), D_CT for the 

CT domain and D_MR for the MR domain, drive adversarial training. The optimization 

objective combines a least-squares adversarial loss for both generators, an L₁ cycle-

consistency loss weighted by λ₍cyc₎ = 10 to enforce G(F(y)) ≈ y and F(G(x)) ≈ x, and an L₁ 

identity loss weighted by λ₍idt₎ = 5 to preserve intensity characteristics when G processes 

real CT or F processes real MR. Training used the Adam optimizer (β₁ = 0.5, β₂ = 0.999) 

with an initial learning rate of 2 × 10-4 held constant for 100 epochs before linearly 

decaying to zero over the subsequent 100 epochs. A batch size of four and a total of 200 

training epochs were employed.  

 

2.3 Intensity-to-Density Mapping 

The generator’s raw outputs, which lie in the normalized [0, 1] intensity range, are 

first linearly rescaled back to Hounsfield units spanning -1000 to +1500 HU. A piecewise 

linear calibration curve then translates these HU values into relative electron densities: 

1000 HU maps to 0.001 g/cm³ for air, 0 HU to 1.000 g/cm³ for water, and +1000 HU to 

1.600 g/cm³ for dense cortical bone. To mitigate minor GAN-induced artifacts while 

preserving anatomical edges, a three-dimensional Gaussian smoothing filter with σ = 1 

voxel is applied to the density volume. 

 

3. Results and discussion 

Representative axial slices of the original T1-weighted MR scan and the corresponding 

sCT output are shown in Figure 2. Quantitative evaluation on the held-out set of 100 

paired MR–CT slices demonstrated that our CycleGAN‐based pipeline achieves a mean 

absolute error (MAE) of 58 ± 10 HU and a structural similarity index (SSIM) of 0.92 ± 0.03 

when comparing sCT against ground-truth CT. These values indicate that voxel-wise 

HU deviations remain below 60 HU on average, while overall structural fidelity exceeds 

0.9 SSIM. Qualitative assessment confirms that cortical bone is sharply delineated in the 

sCT (Figure 2B), with air cavities in the paranasal sinuses correctly rendered at low HU 

values. Soft-tissue contrast between gray and white matter closely matches the MR 

anatomy (Figure 2A), and no noticeable slice‐boundary artifacts were observed. This 
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proof-of-concept uses simulated sCT data; future work will apply the full pipeline, 

including FOTELP-VOX Monte Carlo simulations, to patient MRIs for clinical validation. 

 
Figure 2. (A) Axial T1-weighted magnetic resonance scan. (B) sCT image generated by the 

proposed CycleGAN pipeline. 

4. Conclusions 

CycleGAN model successfully generates sCT images from brain MRI with clinically 

acceptable accuracy (58 ± 10 HU MAE, 0.92 SSIM), particularly for critical radiotherapy 

structures. This MRI-only approach eliminates CT-related radiation exposure while 

maintaining anatomical fidelity for treatment planning. The current model is limited to 

brain MRI-to-CT translation and may not generalize to other anatomical regions without 

retraining. Future work will apply the MRI-only pipeline with FOTELP-VOX Monte 

Carlo simulations to patient MRIs for clinical dosimetric validation. 
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