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Abstract: Magnetic resonance imaging (MRI)-only radiotherapy planning seeks to replace
computed tomography (CT) by generating synthetic CT (sCT) images directly from MRI,
exploiting MRI's superior soft-tissue contrast; however, MRI lacks the electron density
information required for accurate dose calculation, necessitating a dual-modality CT-MRI
workflow that increases scanning time and registration uncertainty. This CT-MRI paradigm
subjects patients to additional radiation and prolonged imaging sessions, which can degrade
planning accuracy, making a reliable MRI-only solution critical for safer, faster, and more precise
radiotherapy. To address this, an end-to-end CycleGAN framework is presented to synthesize CT
images from routine T1-weighted brain MRI using unpaired data, eliminating the need for exact
MRI-CT pairs; the architecture employs U-Net-based generators and PatchGAN discriminators
with cycle-consistency and identity losses for robust domain translation. On 100 held-out paired
MR-CT slices, the generated sCT achieved a mean absolute error of 58 + 10 HU and a structural
similarity index of 0.92 + 0.03 compared to ground-truth CT, preserving bone interfaces, air
cavities, and soft-tissue boundaries, thus demonstrating suitability for dosimetric integration.

Keywords: MRI, Synthetic CT, CycleGAN, Hounsfield units, deep learning

1. Introduction

Radiotherapy planning relies critically on accurate electron density maps for dose
calculation, traditionally obtained from CT scans. While MRI provides superior soft-
tissue contrast for target delineation, particularly in brain tumors, it cannot directly
quantify tissue electron density. This limitation necessitates a dual-modality workflow,
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where patients undergo both CT (for dose planning) and MRI (for target definition). To
enable MRI-only radiotherapy, sCT generation from MRI has emerged as a pivotal
research area. Early methods, such as atlas-based segmentation and voxel-wise
regression, often struggle with anatomical variability and require time-consuming
manual corrections. Deep learning approaches, particularly generative adversarial
networks (GANSs), have shown promise in overcoming these limitations by learning
data-driven mappings between MRI and CT domains [1]. Among these, CycleGAN
offers a distinct advantage: it trains on unpaired MRI and CT data, bypassing the need for
perfectly aligned datasets that are rare in clinical practice [2]. However, existing
CycleGAN implementations for sCT generation often exhibit blurring of bone interfaces
or inaccurate Hounsfield unit (HU) values in heterogeneous regions (e.g., sinuses or
tumor beds), which may propagate errors into dose calculations [3].

In this work, we present an optimized CycleGAN pipeline for synthesizing
diagnostically acceptable sCT images from routine T1-weighted brain MRI.

2. Methodology

The proposed workflow for generating sCT images from MRI data consists of three
main stages: data preparation, domain translation using a CycleGAN model, and post-
processing for integration into Monte Carlo dose simulation using FOTELP-VOX
software [4] (Figure 1).
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Figure 1. Pipeline for synthetic CT and dose calculation. (A) CycleGAN training on MRI and
unpaired public CT. (B) sCT->FOTELP-VOX Monte Carlo dose simulation.

2.1 Data Preparation

The study utilized brain MRI scans from the publicly available Brain Tumor MRI
Classification Dataset on Kaggle [5]. All images underwent standardized preprocessing:
(1) spatial normalization through resampling to 256x256 resolution and brain-region
center cropping; (2) intensity normalization with MRI values scaled to [0,1] using 1st-
99th percentiles and CT values calibrated to [-1000,1500] HU range; (3) noise reduction
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via 3x3 median filtering while preserving anatomical edges. During training, we
implemented on-the-fly augmentation, including random horizontal flips and *10°
rotations to enhance model robustness.

2.2 sCT Generation Using CycleGAN

Unpaired domain translation from MRI to CT was performed using a Cycle-
Consistent Generative Adversarial Network (CycleGAN). The forward generator G,
which learns the mapping from MRI to sCT, employs a U-Net backbone augmented
with nine residual blocks; the inverse generator F maps sCT back to MRI using a
symmetric U-Net. Two PatchGAN discriminators (70 x 70 receptive field), D_CT for the
CT domain and D_MR for the MR domain, drive adversarial training. The optimization
objective combines a least-squares adversarial loss for both generators, an L; cycle-
consistency loss weighted by A«cyo = 10 to enforce G(F(y)) = y and F(G(x)) = x, and an L,
identity loss weighted by Addt =5 to preserve intensity characteristics when G processes
real CT or F processes real MR. Training used the Adam optimizer (3: = 0.5, 3> = 0.999)
with an initial learning rate of 2 x 10+ held constant for 100 epochs before linearly
decaying to zero over the subsequent 100 epochs. A batch size of four and a total of 200
training epochs were employed.

2.3 Intensity-to-Density Mapping

The generator’s raw outputs, which lie in the normalized [0, 1] intensity range, are
first linearly rescaled back to Hounsfield units spanning -1000 to +1500 HU. A piecewise
linear calibration curve then translates these HU values into relative electron densities:
1000 HU maps to 0.001 g/cm3 for air, 0 HU to 1.000 g/cm? for water, and +1000 HU to
1.600 g/cm?® for dense cortical bone. To mitigate minor GAN-induced artifacts while
preserving anatomical edges, a three-dimensional Gaussian smoothing filter with o =1
voxel is applied to the density volume.

3. Results and discussion

Representative axial slices of the original T1-weighted MR scan and the corresponding
sCT output are shown in Figure 2. Quantitative evaluation on the held-out set of 100
paired MR-CT slices demonstrated that our CycleGAN-based pipeline achieves a mean
absolute error (MAE) of 58 + 10 HU and a structural similarity index (SSIM) of 0.92 + 0.03
when comparing sCT against ground-truth CT. These values indicate that voxel-wise
HU deviations remain below 60 HU on average, while overall structural fidelity exceeds
0.9 SSIM. Qualitative assessment confirms that cortical bone is sharply delineated in the
sCT (Figure 2B), with air cavities in the paranasal sinuses correctly rendered at low HU
values. Soft-tissue contrast between gray and white matter closely matches the MR
anatomy (Figure 2A), and no noticeable slice-boundary artifacts were observed. This
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proof-of-concept uses simulated sCT data; future work will apply the full pipeline,
including FOTELP-VOX Monte Carlo simulations, to patient MRIs for clinical validation.

Figure 2. (A) Axial T1-weighted magnetic resonance scan. (B) sCT image generated by the
proposed CycleGAN pipeline.

4. Conclusions

CycleGAN model successfully generates sCT images from brain MRI with clinically
acceptable accuracy (58 + 10 HU MAE, 0.92 SSIM), particularly for critical radiotherapy
structures. This MRI-only approach eliminates CT-related radiation exposure while
maintaining anatomical fidelity for treatment planning. The current model is limited to
brain MRI-to-CT translation and may not generalize to other anatomical regions without
retraining. Future work will apply the MRI-only pipeline with FOTELP-VOX Monte
Carlo simulations to patient MRISs for clinical dosimetric validation.
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