

Multifunctional Tetrahydrocannabinol Derivatives as Potential Antioxidant Neuroprotectors: *In Silico* Targeting of Monoamine Oxidase B and Catechol-O-Methyltransferase in Parkinson's Disease Therapy

Kristina D. Milisavljević¹, Svetlana R. Jeremić², Jovana D. Matić¹, Žiko B. Milanović^{1,*}

¹University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia; e-mail:

kristina.milisavljevic@uni.kg.ac.rs, jovana.todorovic@pmf.kg.ac.rs,
ziko.milanovic@uni.kg.ac.rs

² State University of Novi Pazar, Faculty of Natural Sciences and Mathematics, Department of Natural Science and Mathematics, Vuka Karadžića bb, 36300 Novi Pazar, Serbia; e-mail: sjeremic@np.ac.rs

* Corresponding author

DOI: 10.46793/ICCBIKG25.603M

Abstract: Parkinson's disease (PD) is a progressive neurodegenerative disorder linked to dopamine depletion. Inhibiting monoamine oxidase B (MAO-B) and catechol-O-methyltransferase (COMT), key enzymes in dopamine degradation, can enhance dopamine availability. This study explored the inhibitory potential of tetrahydrocannabinol (THC) derivatives, known for their antioxidant and neuroprotective properties. Using the CADMA-Chem strategy (*Computer-Assisted Design of Multifunctional Antioxidants, which is based on Chemical properties*), 111 derivatives were designed, and 16 with favorable ADMET profiles were selected. Molecular docking revealed strong binding affinities of THC30 and THC41 to MAO-B, and THC32⁻ and THC49⁻ to COMT. These findings suggest that selected THC derivatives may serve as promising multifunctional candidates for Parkinson's disease therapy, pending further experimental validation.

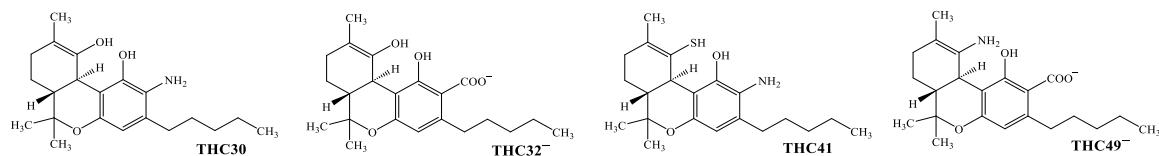
Keywords: Parkinson's Disease, tetrahydrocannabinol (THC), monoamine oxidase type B (MAO-B), catechol-O-methyltransferase (COMT), molecular docking

1. Introduction

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects 1–2% of the population over the age of 60, making it the second most common neurological condition worldwide. It is characterized by the loss of dopaminergic neurons, resulting in reduced dopamine levels in the striatum and symptoms such as bradykinesia,

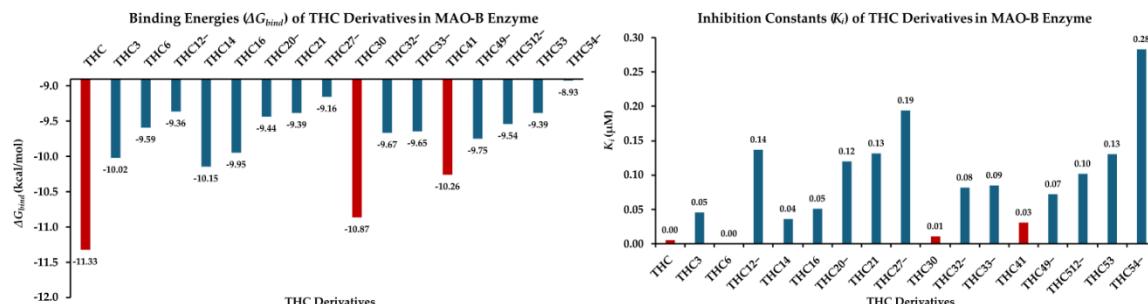
rigidity, tremors, and postural instability [1]. Levodopa (L-dopa), a dopamine precursor, remains the gold standard in PD treatment. However, prolonged use often results in motor complications, including fluctuations and dyskinesias [2].

Dopamine metabolism is regulated by two key enzymes: monoamine oxidase B (**MAO-B**), which oxidizes dopamine, and catechol-O-methyltransferase (**COMT**), which methylates levodopa, reducing its availability in the brain. Inhibiting these enzymes can enhance and prolong dopamine availability in the brain [1,2].

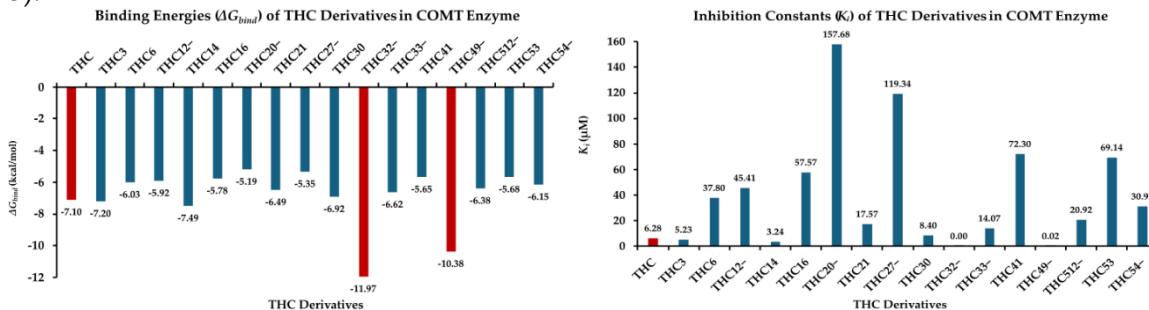

Tetrahydrocannabinol (**THC**), the principal psychoactive constituent of *Cannabis sativa*, has attracted considerable attention due to its pronounced antioxidant and neuroprotective activities. However, despite its therapeutic promise, the clinical application of **THC** remains limited, primarily due to its potent psychoactive effects [3]. This study aims to investigate the inhibitory potential of **THC** derivatives against **MAO-B** and **COMT** enzymes, with the broader objective of assessing their ability to modulate dopamine metabolism in the context of Parkinson's disease therapy.

2. Methodology

THC derivatives were designed using the CADMA-Chem approach (*Computer-Assisted Design of Multifunctional Antioxidants*) [4], by introducing polar functional groups to enhance antioxidant potential and pharmacokinetic properties. ADMET profiles, predicted toxicity, and synthetic feasibility were evaluated using ADMETlab [5]. Molecular docking was performed to evaluate the binding affinities of Gaussian16-optimized **THC** derivatives toward **MAO-B** (PDB ID: 2V5Z) [6] and **COMT** (PDB ID: 4PYL) [7]. Docking simulations were conducted in AutoDock 4.2 using the Lamarckian genetic algorithm [8], with flexible ligands and rigid receptors. Before docking, water molecules and co-crystallized ligands were removed in Discovery Studio 4.0. The **MAO-B** grid was centered at $51.886 \times 156.453 \times 28.559 \text{ \AA}$, and the **COMT** grid at $-24.482 \times 29.543 \times 5.845 \text{ \AA}$, both using a grid size of $53 \times 53 \times 53 \text{ \AA}$ and a spacing of 0.375 \AA .


3. Results and Discussion

In a prior study, 111 **THC** derivatives were generated and categorized based on the extent of structural modifications aimed at enhancing their pharmacological properties. Through a combination of computational approaches, including ADMET predictions and quantum chemical analyses, the compounds were assessed for pharmacokinetics, toxicity, synthetic accessibility, and antioxidant activity [9]. Initial screening highlighted 43 candidates with favorable profiles, which were further narrowed down using systematic exclusion criteria (S_{EC}) and elimination factors (S^E), resulting in 16 lead compounds with optimal overall characteristics (Figure 1).


Figure 1. Chemical structures of representative acid-base forms of THC derivatives (THC30, THC41, THC32^- , and THC49^-), exhibiting the most favorable elimination factor (S^E) values and selected based on their pharmacokinetic, antioxidant, and synthetic properties.

To further explore their therapeutic relevance, molecular docking simulations were performed to investigate the binding affinity of the selected derivatives toward the active sites of **MAO-B** and **COMT**. Docking analysis showed that **THC30** and **THC41** exhibited strong binding affinities toward **MAO-B** (-10.87 and -10.26 kcal/mol), comparable to **THC** (-11.33 kcal/mol) (Figure 2), while also demonstrating favorable antioxidant properties based on quantum chemical calculations [9].

Figure 2. Binding Energies (ΔG_{bind}) and Inhibition Constants (K) of THC Derivatives Targeting **MAO-B** (top compounds in red)

Among the evaluated derivatives, **THC32-** and **THC49-** exhibited the strongest binding to **COMT** (-11.97 and -10.38 kcal/mol), significantly outperforming the parent compound **THC** (-7.10 kcal/mol). Their monoanionic forms are further stabilized within the enzyme's active site by the presence of a metal ion, while quantum chemical calculations also revealed pronounced antioxidant potential for both compounds (Figure 3).

Figure 3. Binding Energies (ΔG_{bind}) and Inhibition Constants (K) of THC Derivatives Targeting **COMT** (top compounds in red)

4. Conclusions

This study demonstrated the potential of THC derivatives as multifunctional neuroprotective agents through computational design and evaluation. ADMET profiling and quantum chemical calculations identified compounds with favorable pharmacokinetics, low predicted toxicity, and strong antioxidant capacity. Docking results revealed that **THC30** and **THC41** bind effectively to **MAO-B**, while **THC32⁻** and **THC49⁻** show high affinity for **COMT**, with binding comparable to or better than parent **THC**. These findings support the potential of selected derivatives as stable enzyme inhibitors with pronounced antioxidant and neuroprotective effects. Further experimental validation is needed to confirm their therapeutic relevance.

Acknowledgment

This research is funded by the Ministry of Education and the Ministry of Science, Technological Development and Innovation, Republic of Serbia, Grants: No. 451-03-136/2025-03/200378 and 451-03-65/2024-03/200252.

References

- [1] T.F. Sampaio, E.U.D. Dos Santos, G.D.C. de Lima, R.S.G. Dos Anjos, R.C. da Silva, A.G.C. Asano, P.R.E. de Souza, *MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson's disease*, *The Journal of Clinical Pharmacology*, 58 (2018) 920–926.
- [2] M. Regensburger, C.W. Ip, Z. Kohl, C. Schrader, P.P. Urban, J. Kassubek, W.H. Jost, *Clinical benefit of MAO-B and COMT inhibition in Parkinson's disease: Practical considerations*, *Journal of Neural Transmission*, 130 (2023) 847–861.
- [3] R.B. Malabadi, K.P. Kolkar, R.K. Chalannavar, *Δ9-Tetrahydrocannabinol (THC): The major psychoactive component is of botanical origin*, *Int. J. Innov. Sci. Res. Rev.*, 5 (2023) 4177–4184.
- [4] E.G. Guzman-Lopez, M. Reina, A. Perez-Gonzalez, M. Francisco-Marquez, L.F. Hernandez-Ayala, R. Castañeda-Arriaga, A. Galano, *CADMA-Chem: a computational protocol based on chemical properties aimed to design multifunctional antioxidants*, *International Journal of Molecular Sciences*, 23 (2022) 13246.
- [5] L. Fu, S. Shi, J. Yi, N. Wang, Y. He, Z. Wu, D. Cao, *ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support*, *Nucleic Acids Research*, (2024) gkae236.
- [6] C. Binda, J. Wang, L. Pisani, C. Caccia, A. Carotti, P. Salvati, A. Mattevi, *Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs*, *Journal of Medicinal Chemistry*, 50 (2007) 5848–5852.
- [7] A. Ehler, J. Benz, D. Schlatter, M.G. Rudolph, *Mapping the conformational space accessible to catechol-O-methyltransferase*, *Acta Crystallographica Section D: Biological Crystallography*, 70 (2014) 2163–2174
- [8] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, *AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility*, *Journal of Computational Chemistry*, 30 (2009) 2785–2791.

[9] K. Milisavljević, Ž. Milanović, *Multifunctional tetrahydrocannabinol derivatives as potential antioxidant neuroprotectors: Computer-aided design and analysis*, *J. Comput. Biophys. Chem.*, submitted for publication (2025).