

1st Biennial ESIS-CSIC Conference on Structural Integrity BECCSI 2025

Book of Abstracts

Hotel Metropol Palace, Belgrade, Serbia November 25-28, 2025

Proceedings of the 1st Biennial ESIS-CSIC Conference on Structural Integrity - BECCSI 2025

Editors SIMON SEDMAK BRANISLAV ĐORĐEVIĆ ANA PETROVIĆ JIAN-FENG WEN ALEKSANDAR DIMIĆ

Coordinator Aleksandar Sedmak

Design

Simon Sedmak, Branislav Đorđević, Ana Petrović

Event Center Metropol Palace Hotel, Belgrade, Serbia

Legal notice

The editors assume no liability regarding the use for any application of the material and information contained in this publication.

ISBN 978-86-900686-4-7

1st Biennial ESIS-CSIC Conference on Structural Integrity (BECCSI 2025)

November 25-28, 2025, Belgrade, Serbia

A. Milivojević, M. Stamenić, V. Adžić - Risk assessment for hydrogen installations	84
Fatigue and fracture under extreme conditions	85
N. Larrosa - The Universal Failure Curve applied to repurposing natural gas pipelines to hydrogen service: assessment of safety margins and comparison with ASME B31.12.	87
F. Wu, Y. Liu, H. Zhang, C. Skamniotis, U. M. Chaudry, A. Antony X. Ramesh, G. Douglas, J. Kelleher, B. Chend - Novel insights into creep-fatigue interaction under uncommon waveforms	88
G. Papić, A. Sedmak, N. Milovanović - Failure analysis on 2nd stage rotor impeller of an air compresor	89
N. O. Larrosa, D. Blanks, A. A. Jimenez, R. A. Ainsworth - The Universal Failure Curve as an alter-native approach to FAD and CDF fracture assessment methods	90
L. Zhang, T. Yu, Y. Song, X. Wang, W. Jin, Z. Shen, Z. Gao, Y. Jiang, Y. Li - An experimental study of fatigue property enhancement in 310S stainless steel due to surface mechanical rolling treatment	91
M. Li, G. Chen - Effect of hydrides on low-cycle fatigue crack initiation in Ti-2Al-2.5Zr titanium alloy: Experimental and crystal plasticity methods	92
Z. Zhao, Y. Peng, J. Gong - Effect of low-temperature gaseous carburizing on the fretting fatigue behavior of AISI 316L austenitic stainless steel	93
V. Oborin, M. Bannikov, M. Sokovikov, O. Naimark - Lifetime of titanium alloys under consecutive dynamic and very-high-cycle fatigue loads	94
E. Gachegova, A. Vshivkov, A. Iziumova, O. Plekhov - Effect of the laser shock peening area location on the fatigue properties of specimens with stress concentrators	95
R. Carlevaris, M. Bashiri, G. A. MacRae, R. Tartaglia, M. D'Aniello, R. Landolfo - Ultra-low cycle fatigue analysis of a low-damage friction steel connection	96
G. Zhui, W. Tan - Biaxial fretting of zirconium alloys in high-temperature pressurized water: Interfacial material transfer and substrate fatigue	97
R. De Biasi, S. Murchio, R. K. Meena, F. Berto, C. Santus, M. Benedetti - Fatigue behavior of miniaturized 316L lattice specimens manufactured by L-PBF: Influence of build orientation and stress ratio	98
V. Di Cocco, C. Bellini, F. Iacoviello, D. Pilone, D. Iacoviello, P. Di Giamberardino - Influence of load ratio on fatigue crack propagation in additively manufactured TiAIV CT specimens	99
A. Vshivkov, E. Gachegova, M. Bartolomei, A. Iziumova, O. Plekhov - Influence of laser shock peening on kinetic of fatigue crack propagation	100
Y. Chen, X. Zheng, X. Wang - Anisotropy in LCF property and reliability of PBF-LB/M 316L stainless steel JF. Wen, LS. Wu, HY. Hu, YJ. Pan, M. Song, ST. Tu - Creep and creep crack growth of additively manufactured 316L stainless steel: An integrated experimental and simulation study	101 102
N. Kostić, R. Zaidi, A. Sedmak, I. Čamagic, S. Joksić, Z. Burzić, S. Kirin - Remaining life of a spherical tank in presence of cracks	103
D. Arsić, V. Lazić, Đ. Ivković, M. Delić, A. Arsić, S. Perković, Lj. Radović - Resistance to fatigue crack initiation and propagation in hardfaced layers of hot-work tool steels	104
J. Wang, S. Li, J. Chen, X. Han, S. Lu - A crystal plasticity-based machine learning model for evaluating subsurface microstructure damage under rolling contact fatigue	105
I. Čamagić, N. Kostić, A. Sedmak, S. Sedmak, Z. Burzić - Low temperature behaviour of A516 Gr. 60 steel welded joints under impact loading	106
C. Yu, Z. Han, H. Zhou, G. Xie - Research on bulging deformation and cracking failure of long-term serviced Cr-Mo steel coke drums	107
O. Naimark, S. Uvarov, Y. Bayandin, M. Bannikov, V. Oborin, A. Balachnin, A. Yurina - Consecutive shock wave and fatigue loads: Fundamentals and LSP optimization strategy	108
C. Zhang, K. Song, S. Liu, T. Zhai, W. Zhu - Low cycle fatigue behavior of Zr-2.5Nb alloy: experimental	109

1st Biennial ESIS-CSIC Conference on Structural Integrity (BECCSI 2025)

November 25-28, 2025, Belgrade, Serbia

RESISTANCE TO FATIGUE CRACK INITIATION AND PROPAGATION IN HARDFACED LAYERS OF HOT-WORK TOOL STEELS

Dušan Arsić^{1,*}, Vukić Lazić¹, Djordje Ivković¹, Marko Delić¹, Aleksandra Arsić², Srdja Perković³, Ljubica Radović³

¹University of Kragujevac, Faculty of Engineering, Serbia ²University of Belgrade, Faculty of Mechanical Engineering, Serbia ³Military Technical Institute, Belgrade, Serbia *corresponding author: dusan.arsic@fink.rs

Abstract

This study examines the feasibility of using welding as a repair method for damaged components in the forging industry. Critical parts in forging applications are typically made of high-quality hot work tool steels capable of withstanding rigorous impact loads and temperature shocks during operation. These include forging dies, ejectors, inserts, and similar components. Although these steels exhibit excellent mechanical properties, even at elevated temperatures, prolonged use leads to surface damage such as wear on die radii, cracks, or even metal spalling. The cracks that develop on the surface of forging tools are fatigue-induced, resulting from cyclic loading during operation. Once these defects appear, they leads to the stop of production process, necessitating either replacement or repair. Welding repair (hardfacing) is a cost-effective alternative to complete replacement, but the fatigue resistance of the repaired zones must be evaluated. The objective of this study is to assess the fatigue characteristics of hardfaced layers in hot work tool steels used in the forging industry and compare them with the base material's fatigue properties. A defined welding procedure was applied to prepare hardfaced samples, from which test specimens were extracted for three-point bending crack growth testing. Additionally, hardness and microstructural analyses were conducted on the hardfaced layers and heat-affected zone (HAZ). Based on the results, conclusions were drawn regarding the suitability of welding for repairing forging tools.

Keywords: hot work tool steel; forging tool; fatigue crack; hardfacing

Acknowledgement

Authors thank to company Zastava Kovačnica ltd, Kragujevac, Serbia, for providing the necessary materials and preparation of samples.