

SERBIATRIB '25

19th International Conference on Tribology

14 – 16 May 2025, Kragujevac, Serbia

PROCEEDINGS

SERBIATRIB '25

Serbian Tribology Society

University of Kragujevac
Faculty of Engineering

SERBIATRIB '25

19th International Conference on Tribology

14 – 16 May 2025, Kragujevac, Serbia

PROCEEDINGS

EDITOR: Slobodan Mitrović

SERBIATRIB '25

19th International Conference on Tribology – SERBIATRIB ‘25

ISBN: 978-86-6335-128-8

Editor: **Slobodan Mitrović**
Faculty of Engineering, University of Kragujevac

Secretary: **Dragan Džunić**
Faculty of Engineering, University of Kragujevac

Publisher: **Faculty of Engineering, University of Kragujevac**
Sestre Janjić 6, 34000 Kragujevac, Serbia

For the Publisher: **Slobodan Savić**
Faculty of Engineering, University of Kragujevac

Technical editor: **Dragan Džunić, Živana Jovanović Pešić**
Faculty of Engineering, University of Kragujevac

Printed by: **Inter Print**
Jurija Gagarina 12, 34000 Kragujevac, Serbia

Circulation: 200 copies

Copyright © 2025 by Faculty of Engineering, University of Kragujevac

This book is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

The publication of this Proceedings was financially supported by the Ministry of Science, Technological Development and Innovation, Republic of Serbia.

Conference Founder

Branko Ivković Serbian Tribology Society

Program Committee

Alessandro Ruggiero	University of Salerno (Italy)
Andreas Rosenkranz	University of Chile (Chile)
Bharat Bhushan	Ohio State University (USA)
Đorđe Vukelić	University of Novi Sad (Serbia)
Gencaga Purcek	Karadeniz Technical University (Turkey)
Hakan Kaleli	Yildiz Technical University (Turkey)
Konstantinos-D. Bouzakis	Aristotle University of Thessaloniki (Greece)
Lorena Deleanu	University Dunarea de Jos of Galati (Romania)
Mara Kandeva	Technical University of Sofia (Bulgaria)
Miroslav Babić	Serbian Tribology Society
Nikolai Myshkin	National Academy of Sciences of Belarus (Belarus)
Razvan George Ripeanu	Petroleum-Gas University of Ploiesti (Romania)
Sergey V. Fedorov	Kaliningrad State Technical University (Russia)
Valentin L. Popov	Berlin University of Technology (Germany)
Zulfiqar Khan	Bournemouth University (United Kingdom)

Scientific Committee

Adolfo Senatore	University of Salerno (Italy)
Aleksandar Marinković	University of Belgrade (Serbia)
Aleksandar Vencl	University of Belgrade (Serbia)
Andrei Tudor	University Politehnica of Bucharest (Romania)
Blaža Stojanović	University of Kragujevac (Serbia)
Branko Škorić	University of Novi Sad (Serbia)
Carsten Gachot	Vienna University of Technology (TUW) (Austria)
Dragan Džunić	University of Kragujevac (Serbia)
Dušan Stamenković	University of Niš (Serbia)
Emile van der Heide	University of Twente (Netherlands)
Emilia Assenova	Society of Bulgarian Tribologists (Bulgaria)
Fatima Živić	University of Kragujevac (Serbia)
Gordana Globočki Lakić	University of Banja Luka (Bosnia and Herzegovina)
Igor Budak	University of Novi Sad (Serbia)
J. Paulo Davim	University of Aveiro (Portugal)
Mehmet Baki Karamis	Erciyes University (Turkey)
Michel Fillon	University of Poitiers (France)
Michele Scaraggi	University of Salento (Italy)
Mitjan Kalin	University of Ljubljana (Slovenia)
Nikolaos M. Vaxevanidis	School of Pedagogical and Technological Education (Greece)
Pantelis G. Nikolakopoulos	University of Patras (Greece)
Patrick De Baets	Ghent University (Belgium)

Reviewers

Aleksandar Đorđević	University of Kragujevac (Serbia)
Vladimir Kočović	University of Kragujevac (Serbia)
Dragan Džunić	University of Kragujevac (Serbia)
Đorđe Vukelić	University of Novi Sad (Serbia)
Marko Pantić	University of Priština in Kosovska Mitrovica (Serbia)
Miladin Stefanović	University of Kragujevac (Serbia)
Milan Erić	University of Kragujevac (Serbia)
Pal Terek	University of Novi Sad (Serbia)
Slobodan Mitrović	University of Kragujevac (Serbia)
Suzana Petrović Savić	University of Kragujevac (Serbia)

Organising Committee

President:

Slobodan Mitrović	University of Kragujevac (Serbia)
-------------------	-----------------------------------

Conference Secretary:

Dragan Džunić	University of Kragujevac (Serbia)
---------------	-----------------------------------

Members:

Fatima Živić	University of Kragujevac (Serbia)
Suzana Petrović Savić	University of Kragujevac (Serbia)
Vladimir Kočović	University of Kragujevac (Serbia)
Živana Jovanović Pešić	University of Kragujevac (Serbia)
Nikola Kotorčević	University of Kragujevac (Serbia)
Stefan Miletić	University of Kragujevac (Serbia)
Milan Ivković	University of Kragujevac (Serbia)

Contents

Fundamentals of friction and wear

1. THE INFLUENCE OF GRIT SIZE AND FIBER LENGTH ON THE FRICTIONAL PERFORMANCE OF COIR FIBER-REINFORCED POLYMER COMPOSITE	Abdullah Shalwan, Saad Alsubaie, B. F. Yousif	3
2. METHODOLOGICAL APPROACH TO THE DEVELOPMENT PROCESS OF SINTERED FRICTION MATERIALS	A.Ph. Ilyushchanka, A.V. Liashok, A.N. Rogovoy	13
3. CONTACT, FRICTION AND SEISMIC WAVES DURING SEISMOTECTONIC PROCESSES IN THE EARTH'S CRUST	Emilia Assenova, Evgenia Kozhoukharova	18
4. OPTIMIZATION OF WEAR PARTICLE AND DEBRIS CLASSIFICATION	Jiri Stodola	27
5. AISI10Mg POWDER CHARACTERISTICS AND WEAR MECHANISM OF PARTS FABRICATED THROUGH LASER POWDER BED FUSION TECHNIQUE	Ram Krishna Upadhyay	34
6. RESEARCH PROGRESS OF METAL-ORGANIC FRAMEWORKIN TRIBOLOGY	Hanglin Li, Xudong Sui, Pablo Ayala, Carsten Gachot, Jiusheng Li	39
7. PRESSURE DROP ANALYSIS IN SOLENOID-TYPE VALVES: DISCREPANCIES BETWEEN EXPERIMENTAL RESULTS AND MANUFACTURER DATA	Emanuel Alexander Moreno Aldana, Maurício Nogueira Frota	43
8. THE INFLUENCE OF SOIL ABRASIVE MASS PH ON STEEL WEAR PROCESSES	Marcin Kowalewski, Jerzy Napiórkowski, Łukasz Konat	50
9. OVERVIEW OF TRIBOLOGY AS AN INTERDISCIPLINARY SCIENCE	Gabriela Kotseva, Nikolay Stoimenov	57
10. INFLUENCE OF SURFACE TEXTURE ON THE GENERATION INTENSITY OF AIRBORNE WEAR PARTICLES OF POLYMER MATERIALS FOR SLIDING BEARINGS	Wojciech Tarasiuk, Aleksander Kosarac, Tomasz Węgrzyn, Bożena Szczucka-Lasota, Jan Piwnik	72
11. PHYSICS-BASED SIMPLE ANALYTICAL MODEL OF WATER FLOW THROUGH MICRO-POROUS FILTER	Nikola Kotorcevic, Fatima Zivic, Strahinja Milenovic, Nenad Grujovic, Nikola Milivojevic	77
12. STRUCTURAL-ENERGY CONSTANTS OF THE EVOLUTION OF THE FRICTION CONTACT	Sergey Vasiliy Fedorov	84

13. LIFETIME PREDICTION MODEL OF RECIPROCATING SEAL CONSIDERING VARIABLE SPEED PROFILE	Yunhao Zhang, Chao Zhang, Shaoping Wang, Rentong Chen, Jiashan Gao	99
14. ANALYSIS OF DATASETS GENERATED DURING TRIBOLOGICAL TESTS AT NANOTRIBOMETER BY USING NONLINEAR REGRESSION ANALYSIS	Petar Todorovic, Nikola Kotorcevic, Fatima Zivic	106
15. MATERIAL SELECTION FOR TRIBOLOGICALLY LOADED COMPONENTS	Dragan Adamovic, Dusan Arsic, Vesna Mandic, Djordje Ivkovic, Marko Delic, Nada Ratkovic	112

Tribological properties of solid materials

16. EFFECT OF ADDITIVE ELEMENTS ON ABRASION WEAR OF AA7075 BASED ZrO₂/GNP ADDED HYBRID COMPOSITES	Şükran Katmer, Muharrem Pul, Ulvi Şeker	127
17. EFFECTS OF AGING AND SEVERE PLASTIC DEFORMATION ON TRIBOLOGICAL BEHAVIOR OF AL 7075 ALLOY	Melih Ustalar, Muhammet Uzun, Harun Yanar, Muhammet Demirtas, Gencaga Purcek	133
18. BEHAVIOR OF THE EROSION WEAR OF A STEEL PIPELINE SECTION API 5L-X52 BY SOLID PARTICLES OF ALUMINUM OXIDE (Al₂O₃)	Javier Alejandro Frias-Flores, Manuel Vite-Torres, Ezequiel Alberto Gallardo-Hernandez	137
19. INFLUENCE OF CONTINUOUSLY VARIABLE LATERAL FORCE ON THICKNESS OF THE MATERIAL DURING STRIP THINNING	Slavisa Djacic, Srbislav Aleksandrovic, Dusan Arsic, Marko Delic, Djordje Ivkovic, Milan Djordjevic	146
20. DYNAMICS OF Pb EMERGENCE TO THE SURFACE IN SELF-LUBRICATING COMPOSITE MATERIALS AT ELEVATED OPERATING TEMPERATURES	Petya Tabakova, Anna Petrova, Snezhana Atanasova, Hristo Kolev, Feyzim Hodjaoglu, Reni Andreeva, Ivan Zahariev, Georgi Avdeev, Korneli Grigorov	151
21. INFLUENCE OF B₄C CONTENT AND PROCESSING CONDITIONS ON WEAR RESISTANCE OF ALUMINUM	Sandra Gajevic, Slavica Miladinovic, Onur Güler, Serdar Özkaya, Lozica Ivanovic, Jelena Jovanovic, Blaza Stojanovic	160
22. EXPERIMENTAL STUDY ON RUBBER-GRANITE FRICTION IN DRY AND CONTAMINATED CONTACT	Ionut Marius Nazarie, Ilie Musca, Ionut Cristian Romanu, Irina Besliu-Bancescu	168
23. THE INFLUENCE OF OXYGEN ON CORROSION AND TRIBOCORROSION OF LOW CARBON STEEL IN HYDROGEN SULFIDE ENVIRONMENT	Myroslav Khoma, Marian Chuchman, Chrystyna Vasyliv, Vasyl Ivashkiv, Nadija Ratska, Oleh Vasyliv	176

24. INVESTIGATION OF SHIELDED METAL ARC WELDING (SMAW)WELD INTEGRITY ON A LOW- CARBON STEEL PIPELINE USING DESTRUCTIVE MECHANICAL TESTING TECHNIQUE	A. E. Dele, C. V. Ossia, E. O. Diemuodeke	181
25. INVESTIGATION OF THE TRIBOLOGICAL CHARACTERISTICS OF POLYMER MATERIALS (PLA, PLA+COPPER, AND ABS) UNDER LUBRICATED AND DRY SLIDING CONDITIONS	Stefan Miletic, Slobodan Mitrovic, Dragan Dzunic, Marijana Savkovic, Zivana Jovanovic Pesic, Milan Ivkovic	193
26. APPLICABILITY OF WEAR MODELS FOR MATERIAL PARAMETER PREDICTION BASED ON PIN-ON-DISC WEAR DATA	Shivasharanappa V. Gubbewad, Amaresh Raichur	204
27. TRIBOLOGICAL BEHAVIOR OF ABACA FIBER-REINFORCED EPOXY COMPOSITES: PRELIMINARY INVESTIGATIONS	Dragan Dzunic, Marko Milosevic, Zivana Jovanovic Pesic, Vladimir Kocovic, Suzana Petrovic Savic, Aleksandar Djordjevic, Slobodan Mitrovic	210

Surface engineering and coating tribology

28. DEVELOPMENT OF VACUUM PLASMA STRENGTHENING HARD AND ULTRA HARD 3D AVINIT COATINGS	Oleksii Sagalovych, Valentin Popov, Vlad Sagalovych, Stanislav Dudnik	221
29. STEP WAVES IN FLOWING FILMS	Victor Shkadov, Alexander Beloglazkin, Ignat Shishkin	234
30. EFFECT OF W, Ni, AND Co DOPING ON THE MICROSTRUCTURE, CORROSION RESISTANCE, AND WEAR BEHAVIOR OF IRON-BASED ALLOYS PROCESSED BY SOLID-STATE SINTERING	Mebarki Lahcene, Hammoudi Abderrazak, Guendouz Hassan, Ivana Atanasovska	240
31. WEAR AND SOLDERING PERFORMANCE OF BARE, NITRIDED AND PVD COATED HOT-WORKING TOOL STEEL IN CONTACT WITH Al-ALLOY CASTING	Pal Terek, Lazar Kovacevic, Vladimir Terek, Zoran Bobic, Branko Skoric, Marko Zagoricnik, Aljaz Drnovsek	250
32. THE IMPORTANCE OF SUBSTRATE MATERIAL IN HIGH TEMPERATURE TRIBOLOGICAL TESTING OF PDV COATINGS – A CASE STUDY	Vladimir Terek, Lazar Kovacevic, Aljaz Drnovsek, Miha Cekada, Branko Skoric, Zoran Bobic, Pal Terek	259
33. TRIBOLOGICAL PROPERTIES OF SURFACING WELDED NI60WC COATING UNDER SIMULATED PLASTICS PROCESSING CONDITIONS	Wangping Wu, Sheng Lin, Yang Yang	266
34. MECHANICAL INTERLOCKING ENABLES ADHESION CONTROL UNDER UNFAVOURABLE ENVIRONMENTAL CONDITIONS	Marco Bruno, Luigi Portaluri, Massimo De Vittorio, Stanislav Gorb, Michele Scaraggi	279

Lubricants and lubrication

35. **VISCOMETRY ON SYNTHETIC AND FULLERENE BASED OILS AND A CFD INVESTIGATION ON COMPRESSION PISTON RING**
Elias Tsajiridis, Alexandra Anyfanti,, Pantelis Nikolakopoulos 287

36. **NUMERICAL ANALYSIS OF THE IRONING PROCESS UNDER CONDITIONS OF VARIABLE LATERAL FORCE**
Marko Delic, Slavisa Djacic, Srbislav Aleksandrovic, Vesna Mandic, Dusan Arsic, Djordje Ivkovic, Dragan Adamovic 297

37. **ELUCIDATION OF CHANGES IN THE MICROSTRUCTURE OF VEGETABLE LUBRICANTS BASED ON ANALYSIS OF RHEOLOGICAL PARAMETERS DETERMINED FROM THE MSD CORRELATION FUNCTION CARRIED OUT BY DWS DIFFUSION SPECTROSCOPY AND SPECTRA CARRIED OUT BY RAMAN SPECTROSCOPY**
Rafal Kozdrach, Jolanta Drabik 303

38. **INVESTIGATION OF TRIBOLOGICAL PROPERTIES OF PROTIC IONIC LIQUIDS AS VERSATILE ADDITIVES FOR ENVIRONMENTALLY FRIENDLY WATER-BASED LUBRICANTS**
Raimondas Kreivaitis, Artūras Kupčinskas, Milda Gumbytė, Jolanta Treinytė 314

39. **DESIGN AND SYNERGISTIC INTERACTION OF ETHERAMINE-BASED ASH-FREE ORGANIC FRICTION MODIFIERS WITH ZDDP**
Wenjing Hu, Jiusheng Li 318

40. **CASTOR OIL BASED TERPOLYMER WITH STYRENE AND A-OLEFIN AS BIODEGRADABLE ADDITIVE IN LUBE OIL**
Sayak P Ghosh, Pranab Ghosh 324

41. **COMPARATIVE TRIBOLOGICAL ANALYSIS OF NEW AND USED DIESEL ENGINE OILS**
Vladimir Kocovic, Sonja Kostic, Ljiljana Brzakovic, Suzana Petrovic Savic, Zivana Jovanovic Pesic, Milos Pesic, Slobodan Mitrovic, Dragan Dzunic 330

Tribology in machine elements

42. **NUMERICAL DETERMINATION OF THE HEATING AND WEAR OF BRAKE PADS ON THE BASIS OF EXPERIMENTAL RESEARCHES**
Nadica Stojanovic, Ali Belhocine, Oday I. Abdullah, Zeljko Djuric, Ivan Grujic 339

43. **THE NUMERICAL INVESTIGATION OF THE WEAR AND HEATING OF ENGINE PISTON AND CYLINDER FOR THE CASE OF TRIBOLOGICAL INSERTS APPLICATION**
Ivan Grujic, Zeljko Djuric, Nadica Stojanovic 347

44. **MODIFICATION OF GATE VALVE SEALING ELEMENT TO ENHANCE THE WEAR RESISTANCE**
Jamaladdin Aslanov, Khalig Mammadov 352

45. ANALYSIS OF PRESSURE DISTRIBUTION IN 3D-PRINTED SLIDING BEARINGS USING HERTZIAN CONTACT THEORY	Ivan Simonovic, Aleksandar Marinkovic	360
46. INFLUENCE OF OPERATING CONDITIONS ON THE POWER LOSSES OF THE WORM GEARBOX	Aleksandar Skulic, Sandra Gajevic, Sasa Milojevic, Milan Bukvic, Igor Lavrnic, Blaza Stojanovic	366
47. CASE STUDY ON SUITABILITY OF RAIL GREASE PERFORMANCE FOR LIGHT RAIL TRANSIT (LRT) KELANA JAYA, MALAYSIA	Nadia Nurul Nabihah Ahmad Fuad, Izzatul Hamimi Abdul Razak, Mohamad Ali Ahmad, Wan Ahmad Syahmi Wan Amir Zaki, Mohamad Nasrulhisyam Sobri, Sabrina Karim	373
48. EFFECT OF CAVITATION EROSION ON MATERIAL MECHANICAL PROPERTIES AND MACHINE ELEMENTS PERFORMANCE	Pavle Ljubojevic, Tatjana Lazovic, Marina Dojcinovic, Jovana Antic	383
49. THE ROLE OF TRIBOLOGY IN IMPROVING THE PERFORMANCE OF MACHINERY SYSTEMS	Milica Utvic, Bojan Stojcetovic, Milan Misic, Anja Jovanovic	391
50. TRIBOLOGICAL ASPECTS OF IDENTIFICATION OF THE KEY CAUSES OF REDUCTION IN THE EFFICIENCY OF AXIAL PISTON WATER HYDRAULIC PUMPS	Nenad Todic, Slobodan Savic, Zivojin Stamenkovic, Blaza Stojanovic	396

Tribology in manufacturing processes

51. PERFORMANCE CHARACTERISTICS OF ECO-FRIENDLY AGROBIO-WASTES AS MOLD ADDITIVES ON MECHANICAL PROPERTIES OF AISiMg ALLOY	Maruf Yinka Kolawole, Sefiu Adekunle Bello, Ayodeji Sulaiman Olawore, Tunji Adetayo Owoseni	407
52. THE INFLUENCE OF THE HARD-FACED LAYERS PATTERN ON THE WEAR RESISTANCE OF THE WHEEL LOADER'S BUCKET TEETH	Djordje Ivkovic, Dusan Arsic, Vukic Lazic, Marko Delic, Andjela Ivkovic, Petra Bujnakova	419
53. ANALYSIS OF THE INFLUENCE OF HOT FORGING PROCESS PARAMETERS ON TOOL WEAR USING THE FINITE ELEMENT METHOD	Marko Delic, Milos Delic	424
54. FUNCTIONAL ANALYSIS OF SURFACE ROUGHNESS	Suzana Petrovic Savic, Milos Zivanovic, Marko Pantic, Dragan Dzunic, Vladimir Kocovic, Zivana Jovanovic Pesic, Aleksandar Djordjevic	432
55. THE INFLUENCE OF CUTTING DEPTH ON SURFACE ROUGHNESS OF 3D PRINTED PARTS	Strahinja Djurovic, Milan Ivkovic, Nikolaj Velikinac, Dragan Lazarevic, Milan Misic, Bojan Stojcetovic, Stefan Miletic	439

56. INFLUENCE OF CUTTING CONDITIONS ON SURFACE ROUGHNESS OF PA AND PA15	
Milan Ivkovic, Stefan Mihailovic, Strahinja Djurovic, Stefan Miletic, Bogdan Zivkovic, Bogdan Nedic, Suzana Petrovic Savic	443
57. ANALYSIS OF THE EFFECTS OF CUTTING SPEED AND FOCUS POSITION ON OXIDATION MARKS IN FIBER REACTIVE LASER CUTTING	
Milos Madic, Dusan Petkovic, Miroslav Mijajlovic, Milan Banic, Milan Trifunovic	450
58. FINITE ELEMENT INVESTIGATION OF THE EFFECT OF FRICTION CONDITIONS AND CUTTING ENVIRONMENT IN TURNING OF AISI H13 HARDENED STEEL	
Nikolaos E. Karkalos, Nikolaos A. Fountas, Nikolaos M. Vaxevanidis	456

Design and calculation of tribocontacts

59. DESIGN AND TESTING OF PIN ON DISC TRIBOMETER: FINK-POD2025	
Andjela Perovic, Mirjana Piskulic, Stefan Cukic, Milos Matejic, Blaza Stojanovic	465
60. FINITE ELEMENT ANALYSIS OF STRESS AND CONTACT PRESSURE IN STEEL PLATES UNDER VARYING FRICTION COEFFICIENTS	
Vladimir Milovanovic, Milos Pesic, Snezana Vulovic, Zivana Jovanovic Pesic, Miroslav Zivkovic	472
61. DESIGN AND TESTING OF A MODULAR TRIBOMETER FOR ANTI-FRICTION COATING ANALYSIS IN OCTG APPLICATIONS	
Igor' Yu. Pyshmintsev, Andrey Golyshev, Alexey Lovyagin	480
62. A REVIEW OF LINEAR RECIPROCATING TRIBOMETERS: DESIGN AND APPLICATIONS	
Jovana Markovic, Marija Matejic, Milos Matejic, Jasmina Skerlic, Bojan Bogdanovic	486

Biotribology

63. WEAR IN RESTORATIVE DENTISTRY/TEETH AND DENTAL MATERIALS	
Kivanc Dulger, Gencaga Purcek	495
64. EFFECT OF ACETABULAR CUP THICKNESS ON THE MAXIMUM CONTACT PRESSURE IN NITRIDED GRADE2 TDN – UHMWPE HIP ENDOPROSTHESES	
Myron Czerniec, Jerzy Czerniec	514
65. EFFECT OF ELECTRON BEAM PROCESSING PARAMETERS ON THE SURFACE ROUGHNESS OF TITANIUM SAMPLES	
Zivana Jovanovic Pesic, Aleksandra Vulovic, Strahinja Milenkovic, Djordje Ilic, Dragan Dzunic	522

Other topics related to tribology

66. FLEXURAL, COMPRESSIVE AND FRACTURE TOUGHNESS OF DELONIX REGIA POD-EGGSHELL PARTICLE REINFORCED VIRGIN LOW-DENSITY POLYETHYLENE NANOCOMPOSITES	
Sefiu Adekunle Bello, Maruf Yinka Kolawole, Adijat Ashifat, Davina Ajetomobi, Jeremiah Ponle, Suleiman Danjuma Daudu, Mohammed Kayode Adebayo, Aisha Mayowa Akintola	529

67. MODELLING AND STATISTICAL ANALYSIS OF FLANK WEAR DURING TURNING OF Co-Cr-Mo ALLOY	Aleksandar Milosevic, Sanda Simunovic, Mario Sokac, Zeljko Santoski, Vladimir Kocovic, Djordje Vukelic	541
68. HYBRID METAHEURISTIC ALGORITHM: A NOVEL APPROACH FOR INDUSTRIAL OPTIMIZATION CHALLENGES	Hammoudi Abderazek, Aissa Laouissi, Mourad Nouioua, Ivana Atanasovska	550
69. TRIBOCORROSION OF ALUMINUM ALLOY IN A CHLORIDECONTAINING ENVIRONMENT INHIBITED BY A MALTODEXTRIN-BASED COMPOSITION	Sergiy Korniy, Marjana Tymus, Ivan Zin, Nadiia Rats'ka, Bogdan Datsko	557
70. IMPACT TESTS FOR TWO COMPOSITES FOR MARINE APPLICATIONS	Ioana Gabriela Chiracu, Constantin Georgescu, George Cătălin Cristea, George Ghiocel Ojoc, Mihail Boțan, Alexandru Viorel Vasiliu, Lorena Deleanu	564
71. ANALYSIS OF ROLLING RESISTANCE PARAMETERS IN GRAVITY FLOW RACKS FOR HEAVY-DUTY APPLICATIONS	Mirjana Piskulic, Rodoljub Vujanac, Nenad Miloradovic	579
72. IMPACT OF GRAPHENE ON THE PROPERTIES OF PHASE CHANGE MATERIAL	Kapilan Natesan, Sriram Mukunda, Vidhya P, Shivarishika K	585
73. STUDY ON MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF 7075Al/SiC METAL MATRIX COMPOSITES	Sriram Mukunda, Kapilan Natesan	592
74. POSSIBILITIES OF APPLYING ARTIFICIAL INTELLIGENCE IN THE FIELD OF TRIBOLOGICAL RESEARCH	Milan Eric, Miladin Stefanovic, Slobodan Mitrovic, Dragan Dzunic, Vladimir Kocovic, Zivana Jovanovic Pesic, Suzana Petrovic Savic, Aleksandar Djordjevic, Marko Pantic	598
75. INFLUENCE OF PRESS-FIT DIMENSIONS ON REPEATED ASSEMBLY OF BALL BEARINGS INTO 3D PRINTED HOUSINGS	Strahinja Milenkovic, Zivana Jovanovic Pesic, Nenad Petrovic, Dalibor Nikolic, Nenad Kostic	609

Serbian Tribology
Society

SERBIATRIB '25

19th International Conference on
Tribology

Faculty of Engineering
University of Kragujevac

Kragujevac, Serbia, 14 – 16 May 2025

Research paper

DOI:10.24874/ST.25.208

TRIBOLOGICAL BEHAVIOR OF ABACA FIBER-REINFORCED EPOXY COMPOSITES: PRELIMINARY INVESTIGATIONS

Dragan DZUNIC¹, Marko MILOSEVIC², Zivana JOVANOVIC PESIC¹, Vladimir KOCOVIC¹,
Suzana PETROVIC SAVIC¹, Aleksandar DJORDJEVIC¹, Slobodan MITROVIC^{1,*}

¹University of Kragujevac, Faculty of Engineering, Kragujevac, Republic of Serbia

²The Academy of Applied Studies Polytechnic, Belgrade, Serbia

*Corresponding author: boban@kg.ac.rs

Abstract: This study presents preliminary investigations into the tribological behaviour of epoxy composites reinforced with abaca fibers. Composite samples containing 10%, 20%, and 30% fiber content were fabricated using the vacuum infusion method and subjected to dry sliding tests under controlled conditions (2 mm contact radius, 300 mN normal load, 10 mm/s sliding speed, 500 cycles) on a CSM Nanotribometer in ball-on-plate configuration. The results demonstrated that composites with lower fiber content exhibited reduced friction coefficients and penetration depths, primarily due to fewer structural imperfections. As the fiber content increased, both the number and size of imperfections also increased, significantly affecting the tribological performance. Microscopic analysis of the wear tracks revealed the formation of air bubbles and variations in wear debris behaviour depending on fiber content. These findings suggest that the distribution of fibers and the presence of structural imperfections play a critical role at the microscale under low-load conditions. Further studies involving higher loads, increased numbers of cycles, and a broader range of fiber contents are necessary to fully evaluate the tribological potential of abaca-reinforced composites.

Keywords: abaca fiber, epoxy composite, tribological behaviour, wear resistance, vacuum infusion

1. INTRODUCTION

A substantial share of material-related costs in industrial processes (including energy, raw materials, and tooling) is directly associated with the tribological properties of elements within tribomechanical systems. Enhancing productivity in modern industrial sectors — typically quantified as the annual value of added product per employee — necessitates a comprehensive understanding of the tribological behaviour of all constituent components in tribological assemblies. The tribological properties of solid materials, as well as lubricants used in these

systems, are evaluated based on the intensity of the friction force — that is, the coefficient of friction in the system's contact zone — and the degree of wear, expressed through the amount or rate of wear of key system components.

Holmberg and Erdemir [1] conducted a comprehensive analysis demonstrating that approximately 23% of the world's total energy consumption — corresponding to about 119 exajoules (EJ) — is related to friction and wear processes. Of this, around 103 EJ (approximately 20%) is expended on overcoming friction, while the remaining 16 EJ (about 3%) is attributed to the

replacement and repair of components damaged by wear.

Building on these findings, the application of modern tribological solutions and materials could significantly reduce energy losses. According to estimates, up to 60% of the total energy consumed in industry is used to overcome friction in numerous tribological systems. In the transportation sector, this percentage is even higher. Therefore, the rationalization of energy consumption in these sectors depends on the effective reduction of friction forces, which occur in tens of thousands of contact assemblies within a single production system. Although the process of material wear cannot be completely eliminated, it can be slowed through the application of tribological knowledge and appropriate technologies.

Efficient reduction of friction forces and energy consumption can be achieved through:

- the selection of appropriate materials and techniques for processing contact surfaces;
- the use of advanced methods for enhancing tribological properties, such as nano-coatings and chemical or physico-chemical treatments;
- the utilization of lubricants with high tribological performance and properly defined lubrication regimes.

The trend toward developing products with extended lifespans, reduced mass, and lower production costs has led to the intensive development of new, advanced materials. Composite materials, particularly those reinforced with natural-origin fibers, are attracting increasing attention due to their exceptional physical, mechanical, and tribological properties compared to the corresponding base materials.

It is well known that synthetic materials, although widely applied, possess numerous shortcomings compared to materials originating from natural sources. Among these drawbacks, higher production costs and negative environmental impacts are particularly notable, as highlighted by

Nägeli et al. [2], Dente et al. [3], and Shahinur and Hasan [4]. These factors have contributed to the growing interest of the scientific community in developing composite materials based on natural raw materials, which could offer similar or even superior properties compared to their synthetic counterparts. In this context, natural fibers are increasingly used as fillers in composites and are classified into plant, animal, and mineral fibers [5-7].

The tribomechanical properties of plant fibers and their composites play a crucial role in the reliability and operational lifespan of technical systems. The fundamental influences on the tribological performance of composites stem from the properties of the matrix, the filler, and the interphase bonds between these two elements [8-10]. Additionally, external factors such as loading regimes and the working environment significantly contribute to the development of tribomechanical characteristics [11, 12].

For several decades, composite materials have attracted researchers' attention primarily due to the potential for saving materials and energy, which are basic principles of tribology. By lowering the coefficient of friction, direct energy savings can be achieved, while improving wear resistance prolongs the working lifespan of tribomechanical components, resulting in additional material savings. One of the challenges in composite production is achieving a uniform distribution of reinforcement within the base material. In order to reduce the total mass of contact elements, composites with lightweight matrices have been developed, where the type, size, and share of fibers significantly influence the final material properties.

Liu et al. [13] analysed composites with a 0–4% weight fraction of abaca fibers in a phenolic resin matrix. The results showed that the composites exhibited significantly higher wear resistance compared to the matrix alone, with improvements becoming more pronounced as the fiber content increased.

Regarding hybrid composites, numerous studies indicate that combining different fiber types leads to improvements across a wide spectrum of material properties. For example, the combination of jute and hemp fibers in an epoxy matrix achieves higher wear resistance compared to composites containing only one of these fibers [14].

In the context of plant fibers as reinforcements in composites, fiber orientation represents an important factor influencing tribomechanical material properties. Chin and Yousif [15] demonstrated that a normal orientation of kenaf fibers relative to the sliding direction improved the wear resistance of an epoxy matrix by as much as 85%. In the same study, it was determined that sliding speed and loading had negligible influence on the specific wear rate, whereas fiber orientation significantly shaped friction behaviour and wear resistance. Normally oriented fibers, compared to parallel and antiparallel orientations, exhibited considerably better and more consistent performance.

In order to investigate the tribomechanical properties of abaca fiber-reinforced composites, experimental procedures were designed and carried out, as described in the following section.

2. MATERIALS AND METHOD

Samples of composite material based on epoxy resin and abaca fiber were fabricated using the vacuum infusion method. This technique is highly valued in engineering practice due to its ability to ensure uniform resin distribution within the fibrous reinforcement, resulting in a compact and homogeneous structure with enhanced mechanical characteristics of the final material.

The base materials used in this research were epoxy resin and natural abaca fibers, selected primarily for their high tensile strength and good moisture resistance. The abaca fibers were sourced from the Philippines, the world's largest producer of this plant material. To enhance the chemical compatibility between

the fibers and the epoxy matrix, the fibers were treated with a 6% NaOH solution at 24 °C for 10 hours. This procedure effectively removed surface impurities, such as hemicellulose and other unwanted layers, significantly improving adhesion between the fibers and the resin. After treatment, the fiber diameters ranged between 150 and 260 μm .

The matrix material was an epoxy resin characterized by a very low viscosity (500–900 $\text{mPa}\cdot\text{s}$ at 25 °C), a density of 1.2 g/cm^3 , an equivalent molecular weight of 180 g/mol , and an epoxy index of 0.51 $\text{mol}/1000 \text{ g}$. The hardener used was a cycloaliphatic polyamine with a density of 930–960 g/cm^3 , a viscosity of 7–11 $\text{mPa}\cdot\text{s}$ at 25 °C, and a hydrogen equivalent weight of 48 g. The resin-to-hardener ratio was maintained at 10:1. This formulation enabled a simple preparation process without the need for complex equipment, while achieving properties comparable to conventional polymers such as polypropylene (PP), polyethylene (PE), and polylactic acid (PLA). Due to its availability and favorable price, the epoxy resin represented an ideal solution for experimental testing in the development of environmentally friendly composite materials.

2.1 Sample fabrication and preparation

For composite fabrication, silicone molds previously treated with release agents were used to prevent bonding between the resin and mold walls. The abaca fibers were carefully prepared — cut to precise lengths and positioned within the molds to ensure a well-defined fiber orientation in accordance with the targeted mechanical properties.

The components of the epoxy resin and the corresponding hardener were mixed in a 10:1 ratio and thoroughly homogenized. Special attention was paid to eliminating air bubbles during mixing, thereby minimizing internal defects and voids within the final composite structure.

The resin mixture was applied to the prepared fiber molds using vacuum infusion at a pressure of 100 mbar, with a pump capacity of 55 L/min. This method enabled complete resin penetration through the fibrous network, with continuous process monitoring to identify and correct potential issues such as insufficient impregnation.

Following infusion, the composites were initially cured at room temperature and subsequently subjected to additional thermal curing (post-curing) in a controlled oven. This phase was crucial for completing the polymerization process and achieving optimal physical, mechanical, and thermal properties.

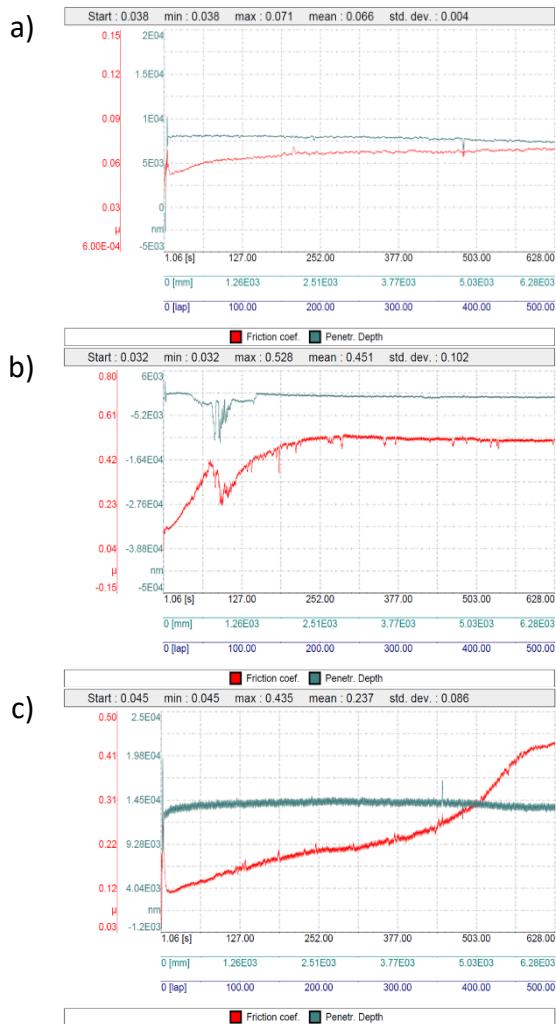
After curing, the hardened composite panels were carefully removed from the molds and cut using water jet cutting (WJC) technology. This method ensured high dimensional precision without inducing mechanical or thermal deformation. Samples of various geometries were fabricated to meet the specific requirements of subsequent mechanical and tribological tests.

The sample preparation process consisted of three well-defined stages. In the first stage, composite panels were cut into samples of precisely defined dimensions ($15 \times 10 \times 6.35$ mm) using a CNC saw. In the second stage, each sample underwent a polishing process using a series of wet sandpapers with progressively finer grits — 600, 1200, 2000, and 3000 — to improve the surface finish. In the final stage, surface roughness measurements were conducted using the Insize ISR-C002 Roughness Tester, a device characterized by a resolution of $0.001 \mu\text{m}$ and a measuring capacity of up to $160 \mu\text{m}$. The obtained results confirmed that the surface quality corresponded to the N5 standard, ensuring suitability for reliable and precise mechanical testing.

2.2 Tribological Testing

Tribological tests were performed using a CSM Nanotribometer in the ball-on-plate

configuration with the application of the rotational module. The contact parameters were kept constant throughout all experiments. All tests were conducted under identical conditions: radius (2 mm), normal force (300 mN), sliding speed (10 mm/s), and the number of cycles ($n = 500$). In addition, all tests were carried out under dry conditions, without lubrication.

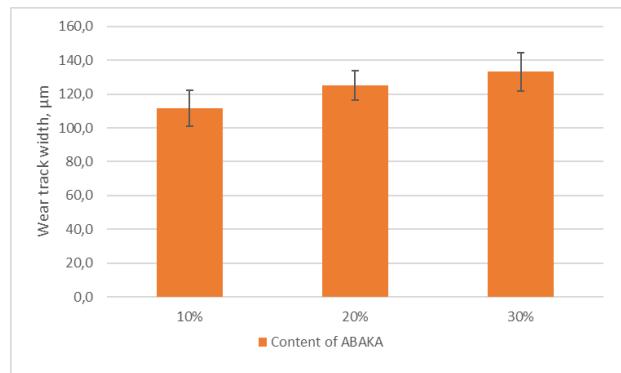

The counter body was a steel ball made of 100Cr6 steel, with a diameter of 1.5 mm. After each experiment, the ball was examined under a microscope and subsequently rotated to present a fresh surface for the next test. No significant or measurable damage was observed on the ball surface after testing, which is attributed to the considerable hardness difference between the ball and the composite samples. This ensured that any material transfer or damage occurred predominantly on the composite surface, allowing for a reliable evaluation of the influence of fiber content on the tribological behaviour of the composites.

3. RESULTS AND DISCUSSION

The dependence of the coefficient of friction and the penetration depth of the ball on the abaca fiber content in the composite is shown in Figure 1: (a) 10%, (b) 20%, and (c) 30%.

Preliminary tests revealed significant oscillations in the values of the coefficient of friction and penetration depth. In the case of the composite with 10% abaca fiber content, a comparative analysis of the friction diagrams and wear tracks indicated that there was no interaction between the ball and the fibers, and the influence of structural imperfections was almost negligible. For the sample with 20% abaca fiber content, noticeable oscillations in the measured values were observed at certain points, attributed to fiber interactions and structural imperfections. In contrast, in the sample with 30% fiber content, it can be concluded that direct interaction with the

fibers was minimal, but the presence of structural imperfections significantly affected the wear resistance.


Figure 1. Dependence of the coefficient of friction and penetration depth of the ball on the abaca fiber content in the composite: a) 10%, b) 20%, and c) 30%

Additionally, an analysis of the friction diagram for the 30% abaca fiber sample showed an increase in the coefficient of friction without achieving stabilization, suggesting the necessity of extending the test duration or increasing the number of cycles.

Since these are preliminary investigations aimed at determining the future research direction, it is necessary to repeat the experiments on a larger number of samples with varying fiber contents to obtain a more realistic picture of the composite behavior. It is evident that, at this microscale, with the given contact geometry and under low load conditions, the distribution of fibers and the

presence of structural imperfections have a significant influence on both friction and wear performance.

Moreover, although rotational motion was applied during testing, it is not possible to predict the exact location of fibers in the surface layer or the nature of their interaction with the counter body (i.e., the angle at which contact occurs), both of which can considerably affect the measured values.

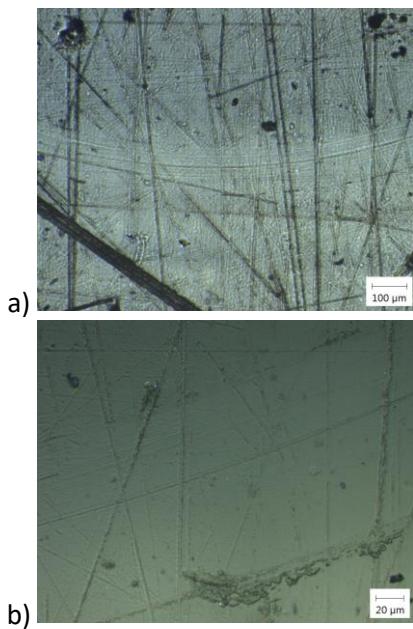


Figure 2. Histogram representation of the wear track widths for the tested samples with different abaca fiber contents

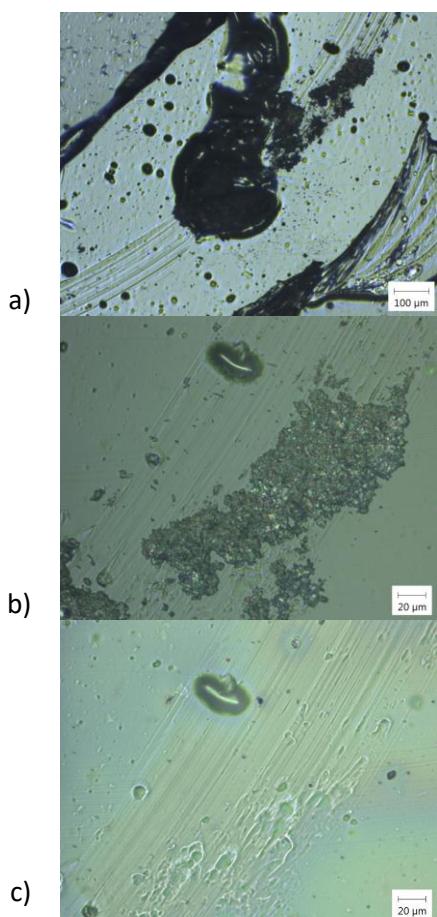

From Figure 2, it is clearly observed that the measured wear track widths for the samples with 10% abaca fiber content are the smallest. This can be attributed to the lower presence of structural imperfections in the surface layer. An analysis of the wear tracks further revealed the existence of structural imperfections in the form of air bubbles within the surface layer, with their number increasing as the abaca fiber content increased.

Figure 3 shows the wear track of the composite with 10% abaca fiber content, where a minimal number of structural imperfections can be observed both around and within the wear track itself. Additionally, a minimal amount of wear debris was observed at the outer edge of the track.

To further investigate the influence of abaca fiber content on the wear behaviour of the composites, the wear track of the sample with 20% fiber content was analysed using optical microscopy.

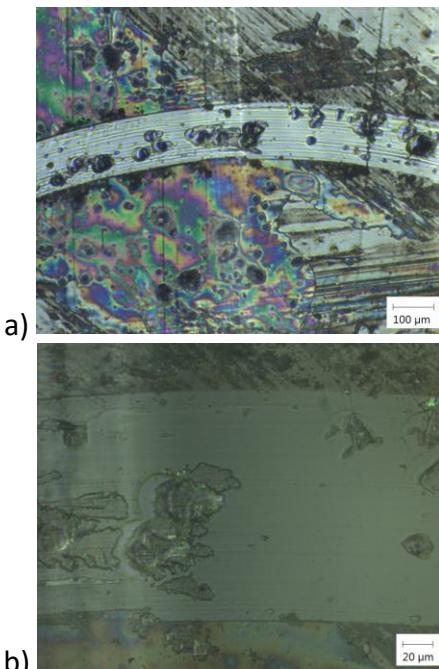


Figure 3. Optical microscopy of the wear track of the sample with 10% abaca fiber content, at 5 \times magnification a) and 20 \times magnification b)

Figure 4. Optical microscopy of the wear track of the sample with 20% abaca fiber content: (a) 5 \times magnification showing a structural imperfection inside the track, (b) 20 \times magnification showing wear debris at the track edge, and (c) surface after gentle mechanical cleaning showing residual surface deformation

In the sample with 20% abaca fiber content, an increased concentration of structural imperfections was observed both around and within the wear track, not only in quantity but also in size. Figure 4a was deliberately selected to highlight the presence and size of a structural imperfection located within the wear track. Figure 4b shows the presence of wear debris inside the track and along its edge. In most cases, wear debris tends to accumulate at the edge of the track; however, in this instance, the image was captured immediately after the structural imperfection shown in Figure 4a, but at a higher magnification of 20 \times . This wear debris was not firmly attached to the sample surface, as demonstrated in Figure 4c, where it can be seen that the debris was removed by gentle mechanical cleaning with cotton, without the use of alcohol or other chemical agents. Additionally, Figure 4c reveals that the passage of the ball over the debris plastically deformed the surface, leaving indentations at the points where the ball traveled over the loosened particles.

Figure 5. Optical microscopy of the wear track of the sample with 30% abaca fiber content: (a) 5 \times magnification and (b) 20 \times magnification

To further evaluate the influence of increased abaca fiber content on wear behaviour, the wear track of the sample with 30% fiber content was analysed by optical microscopy.

The analysis of the wear track and the surrounding surface of the sample with 30% abaca fiber content revealed a further increase in the concentration of structural imperfections both around and within the wear track compared to the previously analysed composites with 10% and 20% abaca fiber content.

An examination of the entire wear track showed no evidence of direct interaction with fibers, but structural imperfections of larger dimensions were present within the track itself. These findings correlate with the measured values of the coefficient of friction and penetration depth shown in Figure 1c.

4. CONCLUSION

Based on the preliminary investigations, it can be concluded that significantly broader testing is necessary, involving variations in contact parameters such as normal load, sliding speed, and the number of cycles, as the value of 500 cycles proved insufficient in some cases.

An increase in normal load and the number of cycles is expected to lead to a greater number of interactions between the ball and the fibers, resulting in a more pronounced influence on the coefficient of friction, penetration depth, and overall wear behaviour of the composites. It is anticipated that under such conditions, the presence of fibers may compensate for structural imperfections and even enhance the wear resistance of the composites.

Additionally, particular attention should be paid to the behaviour of the counter body (the ball surface) to evaluate the overall performance of such a tribomechanical system.

These findings highlight the importance of continued investigation into fiber-reinforced composites under varied loading and operating conditions to better understand their full tribological potential and optimize their performance in practical applications.

ACKNOWLEDGEMENT

This paper presents the results of research conducted within the project TR35021, supported by the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia.

The research was also financially supported under the contract No. 451-03-137/2025-03/200107, dated February 4, 2025.

ORCID iDs

Dragan DZUNIC [0000-0002-1914-1298](https://orcid.org/0000-0002-1914-1298)

Marko MILOSEVIC [0000-0001-5578-5472](https://orcid.org/0000-0001-5578-5472)

Zivana JOVANOVIC PESIC [0000-0002-1373-0040](https://orcid.org/0000-0002-1373-0040)

Vladimir KOCOVIC [0000-0003-1231-0041](https://orcid.org/0000-0003-1231-0041)

Suzana PETROVIC SAVIC [0000-0002-5629-6221](https://orcid.org/0000-0002-5629-6221)

Aleksandar DJORDJEVIC [0000-0003-2856-6578](https://orcid.org/0000-0003-2856-6578)

Slobodan MITROVIC [0000-0003-3290-7873](https://orcid.org/0000-0003-3290-7873)

REFERENCES

- [1] K. Holmberg and A. Erdemir, "Influence of tribology on global energy consumption, costs and emissions," *Friction*, vol. 5, no. 3, pp. 263–284, 2017.
- [2] C. Nägeli, C. Camarasa, M. Jakob, G. Catenazzi, and Y. Ostermeyer, "Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks," *Energy and Buildings*, vol. 173, pp. 443–460, 2018.
- [3] S. M. R. Dente, C. Aoki-Suzuki, D. Tanaka, and S. Hashimoto, "Revealing the life cycle greenhouse gas emissions of materials: The Japanese case," *Resources, Conservation and Recycling*, vol. 133, pp. 395–403, 2018.
- [4] S. Shahinur and M. Hasan, "Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits," in *Encyclopedia of Renewable and Sustainable Materials*, S. Hashmi and I. A. Choudhury, Eds., Elsevier, 2020, pp. 794–802.
- [5] M. Milosevic, P. Valášek, and A. Ruggiero, "Tribology of Natural Fibers Composite Materials: An Overview," *Lubricants*, vol. 8, p. 42, 2020.
- [6] D. Mahesh, K. R. Kowshigha, N. V. Raju, and P. K. Aggarwal, "Characterization of banana fiber-

reinforced polypropylene composites," *Journal of the Indian Academy of Wood Science*, vol. 17, pp. 1–8, 2019.

[7] G. Rajeshkumar, V. Hariharan, S. Indran, M. R. Sanjay, S. Siengchin, J. P. Maran, N. A. Al-Dhabi, and P. Karuppiah, "Influence of Sodium Hydroxide (NaOH) Treatment on Mechanical Properties and Morphological Behaviour of Phoenix sp. Fiber/Epoxy Composites," *Journal of Polymers and the Environment*, vol. 29, no. 3, pp. 765–774, 2021.

[8] D. G. Buslovich, S. V. Panin, J. Luo, K. N. Pogosyan, V. O. Alexenko, and L. A. Kornienko, "Influence of the Matrix Material and Tribological Contact Type on the Antifriction Properties of Hybrid Reinforced Polyimide-Based Nano- and Microcomposites," *Polymers*, vol. 15, no. 15, p. 3266, 2023.

[9] M. M. Ibrahim, N. S. M. El-Tayeb, M. Shazly, and S. M. M. El-Sayed, "An experimental study on the effect of graphite microparticles on the mechanical and tribological properties of epoxy matrix composites," *Functional Composite Materials*, vol. 5, p. 2, 2024.

[10] S. Veličković, S. Miladinović, B. Stojanović, R. R. Nikolić, B. Hadzima, and D. Arsić, "Influence of load and reinforcement content on selected tribological properties of Al/SiC/Gr hybrid composites," *Production Engineering Archives*, vol. 18, no. 18, pp. 18–23, 2018.

[11] M. Milosevic, D. Dzunic, P. Valasek, S. Mitrovic, and A. Ruggiero, "Effect of Fiber Orientation on the Tribological Performance of Abaca-Reinforced Epoxy Composite under Dry Contact Conditions," *Journal of Composites Science*, vol. 6, no. 7, p. 204, 2022.

[12] W. Li, J. Huang, J. Fei, Z. Liang, L. Cao, and C. Yao, "Study on tribological properties as a function of operating conditions for carbon fabric wet clutch," *Tribology International*, vol. 94, pp. 428–436, 2016.

[13] Y. Liu, Y. Ma, J. Yu, J. Zhuang, S. Wu, and J. Tong, "Development and characterization of alkali treated abaca fiber reinforced friction composites," *Composite Interfaces*, vol. 26, pp. 67–82, 2019.

[14] V. Chaudhary, P. K. Bajpai, and S. Maheshwari, "An Investigation on Wear and Dynamic Mechanical behavior of Jute/Hemp/Flax Reinforced Composites and Its Hybrids for Tribological Applications," *Fibers and Polymers*, vol. 19, no. 2, pp. 403–415, 2018.

[15] C. W. Chin and B. F. Yousif, "Potential of kenaf fibres as reinforcement for tribological applications," *Wear*, vol. 267, pp. 1550–1557, 2009.