
International Congress Motor Vehicles & Motors 2014

VEHICLE AS A SAFETY FACTOR OF THE TRANSPORTATION ACTIVITY

Proceedings of Papers

October 9th - 10th, 2014 Kragujevac, Serbia

International Congress Motor Vehicles & Motors 2014

VEHICLE AS A SAFETY FACTOR OF THE TRANSPORTATION ACTIVITY

Proceedings

October 9th - 10th, 2014 Kragujevac, Serbia Publisher:

Faculty of Engineering, University of Kragujevac

Serbia, 34000 Kragujevac, Sestre Janjić 6

For Publisher:

Prof. dr Miroslav Živković - Dean

Editors:

Dr Božidar Krstić, prof.

Dr Dragan Taranović, assist. prof.

Technical preparation:

Dr Dragan Taranović, assist. prof.

Picture on the cover.

Nemanja Lazarević

Print CD:

Faculty of Engineering, University of Kragujevac, Kragujevac

ISBN 978-86-6335-010-6

Year of publication:

2014.

Number of copies printed:

200

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

629.3(082) 621.43(082)

INTERNATIONAL Congress Motor Vehicles &

Motors (5th; 2014; Kragujevac) Vehicle as a Safety Factor of the Transportation Activity: proceedings / International Congress Motor Vehicles & Motors 2014, [5], October 9th-10th, 2014, Kragujevac, Serbia; [congress organizers Faculty of Engineering, University Kragujevac ... [et al.] ; editors Božidar Krstić, Dragan Taranović]. - Kragujevac : Faculty of Engineering, 2014 (Kragujevac : Faculty of Engineering). - IX, 546 str.; 30 cm

Tiraž 200. - Napomene i bibliografske reference uz tekst. - Bibliografija uz svaki rad.

ISBN 978-86-6335-010-6

Copyright © 2014 Faculty of Engineering, University of Kragujevac

Publishing of this book is supported by:

Ministry of Education, Science and Technological Development of the Republic of Serbia

SCIENTIFIC BOARD

President:

Prof. Dr Božidar Krstić, FE Kagujevac

Secretaries:

Saša Milojević, M. Sc., FE Kragujevac

Members:

Prof. Dr P. Andre, USA

Prof. Dr N. Arsić, Faculty of technical Science in K. Mitrovica

Prof. Dr B. Antić, University of Beograd, Serbia

Prof. Dr G. Belingardi, Italy Prof. Dr M. Cavatorta, Italy

Prof. Dr F. Časnji, University of Novi Sad, Serbia

Prof. Dr B. Dalla Chiara, Italy

Prof. Dr D. Debeljković, University of Beograd, Serbia Dr A. Davinić, University of Kragujevac, Serbia Prof. Dr M. Demić, University of Kragujevac, Serbia

Prof. Dr A. Dimitrov, Bulgaria

Prof. Dr Č. Duboka, University of Beograd, Serbia

Prof. Dr R. Durković, Montenegro

Dr J. Glišović, University of Kragujevac, Serbia

Prof. Dr D. Gruden, Germany

Prof. Dr A.Grujović, University of Kragujevac, Serbia Prof. Dr S. Žeželj, University of Beograd, Serbia

Prof. Dr E. Hnatko, Croatia Dr I. Ivanović, Volvo, Sweden

Prof. Dr A. Janković, University of Kragujevac, Serbia

Mr S. Jovanović, Beograd, Serbia

Prof. Dr V. Jovanović, University of Beograd, Serbia Prof. Dr D. Jovanović, University of Novi Sad, Serbia Prof. Dr K. Lipovac, University of Beograd, Serbia

Prof. Dr B. Kegl, Slovenia Prof. Dr Z. Lozia, Poland

Prof. Dr J. Lukić, University of Kragujevac, Serbia

Mr I. Mekovec, MPPI, R. Hrvatska

Prof. Dr S. Muždeka, University of Defence, Serbia Dr D. Miloradović, University of Kragujevac, Serbia

Prof. Dr D. Ninković, Switzerland

Prof. Dr P. Nuccio, Italy

Prof. Dr R. Pešić, University of Kragujevac, Serbia Prof. Dr S. Petrović, University of Beograd, Serbia

Prof. Dr R. Božićković, University of Doboj Prof. Dr S. Petković, University of Banja Luka

Prof. Dr D. Radonjić, University of Kragujevac, Serbia Prof. Dr R. Radonjić, University of Kragujevac, Serbia Prof. Dr B. Rakićević, University of Beograd, Serbia

Dr T. Rajić, Germany Prof. Dr C. Stan, Germany D. Tomić, Beograd, Serbia

Dr D. Taranović, University of Kragujevac, Serbia Prof. Dr M. Tomić, University of Beograd, Serbia

Prof. Dr C. Spentzas, Greece

Prof. Dr S. Veinović, University of Kragujevac, Serbia Prof. Dr M. Vujanić, University of Beograd, Serbia

ORGANIZATIONAL BOARD

President:

Assist. prof. Dr Dragan Taranović, FE Kragujevac

Secretaries:

Saša Milojević, M. Sc., FE Kragujevac

CONGRESS ORGANIZERS

- Faculty of Engineering, University of Kragujevac
- Department for Motor Vehicles and Motors, FE in Kragujevac
- International Journal "Mobility & Vehicle Mechanics"
- University of Kragujevac

CONGRESS PATRONS

- Government of the Republic of Serbia, Ministry of Education, Science and Technological Development,
- Centre for technical proper function of vehicles, FME Kragujevac
- Centre for traffic safety, FME Kragujevac
- Faculty of Engineering, University of Kragujevac
- European Union by the "DIAUSS Development and Improvement of Automotive and Urban Engineering Studies in Serbia" Joint Project [JP 516729-2011] as part Tempus Program

CONTENT

Predgovor Foreword			1
			2
	INT	RODUCTORY LECTURES	
MVM2014-IL1	Giovanni Belingardi Brunetto Martorana	RECENT RESEARCH RESULTS IN COMPOSITE MATERIALS AND ADHESIVE APPLICATIONS FOR VEHICLE LIGHTWEIGHT	5
MVM2014-IL2	Dušan Gruden	ENVIRONMENTAL PROTECTION IN AUTOMOTIVE INDUSTRY	17
MVM2014-IL3	Maria Pia Cavatorta	ERGONOMIC ANALYSIS OF MOTOR VEHICLES	
MVM2014-IL4	Josip Vlahović	THE CAR IN THE YEAR 2014	36 46
MVM2014-IL5	Stojan Petrović	ACTUAL SITUATION AND FUTURE DEVELOPMENT OF VEHICLE EXHAUST EMISSION LEGISLATION IN EUROPE	56
MVM2014-IL6	Snežana Petković	TECHNICAL INSPECTION OF VEHICLES AND TRAFFIC SAFETY- WORLD EXPERIENCE AND THE EXPERIENCE OF THE REPUBLIC OF SRPSKA	71
MVM2014-IL7	Dobrivoje Ninković	TURBOCHARGING OF IC ENGINES: AN OVERVIEW OF THE HISTORY, CURRENT STATE, AND THE DEVELOPMENT TRENDS	80
MVM2014-IL8	Zlatomir Živanović Slobodan Mišanović	FULLY ELECTRIC BUSES ARE PROMISING TECHNOLOGY IN THE FUTURE	81
MVM2014-IL9	Rajko Radonjić Aleksandra Janković	MOTOR VEHICLES - EDUCATION AND RESEARCH IN SERBIA	107
MVM2014-IL10	Boris Antić Dalibor Pešić Milan Vujanić	PROACTIVE ROAD SAFETY MANAGEMENT REGARDING FACTOR "VEHICLE"	120
MVM2014-IL11	Dalibor Pešić Boris Antić Krsto Lipovac	THE IMPORTANCE OF MEASURING THE BRAKE FORCE ON THE TECHNICAL VEHICLE CONTROLS IN TERMS OF TRAFFIC SAFETY	129
	Transport C	SECTION A hallenges in Emerging Economies	
MVM2014-015	Svetlana Trajković Ljiljana Mihajlović	TRAFFIC MANAGEMENT	137
MVM2014-016	Ljiljana Mihajlović Svetlana Trajković	SUSTAINABLE DEVELOPMENT AND TRANSPORTATION	145
MVM2014-017	Ljiljana Mihajlović Svetlana Trajković	TRANSPORT LOGISTICS	149
MVM2014-018	Svetlana Trajković Ljiljana Mihajlović	EFFECT OF ENERGY AND TRANSPORTATION TO THE ENVIRONMENT MANAGEMENT	153

MVM2014-028	Slobodan Mišanović Vladimir Spasojević	MEASUREMENT THE FUEL CONSUMPTION OF BUSES FOR PUBLIC TRANSPORT BY THE METHODOLOGY "SORT" (Standardised On-Road Tests cycles)	158
MVM2014-029	Predrag Petrović Stanislav Glumac Živojin Petrović	ROAD CRASHES SERBIAN WITH CONSEQUENCES OF THE DEATH	165
MVM2014-035	Branko Davidović, Miroslav Božović	THE EFFECT OF INTERMODAL TRANSPORT ON THE REDUCTION OF CO2 EMISSION	174
MVM2014-036	Branko Davidović Miroslav Božović Nikola Maksimović	SOLAR VEHICLES AND ROADS	185
MVM2014-037	Đorđe Vranješ Branimir Miletić	RESEARCH METHODS FOR INVESTIGATION OF PREDICTORS ASSOCIATED WITH USING OF THE CHILD RESTRAINT SYSTEMS IN VEHICLE	193
MVM2014-038	Predrag Petrović Živojin Petrović Stanislav Glumac Marija Petrović	TREND OF PRODUCTION AND SALE OF MOTOR VEHICLES IN THE WORLD	199
MVM2014-043	Nenad Marković Miloš Miljković Mijat Cerović	IMPROPER USE OF PROTECTIVE SYSTEMS AS A REASON FOR PASSENGERS INJURIES IN VEHICLES IN TRAFFIC ACCIDENTS	208
MVM2014-044	Milan Vujanić Nenad Marković Duško Pešić	IMACT OF VEHICLE TECHNICAL IRREGULARITY ON TRAFFIC ACCIDENT OCCURENCE	217
MVM2014-049	Duško Pešić Nenad Marković Emir Smailović	THE SIGNIFICANCE DETERMINATION OF PROPER DECELERATION OF THE VEHICLE FOR ANALYSIS OF TRAFFIC ACCIDENTS	227
MVM2014-057	Ivan B. Krstić Boban Bubonja Vojislav B. Krstić Božidar V. Krstić Gordana Mrdak	OPTIMIZATION THE PERIODICITY OF MANAGING OF PREVENTIVE MAINTENANCE OF TECHNICAL SYSTEMS	236
MVM2014-058	Vojislav B. Krstić Aleksandr T. Todić Vukić N. Lazić Ivan B. Krstić Božidar V. Krstić Ljiljana Đorđević	MATHEMATICAL MODEL FOR OPTIMAL TIME DETERMINATION FOR INTERVALS OPTIMIZATION OF UNUSED VEHICLE PARTS RESOURCES AT THEIR REPLACEMENT	241
MVM2014-059	Ivan B. Krstić Vojislav B. Krstić Božidar V. Krstić Vukic N. Lazić Svetlana P. Trajković	DETERMINATION OPTIMAL EFFECTIVENESS OF ELECTRONIC DEVICES PREVENTIVE MAINTENANCE	244
MVM2014-060	Gordana Mrdak Milos Nikolic Božidar V. Krstić	POLITICS OF TRANSITION AND DEVELOPMENT STRATEGY	248
MVM2014-061	Aleksandar Todić Božidar V. Krstić Dejan Čikara Tomislav Todić	MICROSTRUCTURAL CHANGES IN THE FUNCTION TO CHANGE THE CONTENTS OF VANADIUM IN STEEL FOR MOTOR VEHICLES	253

SECTION B Power Train Technology

MVM2014-010	Marko Kitanović Predrag Mrđa Slobodan Popović Nenad Miljić	FUEL ECONOMY COMPARATIVE ANALYSIS OF CONVENTIONAL AND ULTRACAPACITORS-BASED, PARALLEL HYBRID ELECTRIC POWERTRAINS FOR A TRANSIT BUS	258
MVM2014-013	Saša Milojević Nenad Ilić	APPLICATION OF HYDROGEN AS AN ALTERNATIVE FUEL FOR PROPULSION SYSTEMS IN CITY BUSES OVERVIEW	268
MVM2014-019	Zoran Nikolić Zlatomir Živanović	STATE OF DEVELOPMENT AND PERSPECTIVE OF THE ELECTRIC VEHICLES	276
MVM2014-021	Dragoljub Radonjić Rajko Radonjić	POSSIBILITIES OF USING EMPIRICAL FORMULA FOR THE DETERMINATION OF DRIVE CHARACTERISTICS OF MODERN IC ENGINES FOR VEHICLES	288
MVM2014-022	Dragoljub Radonjić	ANALYSIS AND COMPARISON OF IDEAL CYCLES MODERN IC ENGINES BY USING OF THE GENERAL THERMODYNAMIC CYCLE	298
MVM2014-023	Milan Milovanović	ANALYSIS OF METHOD OF GAS SYSTEM INSTALLING	308
MVM2014-031	Vanja Šušteršič Jasna Glišović Dušan Gordić	TRENDS IN DEVELOPMENT, DESIGN AND CALCULATION OF CVT	312
MVM2014-040	Dejan Anđelković Srđan Jović Boris Antić	STATE, DEVELOPMENT AND PERSPECTIVES OF USING LPG FOR MOTOR VEHICLES IN REPUBLIC OF SERBIA	318
MVM2014-042	Predrag Mrđa Vladimir Petrović Stefan Đinić Marko Kitanović	DEVELOPMENT OF CONTINUOUSLY VARIABLE INTAKE MANIFOLD FOR FORMULA STUDENT RACING ENGINE	326
MVM2014-045	Slobodan Popović Nenad Miljić Marko Kitanović	EFFECTIVE APPROACH TO ANALYTICAL, ANGLE RESOLVED SIMULATION OF PISTON-CYLINDER FRICTION IN IC ENGINES	340
MVM2014-046	Vladimir Marjanović Marko Kitanović Slobodan Popović Nenad Miljić	A COMPARATIVE STUDY OF CONVENTIONAL AND SERIES HYBRID POWERTRAIN PERFORMANCE FOR PASSENGER CAR IN TAXI SERVICE	352
MVM2014-047	Nenad Miljić Slobodan Popović Marko Kitanović	ENGINE CRANKSHAFT SPEED MEASUREMENT ERROR COMPENSATION	363
MVM2014-053	Saša Milojević Radivoje Pešić Dragan Taranović Aleksandar Davinić	TRIBOLOGICAL OPTIMIZATION OF RECIPROCATING MACHINES ACCORDING TO IMPROVING PERFORMANCE	372
MVM2014-054	Radivoje Pešić Snežana Petković Emil Hnatko Stevan Veinović	DOWNSIZING INTERNAL COMBUSTION ENGINE WITH VARIABLE COMPRESSION RATIO: EFFECTS AND POTENTIALS	383

SECTION C Vehicle Design and Manufacturing

MVM2014-011	Lozica Ivanović Danica Josifović, Andreja Ilić Blaža Stojanović Katarina Živković	OPTIMIZATION OF CARDAN JOINT DESIGN FROM LOAD CAPASITY ASPECT	396
MVM2014-012	Zorica Đorđević Jovana Rašić Mirko Blagojević Miloš Matejić Nenad Petrović	TRUCK SUPPORTIVE CHASSIS STRUCTURAL STATIC ANALYSIS	405
MVM2014-014	Zoran Majkić	ANALYSIS OF THE INTERACTION BETWEEN THE SUPERSTRUCTURE AND CHASSIS OFF-ROAD VEHICLES	411
MVM2014-025	Mirko Blagojević Zorica Đorđević Miloš Matejić Nenad Kostić Nenad Petrović	DYNAMIC MODEL OF CYCLOIDAL SPEED REDUCER	421
MVM2014-050	Branislav Popović Dragan Milčić Miodrag Milčić	DEVELOPEMENT OF AUTOMOTIVE RADIATOR COOLING FAN	427
MVM2014-051	Ljiljana Veljović Vera Nikolić-Stanojević Dragan Milosavljević Gordana Bogdanović Aleksandar Radaković	A MODEL OF PLANETARY GEAR TRANSMISSION	433
MVM2014-052	Gordana Bogdanović Dragan Milosavljević Ljiljana Veljović Aleksandar Radaković Dragan Taranović	THE MECHANICAL BEHAVIOUR OF MATERIAL IN AUTOMOTIVE ENGINEERING REINFORCED BY STRONG FIBRES	440
MVM2014-055	Ana Pavlović Cristiano Fragassa Stefano De Miranda	NUMERICAL SIMULATION OF CRASH TEST FOR THE HEAVY QUADRICYCLE	445
MVM2014-056	Dušan Arsić Vukić Lazić Srbislav Aleksandrović Dragan Milosavljević Božidar Krstić Petar Marinković Milan Đorđević	APPLICATION OF HIGH STRENGTH STEELS TO RESPONSIBLE WELDED STRUCTURES ON MOTOR VEHICLES	453
	Vehicle Dynami	SECTION D cs and Intelligent Control Systems	
MVM2014-020	Branislav Aleksandrović Rajko Radonjić Dragoljub Radonjić Aleksandra Janković	RESEARCHING MOTORCYCLE'S STABILITY AT MOTION	461

MVM2014-026	Jasna Gilsovic Miroslav Demić Jovanka Lukić Danijela Miloradović	A CONTRIBUTION TO RESEARCH OF SOME PHYSICAL CHARACTERISTICS OF DISC BRAKES IN LABORATORY CONDITIONS	466
MVM2014-032	Rajko Radonjić Danijela Miloradović Dragoljub Radonjić	AN APPROACH TO VEHICLE RESEARCH	479
MVM2014-033	Aleksandar Poznić Danijela Miloradović	EXPERIMENTAL EVALUATION OF MAGNETORHEOLOGICAL DISK BRAKE	487
MVM2014-039	Boris Stojić	COMPARISON OF THE PHYSICAL AND EMPIRICAL APPROACH TO MODELLING OF QUASISTATIC ENVELOPING PROPERTIES OF THE TRACTOR TIRE	495
MVM2014-041	Rajko Radonjić	INVESTIGATION OF THE DRIVER - VEHICLE DYNAMICS	502
MVM2014-048	Vlastimir Dedović Dragan Sekulić	CONVENTIONAL AND CNG BUS STEERING RESPONSES COMPARATIVE ANALYSIS	513
	Driver/Vehicle Interf	SECTION E face, Information and Assistance Systems	
MVM2014-024	Dragan Ružić Boris Stojić	STRATEGIES OF IMPROVING THE AIR- CONDITIONING EFFICIENCY IN HYBRID AND ELECTRIC VEHICLES	525
MVM2014-030	Petar Spalević Adela Crnišanin	PREDICTING SNOWFALL IN INTERNET GIS FOR VEHICLE MANAGEMENT SYSTEM	534
MVM2014-034	Jovanka Lukić Slavica Mačužić Jasna Glišović Dragan Taranović	HUMAN BODY TRANSMISSIBILITY RESPONSE TO VERTICAL WHOLE BODY VIBRATION: ANTHROPOMETRICS EFFECTS – CASE STUDY SERBIA	539

International Congress Motor Vehicles & Motors 2014

Kragujevac, October 9th-10th, 2014

MVM2014-034

Jovanka Lukić¹ Slavica Mačužić² Jasna Glišović³ Dragan Taranović⁴

HUMAN BODY TRANSMISSIBILITY RESPONSE TO VERTICAL WHOLE BODY VIBRATION: ANTHROPOMETRICS EFFECTS – CASE STUDY SERBIA

ABSTRACT: The biodynamic response of human body exposed to vertical random whole body vibration in term of seat to head transmissibility function (STHT) is investigated in this study. The STHT response of 30 male human subjects exposed to three levels of the vertical random vibration (0.55, 1.75 and 2.25 m/s2 RMS) was measured in two sitting conditions (K – without seat backrest inclination, S – with seat backrest inclination) in the 0.3-30 Hz frequency range. The body mass revealed strong effect on the male STHT responses. The primary resonance frequency of heavier subjects was lower than that of the lighter subjects, while the peak magnitude was higher for the heavier subjects.

KEYWORDS: whole body vibration, Seat to Head Transmissibility Function (STHT), vertical vibration, body mass

INTRODUCTION

The influence of vertical, broadband, random, vibrations on the human body was examined through the seat-to-head transmissibility function (STHT). The biodynamic human response to whole body vibration (WBV) can be characterized using four biodynamic response functions. The driving point mechanical impedance (DPMI), apparent mass (APMS) and transfer mechanical impedance (TMI) are biodynamic functions often used to describe to the body" biodynamic functions. The seat-to-head transmissibility function (STHT) describes the vibration transmitted through the body, [2].

The number of papers considering STHT is small in comparison with the number of papers considering DPMI. In this paper, the investigation of human body response to broadband random vibration was performed using STHT and these investigations were focused on vertical directional excitation.

From the synthesis of reported data on transmission of seat vibration to the head, it has been shown that seat-to-head vibration transmissibility is most significantly affected by the sitting posture, particularly the backrest contact. The study proposed different ranges of seat-to-head vibration transmissibility for back supported and back unsupported sitting postures. Apart from the sitting posture, the transmission of seat vibration may also be affected

¹ Jovanka Lukić, University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, lukicj@kg.ac.rs

² Slavica Mačužić, University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, macuzicslavica@amail.com

³ Jasna Glišović, University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, jaca@kg.ac.rs

⁴ Dragan Taranović, University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, tara@kg.ac.rs

by various mass-, stature- and build-related anthropometric parameters. The effects of anthropometric parameters on the seated body STHT response to vibration have been investigated in even fewer studies.

MEASUREMENT AND ANALYSIS METHODS

An electrohydraulic motion simulator was used in the subjective experiment. The simulator was designed to provide the test bandwidth from 0,5 to 40 Hz with a total loading weight of 200 kg and to simultaneously obtain vertical and horizontal random excitation. The investigators had to define the frequency bandwidth and the magnitude of excitation.

Thirty male subjects, 43.862 ± 9.866 years old, 179.897 ± 6.608 cm tall, a mass of 85.586 ± 14.297 kg, body mass index $26,417\pm3.990$ and in good health, were tested. They were exposed to broadband random vertical excitation, Table 1.

Table 1 Table 1 Mean, standard deviation, minimum and maximum values of the selected anthropometric

and the participants				
	Minimum, Maximum, Mean (standard deviation)			
Age, year	18, 59, 43,9, 9.697			
Body mass, kg	60, 113, 85.90, 14.153			
Height, m	1.68, 1, 98, 1.801, 0.06588			
Body Mass Index	18.937, 34.876, 26.452, 3.925			

The laboratory experiment was carried out to determine STHT (a complex ratio between complex head acceleration and complex seat acceleration, including magnitude of response function, phase function and coherency, and in the sitting position under broadband random vibration in the vertical direction. Spectral analysis was performed in the broadband frequency domain. The STHT functions were calculated using the Cross-spectral density [1] at a frequency resolution of 0,037 Hz. Test conditions (magnitude of excitation and seat backrest angle) was varied.

Detailed description of measurement set up is given in [2]. Subjects tested were sitting in a driving position with their hands on the steering wheel. Seat backrest angle was varied: position of backrest (K) with inclination angle of 14° with respect to vertical axis and position (S) with inclination angle of 0°. The excitation magnitude was also varied (0,55, 1,75 and 2,25 m/s² r.m.s.). The frequency range of excitation was 0,5-40 Hz. Thirty trained male subjects participated in the experiment with one-directional excitation.

DATA ANALYSIS

Figure 1 and figure 2 displays functions in the vertical direction for subjects exposed to vertical broadband whole body vibration (WBV). STHT functions have two or three resonances depending on the subject's characteristics. The first resonance (near to 5 Hz) corresponds to the whole body resonance [2, 3] and the second resonance (near to 14 Hz) corresponds to upper body resonance [2, 3], and if the third exists, it corresponds to foot resonance (20 Hz) [2, 3]. The spread of the results was caused by intersubject variability [1]. The influence of excitation magnitude on averaged STHT function for vertical broadband random excitation are given in Figures 3 and 4.

Figures 3 show the STHT function in the fore and aft direction increases in magnitude with respect to the increase of the excitation magnitude in frequency range below 8 Hz. A decrease in magnitude was observed in the frequency range of 8-18 Hz with respect to excitation level. At resonant frequencies the increase in excitation level caused the increase in STHT magnitude. The phase of STHT was also changed.

Data given in Figure 4 shows that the increase in excitation magnitude caused the increase in STHT magnitude in vertical direction in the low-frequency region, below the first resonance. At the second resonance, the differences between STHT magnitudes were the greatest, as well scattering data. The increase of excitation level caused the decrease of STHT magnitude at the second resonant frequency.

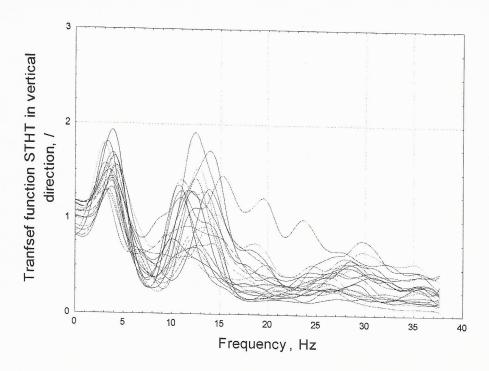


Figure 1 Transfer function STHT magnitude in vertical direction, S backrest position, excitation 1.75 m/s² RMS

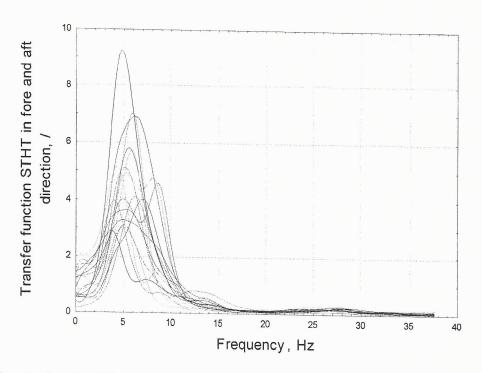


Figure 2 Transfer function STHT magnitude in fore and aft direction, S backrest position, excitation 1.75 m/s 2 RMS

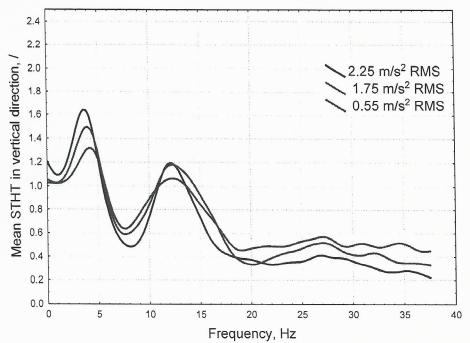


Figure 3 Transfer function STHT mean magnitude in vertical direction, K backrest position

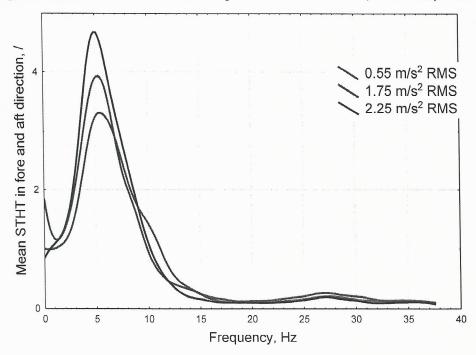


Figure 4 Transfer function STHT mean magnitude in fore and aft direction, K backrest position, excitation 1.75 m/s2 RMS

The comparisons suggest large inter-subject variations in the STHT magnitude as well as the primary resonance frequency. For vertical STHT responses, the primary resonance frequency varied from 3.8187 to 4.353 Hz for the K support, and was observed in the 3.7083 to 4.465 Hz range for the S sitting condition. The coefficient of variation (CoV) of the magnitude data ranged from 15.109% to 16.403% for the K support and 13.711% to 18.035% for the S support in the vicinity of the primary resonance frequency, Table 2.

The frequency corresponding to the peak fore-aft magnitudes varied from 4.8882 to 5.4632 Hz for the K support and 5.0118 to 5.7722 for the S support conditions. The fore-aft STHT responses revealed relatively higher scatter with CoV of the magnitude data ranging from 35.454% to 43.551 % for the K support, and 24.340% to 41.389% for the S support, table 2.

Table 2 Mean (standard deviation) of the peak STHT magnitudes and the corresponding frequencies of the

Excitation, m/s² r.m.s.	We set became to a sitting conditions and three	
=xonation, 11//3 1.111.3.	K seat backrest position	S seat backrest position
	Peak	STHT
0.55	Vertical	direction
0,55	1.3712 (0.24729)	1.3531 (0.21683)
1,75	1.5683 (0.21504)	1.5765 (0.23821)
2,25	1.5625 (0.21838)	1.5917 (0.261098)
	Frequency corresponding	ng to peak vertical STHT
0,55	4.3538 (0.44653)	4.4654 (0.48821)
1,75	3.9465 (0.42359)	4.0292 (0.46202)
2,25	3.8187 (0.44275)	3.7083 (0.52413)
		aft direction
0,55	4.1283 (1.00486)	3.7322 (1.35024)
1,75	5.2121 (1.56796)	4.6400 (2.02077)
2,25	4.9024 (2.02906)	4.4159 (1.56561)
		ng to peak vertical STHT
0,55	5.4632 (1.30606)	5.7722 (0.99812)
1,75	5.1737 (0.68786)	5.4471 (1.06836)
2,25	4.8882 (0.63726)	5.0118 (0.63824)

The influence of excitation on prime resonance in vertical direction (Z) and in fore and aft direction is shown in figure 5. Change of seat backrest inclination has significant effects on resonance in vertical and fore and aft direction.

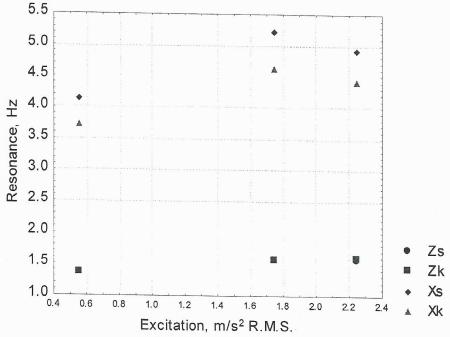


Figure 5 The influence of excitation and seatbackrest position on the first resonance in vertical (Z) and fore and aft direction (X)

The influence of excitation on magnitude in vertical direction (Z) and in fore and aft direction is shown in figure 6. Change of seat backrest inclination has significant effects on STHT magnitude in vertical and fore and aft direction. Differences are substantially higher in fore and aft direction. Increase of excitation magnitude caused reduction of STHT magnitude.

Figure 6 The influence of excitation and seatbackrest position on the magnitude of STHT in vertical (Z) and fore and aft direction (X)

Group of male subjects G70 mass in the range 66-75kg were analyzed in order to compare obtained results with results published in [3]. In [3] investigation was performed on group of male and group of female subjects. Effects of gender will be aim of future investigation. Comparison is conducted based on results obtained on group G70. Mass 71.4286 ±2.22125 kg, in the range 69 to 75 kg. Range of masses in the same as well in [3], but there is difference between anthropometry data.

Table 3 Descriptive statistics of G70

Variable	Mean	Minimum	Maximum	Std.Dev.
Mass, kg	71.4286	66.0000	75.0000	2.22121
Stature, m	1.7813	1.7200	1.8600	0.04969
Shoe number	42.1250	41.0000	43.0000	0.64087
Age, year	39.375(18.0000	52.0000	9.66492
BMI	22.461(20.5226	24.2123	1.42086

Table 4 Covariance of group G70

Variable	Mass, kg	Stature, m	ВМІ	Resonanc	STHTz./
Mass, kg	6.333333	-0.000000		-0.550000	
Stature, m	-0.00000(0.00152	-0.038257	0.010000	0.00112
BMI	1.994653	-0.038257	1.587968	-0.423644	-0.108569
Resonance, Hz	-0.55000(0.252222	
STHTz, /	-0.256667	0.00112	-0.108569	-0.014111	0.07774

DISCUSSION

The study, [1] employed 31 male and 27 female subjects with wide range of physical characteristics such as body mass (45.5–106.0 kg), stature (1.48–1.92 m), BMI (15.78–34.99 kg/m2), body fat mass (8.8–39.0 kg), lean body mass (34.1–77.5 kg) and hip circumference (88–116 cm), thereby facilitating the study of effects of anthropometry on the vertical and fore-aft STHT responses. Such wide variations in the anthropometric characteristics, in addition to the other contributory factors such as variations in the sitting posture, upper body-backrest contact and head orientations, most likely caused large variations in the primary resonance frequency, ranging from 4.13 to 6.00 Hz and 3.94 to 6.50 Hz for the NB and WB support, respectively, as observed from the vertical STHT responses. The fore-aft STHT responses also revealed broad variations in the frequency corresponding to the primary peak: 3.88 to 6.31 Hz and 3.56 to 6.06 Hz for K and S support, respectively.

In the presented study 30 male subjects took part with characteristics were: mass (60-113kg), stature (1.68-1.98cm), BMI (21.258-28.823 kg/m²), age (18-59 years).

The vertical and fore-aft STHT peak magnitudes reduced substantially when sitting condition was changed from S support to K support. (Table 1,3). The effect of sitting condition on vertical STHT response was more pronounced near the secondary resonance as compared to the primary resonance (Figure 3 and 4). Previous studies relating to the effects of a back support also suggested that sitting with a back rest suppresses the peak vertical STHT magnitude considerably compared to that obtained when sitting without a back support [3,4]. A backrest serves as an important constraint that limits the upper body motion in the sagittal plane and changes the related muscles tension, while it also represents as an additional driving-point. The use of a back support thus alters the vibration transmission properties of the body considerably. Furthermore, a backrest constraint could limit the pitch motion of the upper body and thereby alter the fore-aft vibration of the head, which would also depend upon the sitting height and phase relationship between the pitch and fore-aft body modes. This effect was evident for the subjects as seen in Figure 1 and 2.

The softening effect was more evident with increase in excitation from 0.5 to 1.75 m/s2, while this effect was smaller with increase in excitation from 1.75 to 2.25 m/s2.

The results also revealed substantial variability in the STHT magnitudes near the primary resonance frequency (peak CoV of 113.711% and 18.035% of the vertical and fore-aft STHT magnitudes, respectively, with S support.

The vertical STHT responses of most of the subjects revealed the presence of a secondary resonance peak in the 8–14 Hz range (Figure 2). Furthermore, this secondary peak was more prominent in the presence of a vertical back support (S), as seen in Figure 2, which has also been reported in earlier studies [3,4]. The fore-aft STHT responses of most of the subjects also depicted peaks in the 3 to 5.7 Hz ranges. The majority of these low magnitude peaks, however, could not be clearly observed from the mean data due to large variations in the corresponding frequency and the averaging process. The mean STHT responses of subjects with widely different anthropometric characteristics thus cannot be used to interpret the influences of physical attributes of subjects including the gender. Moreover, the mean responses do not fully describe individual subject's responses to WBV.

CONCLUSIONS

The peak magnitudes of both the STHT responses (vertical and fore and aft direction) were not correlated with any of the anthropometric parameters, irrespective of the sitting condition and vibration excitation. However, the primary resonance frequency was weakly and negatively correlated with the selected anthropometric parameters.

Poor correlations of anthropometric parameters with the primary resonance frequency and the peak STHT magnitude may be due to a variety of reasons. Human body is a very complex system and there was large variations among the recruited subjects in body dimensions as well body type (endomorphic, mesomorphic and ectomorphic), type of muscle fibers (slow twitch and fast twitch) Human subjects generally maintained normal upright posture during the experiments, but it was difficult to control whether they were sitting with tensed or relaxed muscles, and with the progress of the experiments, some subjects might have changed their posture involuntarily. Little changes in muscle tension or posture could alter the primary resonance frequency and the corresponding magnitude (iIntrasubjective variability), [4,5,6]. The WBV-induced head motion is particularly sensitive to postural changes, due to associated changes in muscle tension in the abdominal region, which in turn changes the body stiffness and thus the natural frequency of the body. The position of the seat in the WBVVS was fixed with respect to the steering wheel, considering the average size of the subjects. However, body dimensions of the subjects varied enormously. Therefore, it was a little bit difficult to maintain same erect posture with same body stiffness, particularly for very short subjects when sitting with a back support. Finally, the postural changes would also contribute to orientation errors of the head accelerometer, which was monitored only visually in the present study.

ACKNOWLEDGMENTS

This paper is part of the research included in the project: "The research of vehicle's safety as part of the cybernetic system: the driver-vehicle-environment", TR 35041, supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors would like to thank the Ministry for the financing of this project.

REFERENCES

[1] Bendat J. S. and Piersol A.G.: Engineering Applications of Correlation and Spectral analysis, John Wiley & Sons, New York, 1980.

- [2] Demić M., Lukić J., Milić Ž.: "Some Aspects of The Investigation of Random Vibration Influence on Ride Comfort", Journal of Sound and Vibration, Vol. 253, No 1, pp. 109-129, ISSN 0022460, Doi 10.1006/jsvi.2001.4252, 2002.
- [3] Dewangan K. N., Shahmir A., Rakheja S., Marcotte P.: "Vertical and Fore-Aft Seat-to-Head Transmissibility Response to Vertical Whole Body Vibration: Gender and Anthropometric Effects", Journal Of Low Frequency

- Noise, Vibration And Active Control, 2013, Vol. 32, No. 1+2, pp. 11-40

 [4] Griffin M. J.: "Handbook of Human Vibration", 1990, London, Academic Press

 [5] International Standardization Organization: Guide for the evaluation of human exposure to whole body vibration, ISO 2631/1, Geneva, 1997.
- [6] Lukić, J., 2001. Ride comfort parameter identification of passenger cars, Ph.D. Thesis, University of Kragujevac, Faculty of Mechanical engineering, Kragujevac.

ISBN 978-86-6335-010-6

