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 
Abstract: The human body, as a complex 

biomechanical system, is daily exposed to 
oscillatory movements. Vibrations are observed as 
small displacements of points compared to the 
dimensions of the system. The body's sensitivity 
to vibration depends on many factors, such as 
body position, muscle tension, frequency, 
amplitude, and direction of vibration. Comfort is 
one of the important factors in the study of the 
quality of the vehicle. Exposure to vibrations over 
a long time can seriously and permanently damage 
some organs of the body. In this paper, the 
influence of vibrations on the lumbar part of the 
human body was investigated. Vibrations were 
determined experimentally while the vehicle was 
moving on the highway for the case of two 
different speeds. A 3D computer model of a lumbar 
spine was developed using CT scans. The 
acceleration values obtained by the experiment 
were the input values for the numerical analysis of 
the lumbar spine using the Ansys software 
package. 
 

Index Terms: Vibration, measurements, lumbar 
spine, numerical analysis  

1. INTRODUCTION 

IBRATIONS are a form of mechanical wave 
motion. The energy of vibration is transmitted 

to the human body. The effect of vibrations 
results in side effects (physical and psychological 
disorders) which are especially pronounced in 
cases of prolonged exposure. Negative effects of 
vibration were observed in the twenties and 
thirties of the last century with the rapid 
development of industrial machines and motor 
vehicles. Whole-body vibrations (WBV)   
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occur when the body is in contact with a vibrating 
surface. Vibrations are transmitted to the whole 
body through the passenger's legs, the seat part 
and contact with the steering wheel. The 
magnitude of this vibration depends on the road 
surface, vehicle speed, and is transmitted to the 
occupants through all points of contact between 
them and the vehicle. Much research in recent 
decades has been devoted to investigating the 
effects of vibration and the effects it causes [1], 
[2], [3]. Whole-body vibrations are especially 
significant in the frequency range from 1 Hz to 80 
Hz. This frequency range also includes the main 
resonance points of individual organs and parts 
of the human body (eg head, eyes, abdomen, 
and spine) [4], [5]. Adverse effects of these 
vibrations are related to the appearance of 
several health problems, among which the most 
characteristic is back and neck pain. Whole-body 
vibrations in the region of extremely low 
frequencies (below 0.5 Hz) cause “seasickness” 
[6]. Body vibrations are one of the risk factors for 
spinal diseases. Prolonged exposure of the body 
to vertical vibrations can lead to harmful effects 
on the musculoskeletal system, while reiterated 
repetitions can lead to the development of 
pathological changes in the spinal column. The 
vibrations absorbed by the body lead to muscle 
contractions that can cause muscle fatigue, 
especially at resonant frequencies. Vertical 
vibrations in the range from 5Hz to 10Hz cause 
resonance in the thoracic abdominal system, 
from 4Hz to 8Hz in the spinal part, from 20Hz to 
30Hz in the area of the head and neck and from 
60Hz to 90Hz in the area of the eyeballs [7]. 

Low back pain (LBP) can be defined as 
unpleasant pain or stiffness of the lumbar spine 
[8]. Low back disorders are anatomical or 
neuromuscular changes that in some cases can 
include the sources of LBP. These include 
intervertebral disc herniations, spinal stenosis, 
osteoporosis, osteoarthritis, ankylosing 
spondylitis, and spondylolisthesis. Although a link 
between Whole-body vibrations (WBV) and LBP 
is generally accepted, there is no consensus as 
to the mechanism of injury [9]. One mechanism 
by which WBV may lead to LBP is through 
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changes in the system of spinal stability control. 
Such changes in the spine dynamics could lead 
to increased dynamic loads of the spine and 
increasing out-of-range compressive loads. In 
order to study the effects of WBV exposure, there 
is the need to quantify the vibration 
characteristics of the human body. The two 
primary characteristics of vibration are frequency 
and amplitude, and both have been shown to 
affect the human body differently. 

The spinal column is the longest part of the 
axial skeleton [10]. It gives the trunk strength and 
its elasticity allows it to move. The spinal column 
is built of vertebrae, between each of them there 
are discs that function as shock absorbers (Fig. 
1). 33-34 vertebrae are interconnected by joints, 
ligaments, and muscles into to form a spine. 
Depending on the part of the spine they build, 
they are divided into: Cervical (neck) (C1 ‐ C7); 
Thoracic (middle back) (T1 ‐ T12);  Lumbar 
(lower back) (L1 ‐ L5); Sacrum (S1 ‐ S5); and 
Coccyx (tailbone). The basic functional unit of the 
spinal column is the so-called vertebral dynamic 
segment consisting of two adjacent vertebrae, 
the intervertebral disc, two intervertebral joints, 
and ligaments that connect them tightly together 
to the disc.  

 
Fig. 1: Human spinal column 

 
For many years, computer simulations have 

been present to study the loads on the spine and 
the stresses that occur during the movement of a 
person or certain body positions he occupies 
while performing daily tasks. 

The aim of the study [11] was to estimate the 
load on the lumbar spine based on a model that 
accurately symulated this body part. The model 
was developed using the finite element method 
(FEM). FEM and Ansys 8.0 were used to develop 
a three-dimensional model of the musculoskeletal 
system of the human body. The lumbar spine 
was modeled in detail including the difference in 

structure between the lumbar vertebrae. Other 
elements of the trunk were shown schematically 
because the emphasis in this study was on the 
lumbar spine. The model consisted of six 
intervertebral discs (Th12 / L1 – L5 / S1), part of 
the sacral bone with the upper edge of the pelvis, 
part of the trunk above the intervertebral disc 
Th12 / L1, ligaments, and muscles. A simulation 
of two body positions has been developed; 
forward-leaning position and upright sitting 
position. After the simulation, the results showed 
forces that muscles develop and stresses in the 
intervertebral discs and lumbar vertebrae. 
Computer calculations showed that the stresses 
and compressive forces in the intervertebral discs 
increased with increasing load force. Also, these 
forces were significantly higher in the bent 
forward position than in the upright body position. 

In this paper [12], a simulation of lumbar spine 
movement with serially connected parallel 
manipulators is proposed. The analysis of the 
structure of the human spine and its movements 
was calculated to simulate the movements and 
forces acting on the lumbar spine. A mechanical 
model with human spine parameters was 
designed using the characteristics of parallel 
manipulators and spring stiffness. The curvature 
(curvature) of the spine is an important aspect of 
the functionality of the human spine. The 
proposed model can include curvature inputs in 
the configuration of the entire spine model using 
proper relative positioning and movement of 
parallel manipulator units. The human spine 
model is modeled as a multi-module parallel 
manipulator with 3D-designed vertebrae. The 3D 
model was made in SolidWorks and then 
exported to the ADAMS software package to run 
the dynamic simulation. In ADAMS, the disc is 
modeled as a body attached to the vertebrae. 
The result of this work was a 3D model of the 
human spine used to simulate the behavior of 
intervertebral discs and muscle and tendon 
movements. The simulation results can provide 
an estimate of the forces supported by the 
intervertebral discs during the movement of the 
right spine. Another result of this work can be 
recognized in the provision of a virtual model that 
physicians can use to preliminarily study the 
functionality of the human spine or as an aid in 
the biomechanical study of torso functionality. 

In this paper [13], a lumbar spine is presented 
as a hybrid model, which enables static and 
dynamic simulations of disc pressure and spine 
mobility. It consisted of five lumbar vertebrae (L1-
L5) that meet the L5-based sacral spine C1. 
Each pair of vertebrae is separated by an 
intervertebral disc and connected by a pair of 
ground joints and a set of ligaments. The 
geometry was taken from the bodyparts3d 
database where all models are connected to 
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calculate the FEM volumetric network of disks. All 
simulations were done using the SOFA library. 
Dynamic simulations were performed with the 
implicit Euler integration scheme. This work 
aimed to combine rigid bodies, finite elements as 
deformable bodies, joint constraints and springs 
into a spine model. Each vertebra is represented 
by a rigid body. The tetrahedral finite element 
was used for disks mesh. Brushed (faceted) 
joints are presented as elastic joints with six 
degrees of freedom, while the ligament is 
modeled using nonlinear one-dimensional elastic 
elements. The hybrid model presented in this 
paper greatly simplifies the modeling task and 
speeds up the simulation of the pressure inside 
the disks. This research represents the first step 
of a long process leading to solving biomedical 
problems. The model in this paper emphasizes 
the assumption of vertebral simplification 
because non-deformable body curls do not lead 
to loss of accuracy in movement quality, range of 
motion, and intradiscal pressure produced by the 
lumbar segment in three anatomical planes. 

With the progress and development of new 
technologies, new possibilities for monitoring the 
movement of certain parts of the body have been 
introduced, and thus, a better understanding of 
their behavior. Modern smartphones contain 
powerful sensors for measuring physical 
phenomena in the environment where they are 
placed. Acceleration sensors placed into 
smartphones are increasingly being used in 
laboratories. In this study, using a mobile phone 
we measured the vibrations that occur in the 
body of the driver driving on an asphalt road. 
After that, we modeled the 3D model of the 
human lumbar spine, according to the real 
dimensions. Finally, we applied to the model  a 
measured acceleration in order to study the Von 
Misses stresses of the human lumbar spine.. 

2. MATERIALS AND METHODS 

A. Numerical Part 

A 3D computer model of a lumbar spine was 
developed using CT scans. The CT scans were 
read into Mimics 17.0 (Materialize Inc., Leuven, 
Belgium) visualization software, where the 
images were segmented by the threshold to 
obtain a 3D model (Fig. 2). 

 

 
 

Fig. 2: The process for the 3D FE model - CT scan  
and 3D reconstruction 

 
Several stages make up this whole process: 
acquisition of CT images, segmentation of CT 
images and contours detection, generating 3D 
models, processing the 3D models, creating a 
mesh of finite elements, and setting boundary 
conditions. Ansys R14.5 was used to produce 3D 
mesh (Fig. 3). Linear tetrahedron was used as 
the final element, where the field of displacement 
over the tetrahedral element is determined by the 
three components ux, uy and uz. These 
displacements are linearly interpolated over the 
element from the node values: 
 

1
11 12 13 141

2
2 21 22 23 24

3
3 31 32 33 34

4

N
u u u uu

N
u u u u u

N
u u u u u

N

 
    
         
       

 

    (1) 

 
where N1, N2, N3, N4 are interpolation functions 
that are simply the coordinates of the 
tetrahedron; and u11,…., u34 are nodal 
displacements. 
Finite element mesh consists of three groups of 
elements: finite elements that represent cortical 
bone, finite elements that represent nucleus and 
finite elements that represent annulus. 
Mechanical properties assigned to the each 
material are summarized in Table 1 [14], [15]. 
 

Name of the 
component 

Young’s 
Modulus 

[MPa] 

Poisson’s 
ratio 

Cortical bone 12000 0.3 
Nucleus 1 0.49 
Annulus 4.2 0.45 

 
Table 1: Material properties 
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Fig. 3: 3D model of the human lumbar spine 

 
One of the basic principles of continuum 
mechanics is the principle of virtual work.  
Starting from the equilibrium equations [16] by 
applying the boundary conditions, virtual work of 
internal and external forces can be equal 
 

int extW W          (2) 
 

Virtual work of the previous equation in matrix 
form can be written as: 
 

int
T

V

W dV   e σ
      (3) 

 iT V T S T
ext

iV S

W dV dV


      u F u F u F
   

 
where we used the relation for the deformation 
components 
 

(4) 
 
Applying the principle of virtual work and the 
constitutive relations for linear elastic material in 
matrix form 

 
σ Ce         (5) 

 
and by applying the concept of isoparametric 
interpolation [16]  in the finite element, we can 
write the equation of equilibrium finite elements 
as 
 

extKU F         (6) 
 

where K is element stiffness matrix, C - elastic 
constitutive matrix, e = BU - matrix deformation, 
U - displacements at the nodes, Fext - external 
forces in the element nodes.  

The equations of motion of a material system 
can be written by applying the principle of virtual 
work, taking into account the action of inertial 
forces. The elementary volume inertial force is: 

 
ind dm dV   F u u       (7) 

 
When the influence of inertial forces is taken 

into account, the virtual work of external forces is: 
 

   iT V T S T
ext

iV S

W dV dV


        u F u u F u F

(8) 
 

By time differentiation of equation (1) we obtain 
interpolations for velocities and accelerations of 
points: 

 

u NU           (9) 

u NU            (10) 
 

where are: 

u   - velocity of the material point in the element, 

u  - acceleration of the material point in the 
element, 

U - speed in nodes, 

U - acceleration in nodes 
 
By applying equation (1) for u, the equality of 
virtual works of external and internal forces will 
have the following form: 
 

   iT V T S T
ext

iV S

W dV dV


        u F u u F u F  

 (11) 
 
that is: 

 

 MU KU F      (12) 
 

where M is the finite element mass matrix. 
 
The previous equation can also be written in the 
following form: 
 

   1i it t t t t t
ext int

     MU K U F F  (13) 

 
In the linear analysis of solids, a basic 
assumption is that the moving solids are 
infinitesimally small and that the material is 
linearly elastic. Also, the assumption is that the 
nature of the boundary conditions remains 
unchanged under the action of external loads. 
Under these assumptions, the equation of 
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equilibrium is derived for finite element structural 
analysis. 
 

B. Experimental Part 

In this research we used vehicle RENAULT 
Megane 3. The car was driven on asphalt, on the 
straight highway Kragujevac - Batocina. All 
vibration measurements were written down using 
a Samsung Duos 3 phone at the position shown 
in Fig. 4. 
 

 
 

Fig. 4: The position of the smartphone  
and 3 accelerometer axes 

 
Accelerometers used in this smartphone is 

highly miniaturised and measure the acceleration 
around three axes. It is a digital, triaxial ±2g to 
±16g sensor BMA 250, (dimensions 2mm x 2mm, 
height 0.95 mm), with intelligent on-chip motion-
triggered interrupt controller, 10bit resolution  and 
a sample frequency from 7.81 Hz to 1 kHz [7]. 
The typical temperature measurement range is -
40°C up to 87.5°C. VibSensor application was 
used to measure vibrations. This application 
makes collecting, analyzing, and exporting high-
quality accelerometer data easy. The experiment 
included two driving speeds: 70 and 110 km/h. 
The following section will show the results of the 
two driving modes. 

 
The boundary conditions are defined so that 

the weight of the upper body (2/3 of the total 
weight) is set on the upper part of the L1 
vertebrae, while the acceleration measured on 
the three-axis accelerators is set on the sacrum. 
Fig. 5 presents the input boundary conditions 
given to the mobile device. 
 

   
Fig. 5: The input boundary conditions obtained to the mobile 

device; measured vibrations for the velocities of 70 km/h (left) 
and 110 km/h (right). 

 
 

3. RESULTS 

In this section, we present the results of 
numerical simulation. A numerical analysis of the 
impact of vibration on the human lumbar spine 
was carried out using the software package 
Ansys R14.5. Fig. 6 show von Misses stress 
distribution on the L4 and L5 vertebral body while 
driving speed was 70 km/h. The emphasis is on 
that part of the spine because most of the 
problems occur in that lower back when the 
driver is exposed to prolonged driving combined 
with continuous vibration action. Based on this 
analysis, it is clear that the highest load is on the 
vertebral body L5, so the highest recorded von 
Misses stress is 0.45 Mpa, mean 0.19 Mpa. 
Observing the vertebral body L4, slightly lower 
values were observed, so the mean von Misses 
stress value in that part was 0.14 MPa. 

 

 
 
Fig. 6: Von Misses stress distribution along the vertebral body 

L4 and L5 during driving speed of 70 km/h 

 
Fig. 7 show von Misses stress distribution on 

the L4 and L5 vertebral sections during driving at 
speed of 110 km/h. From the figure it can be 
concluded that a drastic increase in speed leads 
to a lower load on the spine. This is a 
consequence of the fact that at high speeds there 
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is a vibration reduction, so significantly less 
vibration (caused by bumpy roads) is transmitted 
to the body of the driver. The bigest load, in this 
case, is also on the vertebral body L5. The 
highest recorded von Misses stress is 0.36 Mpa, 
mean 0.12 Mpa. Observing the vertebral body 
L4, slightly lower values were observed, so the 
mean von Misses stress value in that part was 
0.08 MPa. 

 

 
 

Fig. 7: Von Misses stress distribution along the vertebral body 
L4 and L5 during driving speed of 110 km/h 

 
Fig. 8 shows the load of 5 intravertebral discs 

of the lumbar spine when speed was 70 km / h. 
The figure shows the S1-L5, L5-L4, L4-L3, L3-L2, 
and L2-L1 discs. It can be seen that the S1-L5 
disk is the most loaded, as well as the L5-L4 disk. 
The highest von Misses stress value is 1.42 MPa.  
 

 
 

Fig. 8: Von Misses stress distibution along the 
intravertebral discs of lumbar spine during driving speed  

of 70 km/h 

The mean von Misses stress of the intravertebral 
disc S1-L5 is 0.89 MPa, then of the disc L5-L4 
0.46 MPa, and much less of disc L4-L3 0.11 
MPa. This proves once again that the lower back, 
i.e., the lumbar spine with an emphasis on the 
L4-L5 region, suffers the greatest loads while 
driving a car. 

4. CONCLUSION 

The FEA performed in this study demonstrated 
pattern of von Misses stress distribution through 
the human lumbar spine during drives with 
different car speeds. Using a smartphone, we 
measured the vibrations and studied the impact 
on the modeled 3D model of the human spine. 
Results of this study, for the car speed of 70 
km/h, showed that the mean von Misses stress of 
0.19 MPa was on the vertebral body L5, while in 
the same case, the mean von Misses stress of 
0.14 MPa was observed on the vertebral body 
L4. In the second case, a drastic increase in 
speed led to a lower load on the spine. The 
results showed that the mean values of the von 
Mises stress decreased, for the L5 disk the stress 
was 0.12 MPa, and for the L4 disk it was 0.08 
MPa. We also showed the way of von Mises 
stress distribution in the case of intervertebral 
discs of the lumbar region. It has been observed 
that the highest loads during body vibrations 
when driving are on the S1-L5 disc as well as on 
the L5-L4 disc. The mean von Misses stress 
values of these discs were 0.89 MPa and 0.46 
MPa, respectively.  

The finite element method provides excellent 
opportunities to study the behavior of the spine 
during several daily activities. Conducted results 
give a clearer picture of the impact of vibrations 
on the human spine and its main parts. It would 
be interesting to see how the seating angle 
affects the amount of load while driving a car. 
Our future research will go in that direction.  
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