

UNIVERSITY OF NOVI SAD, FACULTY OF TECHNICAL SCIENCES, NOVI SAD, SERBIA
POLITEHNICA UNIVERSITY TIMISOARA, FACULTY OF ENGINEERING, HUNEDOARA, ROMANIA
UNIVERSITY OF SZEGED, FACULTY OF ENGINEERING, SZEGED, HUNGARY

THE 9TH INTERNATIONAL SYMPOSIUM
MACHINE AND INDUSTRIAL DESIGN IN MECHANICAL ENGINEERING

PROCEEDINGS

9

9 - 12 June 2016, Hotel Marina, Balatonfüred, Hungary

University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
Politehnica University Timisoara, Faculty of Engineering, Hunedoara, Romania
University of Szeged, Faculty of Engineering, Szeged, Hungary

The Ninth International Symposium

KOD 2016

Machine and Industrial Design in Mechanical Engineering

PROCEEDINGS

The logo for ADEKO, featuring the word "ADEKO" in a bold, sans-serif font. To the left of "ADEKO" are three stylized, overlapping circles.

Association for Design, Elements
and Constructions

Naziv izdanja: Proceedings – the Ninth International Symposium “KOD 2016”

Izdavač: Faculty of Technical Sciences – Novi Sad, Serbia

Štampa: Futura d.o.o, Petrovaradin, Serbia

CIP – Katalogizacija u publikaciji
Biblioteka Matice srpske, Novi Sad

658.512.2 (082)
7.05:62 (082)

INTERNATIONAL Symposium about Machine and Industrial Design in
Mechanical Engineering (9; 2016; Balatonfüred)

Proceedings / The Ninth International Symposium [about] Machine and Industrial
Design in Mechanical Engineering, KOD 2016, 9–12 June, 2016, Balatonfüred,
Hungary ; [organizers] University of Novi Sad, Faculty of Technical Sciences [and]
Politehnica University Timisoara, Faculty of Engineering, Hunedoara [and] University
of Szeged, Faculty of Engineering, Szeged [and] ADEKO. – Novi Sad : Faculty of
Technical Sciences, 2016 (Petrovaradin : Futura). – IV, 242 str. : ilustr. ; 30 cm

Tekst štampan dvostubačno. – Slike autora. – Tiraž 100. – Bibliografija uz svaki rad.
– Registar.

ISBN 978-86-7892-821-5

1. Faculty of Technical Sciences (Novi Sad)
2. Faculty of Engineering (Hunedoara)
3. Faculty of Engineering (Szeged)
 - a) Industrijski proizvodi – Konstruisanje – Zbornici
 - b) Industrijski dizajn – Zbornici

COBISS.SR-ID 305903111

All the publications in this Proceedings have the authorship, whereas the authors of the papers carry entire responsibility
for originality and content.

The use of some items or complete papers is permitted only if the source is given.

Dear Ladies and Gentlemen, respectable Colleagues and Friends of KOD,

It is a real pleasure and great honor for us to greet You on behalf of the Organizing Committee of the Ninth International Symposium about machine and industrial design in mechanical engineering – KOD 2016. This year, symposium KOD, for the third time, takes place in Hotel Marina in Balatonfüred, Hungary on 9th and 12th June 2016, and I would like to thank You for participating in it.

As we all know, the basic goal of this event is to assemble experienced researchers and practitioners from universities, scientific institutes and different enterprises and organizations from this region. Also, it should initiate more intensive cooperation and exchanging of practical professional experiences in the field of shaping, forming and design in mechanical and graphical engineering, industrial design and shaping, product development and management. Having always present need for making more effective, simpler, smaller, easier, noiseless, cheaper and more beautiful and esthetic products that can easily be recycled and are not harmful for environment, the cooperation between specialists of these fields should certainly be intensive.

Fifty articles are published in the Proceedings. It is the same number of papers as in last symposium. This means our colleagues and friends of KOD are always active. Of course, we believe that time for organizing symposium has not passed and we want to prove it. However, published papers are very interesting, contribute to the understanding of design building relationships across multidisciplinary design domains including engineering and product development, innovation, manufacturing, management, complexity, human behaviour and system design, so that means these topics have potentials and have to be further researched.

Thank You for coming in Balatonfüred to take part in symposium KOD 2016 and for Your interesting articles. I wish You success in Your further researching and great fortune and happiness in personal life.

Prof. D.Sc. Siniša Kuzmanović, Eng.

Prof. D.Sc. Imre Kiss, Eng.

Prof. D.Sc. Istvan Biro, Eng.

Chairmen of the Organizing Committee of KOD

Balatonfüred, 9th June 2016

ORGANIZERS

Chairmen of Scientific Committee:

Siniša KUZMANOVIĆ
Faculty of Technical Sciences, UNS, Novi Sad

Imre KISS
Faculty of Engineering, PU, Timisoara

Istvan BIRO
Faculty of Engineering, US, Szeged

Chairmen of Programme Committee:

Carmen ALIC
Faculty of Engineering, PU, Timisoara

József SÁROSI
Faculty of Engineering, US, Szeged

Milan RACKOV
Faculty of Technical Sciences, UNS, Novi Sad

WITH SUPPORT OF:

ADEKO – Association for Design, Elements and Constructions

WITH SUPPORT OF THE JOURNAL:

MACHINE DESIGN, ISSN 1821-1259

WITH SUPPORT OF THE INTERNATIONAL PROJECTS:

CEEPUS – Central European Exchange Program for University Studies
CIII-RS-0304; CIII-PL-0033; CIII-BG-0703; CIII-BG-0722

SCIENTIFIC COMMITTEE

Zoran ANIŠIĆ	Novi Sad	Stanislav LEGUTKO	Poznan
Kyrill ARNAUDOW	Sofia	Zoran MARINKOVIĆ	Niš
Ranko ANTUNOVIĆ	East Sarajevo	Nenad MARJANOVIC	Kragujevac
Ljiljana BEJU	Sibiu	Biljana MARKOVIĆ	East Sarajevo
Mirko BLAGOJEVIĆ	Kragujevac	Štefan MEDVECKY	Žilina
Ilare BORDEAȘU	Timisoara	Gyula MESTER	Szeged
Marian BORZAN	Cluj Napoca	Zoran MILOJEVIĆ	Novi Sad
Radoš BULATOVIĆ	Podgorica	Vojislav MILTENOVIC	Niš
Norbert BURKARDT	Karlsruhe	Radivoje MITROVIĆ	Belgrade
Ilija ČOSIĆ	Novi Sad	Slobodan NAVALUŠIĆ	Novi Sad
Maja ČAVIĆ	Novi Sad	Peter NENOV	Rousse
Gergely DEZSO	Nyíregyháza	Dragoljub NOVAKOVIĆ	Novi Sad
Lubomir DIMITROV	Sofia	Milenko OBAD	Mostar
Rade DOROSLOVAČKI	Novi Sad	Milosav OGNJANOVIC	Belgrade
Mircea-Viorel DRAGOI	Brasov	Miroslav PLANČAK	Novi Sad
Milosav GEORGJEVIĆ	Novi Sad	Victor E. STARZHINSKY	Gomel
Tale GERAMITCIOSKI	Bitola	Stefan STEFANOV	Sofia
Veniamin GOLDFARB	Izhevsk	Maria Felicia SUCALA	Cluj Napoca
Ladislav GULAN	Bratislava	Rastislav ŠOSTAKOV	Novi Sad
Csaba GYENGE	Cluj Napoca	Milan TICA	Banja Luka
Miodrag HADŽISTEVIĆ	Novi Sad	Radoslav TOMOVIĆ	Podgorica
Sava IANICI	Resita	Andrei TUDOR	Bucharest
Milan IKONIĆ	Rijeka	Lucian TUDOSE	Cluj Napoca
Lozica IVANOVIĆ	Kragujevac	Krasimir TUJAROV	Russe
Juliana JAVOROVA	Sofia	Karol VELISEK	Trnava
Danica JOSIFOVIĆ	Kragujevac	Miroslav VEREŠ	Bratislava
Miomir JOVANOVIĆ	Niš	Simon VILMOS	Budapest
Milan KOSTIĆ	Novi Sad	Dragiša VILOTIĆ	Novi Sad
Božidar KRIŽAN	Rijeka	Jovan VLADIĆ	Novi Sad
Kosta KRSMANOVIĆ	Belgrade	Adisa VUČINA	Mostar
Sergey A. LAGUTIN	Moscow	Milan ZELJKOVIĆ	Novi Sad
Tihomir LATINOVIC	Banja Luka		

ORGANIZING COMMITTEE

Aleksandar MILTENOVIC, Niš
Milan BANIĆ, Niš

Žarko MIŠKOVIĆ, Belgrade
Ivan KNEŽEVIĆ, Novi Sad

CONTENTS:

1. DESIGN OF AUTOMOTIVE GEARBOX WITH TOP PROPERTIES BASED AT HYBRID AND CVT APPROACH	
Milosav OGNJANOVIĆ, Dragan DŽODAN	1
2. FORMATION OF A VIRTUAL DESIGN DEPARTMENT FOR DEVELOPMENT OF HIGH-TECH PRODUCTS IN AN SME	
Gorazd HLEBANJA, Marjan JENKO	7
3. COST ESTIMATION IN THE EARLY STAGE OF PRODUCT DEVELOPMENT	
Dejan LUKIC, Mijodrag MILOŠEVIĆ, Jovan VUKMAN, Stevo BOROJEVIĆ, Mića ĐURĐEV, Aco ANTIĆ	13
4. IMPROVEMENT OF E-LEARNING PROCESS OF PACKAGING RAPID PROTOTYPING COMPUTER NUMERICAL CONTROL MACHINE SYSTEMS	
Dragoljub NOVAKOVIĆ, Ivan PINČER, Stefan ĐURĐEV, Gojko VLADIĆ, Nemanja KAŠIKOVIĆ, Uroš NEDELJKOVIĆ	19
5. DEVELOPMENT OF IMPROVED WEEL HUB PROTOTYPE THROUGH IDEALAB PLATFORM FOR STUDENTS'S CONTEST	
Zoran ANIŠIĆ, Igor FÜRSTNER, Atila NAĐ, Nemanja SREMČEV, László GOGOLÁK	23
6. TRANSFORMING PRODUCT-CONSUMER COMMUNICATION TROUGH AUGMENTED REALITY TECHNOLOGY	
Gojko VLADIĆ, Dragoljub NOVAKOVIĆ, Nemanja KAŠIKOVIĆ, Ivan PINČER, Stefan ĐURĐEV	29
7. A NEW CONCEPT OF BICYCLE FRAME DESIGN	
Marija MATEJIC, Milos MATEJIC, Marijana MILICEVIC, Lozica IVANOVIC	33
8. 3D MODELLING OF CONSTRUCTION TOWER CRANE	
Stefan ILIC, Nenad MILORADOVIC, Rodoljub VUJANAC	37
9. STRUCTURAL SYNTHESIS OF THE MANIPULATOR OF THE THERMOFORMING MACHINE	
Maja ČAVIĆ, Marko PENČIĆ, Miodrag ZLOKOLICA	41
10. ANALYSIS OF THE CONCEPTUAL SOLUTIONS OF BIOMASS PELLET MILL	
Marko PENČIĆ, Maja ČAVIĆ, Miodrag ZLOKOLICA	45
11. DETERMINATION OF BASIC MECHANICAL PARAMETERS OF THE TRACTOR TYRE BY USING UNIVERSAL APPROACH	
Boris STOJIĆ, Aleksandar POZNIĆ	49
12. STRESS AND STRAIN STATE OF CYCLOID GEAR UNDER DYNAMIC LOADS	
Mirko BLAGOJEVIĆ, Miloš MATEJIĆ	55
13. USE OF SUN-AND-PLANET MECHANISM IN EDUCATIVE SYSTEM	
Dušan JEŠIĆ, Pavel KOVAČ, Borislav SAVKOVIĆ, Marin GOSTIMIROVIĆ, Ivan SOVILJ-NIKIĆ	59

14. EFFICIENCY AS AN EXPRESSION OF PLANETARY GEAR TRAIN ENERGY LOSSES	
Jelena STEFANOVIĆ-MARINOVIC, Sanjin TROHA, Miloš MILOVANČEVIĆ	63
15. LOAD CAPACITY OF CYLINDRICAL WORM GEARS ACCORDING TO DIN 3996-2012	
Aleksandar MILTENOVIĆ, Milan BANIĆ, Đorđe MILTENOVIĆ	67
16. ANALYSIS OF SELECTION PROCEDURES OF UNIVERSAL WORM GEAR UNITS	
Siniša KUZMANOVIĆ, Milan RACKOV, Ivan KNEŽEVIĆ, Miroslav VEREŠ	73
17. NUMERICAL ANALYSIS OF MOTORCYCLE SUSPENSION SYSTEM	
Slavica MAČUŽIĆ, Jovanka LUKIĆ	79
18. INFLUENCE OF VANES SHAPE ON FLOW VELOCITY OF VENTILATED DISC IN HEAVY TRUCK BRAKING	
Nadica STOJANOVIC, Jasna GLISOVIC, Ivan GRUJIC	83
19. A COMPUTER PROGRAM FOR THE VISUALIZATION OF IC ENGINE CRANKSHAFT MAIN BEARINGS LOAD	
Nebojša NIKOLIĆ, Jovan DORIĆ, Mitar JOCANOVIĆ	89
20. NONLINEAR KINEMATICS OF ENGINE CRANK-PISTON MECHANISM	
Ivan GRUJIC, Danijela MILORADOVIC, Nadica STOJANOVIC	93
21. DYNAMIC ANALYSIS AND PARAMETRIC OPTIMISATION OF THE CONNECTING ROD USING AUTODESK INVENTOR	
Vasile George CIOATĂ, Imre KISS	99
22. NEW INTERNAL COMBUSTION ENGINE	
Jovan DORIĆ, Nebojša NIKOLIĆ	105
23. STUDY ON BEHAVIOUR IN SERVICE OF DIESEL ENGINES AND ASPECTS CONCERNING THEIR MAINTENANCE	
Olimpia COROIAN	109
24. GASODYNAMIC STUDY OF THE INTAKE ROUTE AT A SPARK-IGNITION ENGINE	
Sorin RATIU, Vasile ALEXA	113
25. ON MAGNETORHEOLOGICAL BRAKE FEM MODELING	
Aleksandar POZNIC, Danijela MILORADOVIC, Boris STOJIC	117
26. THE INFLUENCE OF THE ECCENTRICITY ON SAFETY COEFFICIENT ON A BUTTERFLY VALVE BIPLANE DISC	
Tiberiu Štefan MĂNESCU, Cristian Marius MIMIȘ, Zeno-Iosif PRAISACH	123
27. DIRECTIONAL DEFORMATION OF THE BIPLANE DISC BY MOVING THE ECCENTRICITY	
Cristian Marius MIMIȘ	127
28. GEOMETRY CHARACTERISTICS OF HUMAN BODY MODEL SUITABLE FOR SIMULATION OF THERMAL COMFORT IN AN AGRICULTURAL VEHICLE	
Dragan RUŽIĆ, Mirko SIMIKIĆ	131

29. DEVELOPMENT AND MANUFACTURING OF SENSOR CASES FOR MEMS INERTIAL MEASUREMENT UNITS	
Florin CORCIOVA, Gheorghe-Daniel VOINEA, Andrei MARCU, Ivan KNEŽEVIĆ, Milan RACKOV	137
30. AUTOMATIC TECHNOLOGY FOR GLUING CERAMIC HOBS	
Gábor PINTYE, Gheorghe ACHIMĂŞ, Csaba GYENGE	143
31. COMPARISON OF DIFFERENT FLUDIC MUSCLES	
József SÁROSI	147
32. LUBRICATION REGIME INFLUENCE ON COLD STAMPING PARTS	
Silviu Dan AVRAM ,Silviu Răzvan AVRAM, Tiberiu Ștefan MĂNESCU	151
33. APPLICATION OF RAPID PROTOTYPING IN MAXILLOFACIAL SURGERY	
Aleksandar DIMIC, Zarko MISKOVIC, Drago JELOVAC, Radivoje MITROVIC, Mileta RISTIVOJEVIC, Marija MAJSTOROVIC	157
34. CAVITATION EROSION BEHAVIOR OF THE STEEL 17CrNiMo6	
Ilare BORDEASU, Mircea Octavian POPOVICIU, Cristian GHERA, Laura Cornelia SALCIANU, Lavinia Madalina MICU, Corneliu Eusebiu PODOLEANU	163
35. LINEAR ELECTRIC MOTORS – NEW POSSIBILITIES FOR SMART LINEAR MOTION	
László GOGOLÁK, Igor FÜRSTNER	169
36. ANALYSIS OF NEW TECHNICAL SOLUTION IN PROCESS OF DETOXIFICATION ELV FROM ENVIRONMENTAL ASPECT	
Miroslav VULIĆ, Eleonora DESNICA, Aleksandar TOMOVIĆ	173
37. ESTIMATION BY FUZZY LOGIC OF ABRASIVE WEAR PROPERTIES OF COATED VALVES SURFACES BY TIG WELDING	
Hakan GÜRUN, Uğur ARABACI	177
38. END-MILLING FORCE CONTROL SYSTEM WITH SURFACE ROUGHNESS MONITORING	
Uros ZUPERL, Franc CUS	181
39. CLAMPING AND SUSPEND SYSTEMS TO MANIPULATIONS DOCKING RAMPS	
Vasile ALEXA, Sorin RATIU	185
40. EXTERNAL FACTORS INFLUENCE ON THE METAL COFFERDAM WALLS PROTECTING RIVERS IN CASE OF NATURAL DISASTERS	
Silviu Răzvan AVRAM	189
41. INNOVATIVE, SAFE AND COST-EFFICIENT LIGHT-WEIGHTING SOLUTIONS IN THE AUTOMOTIVE WHEEL MANUFACTURING	
Imre KISS, Vasile George CIOATA	193
42. COMPUTER-AIDED STRIP LAYOUT FOR PIERCING AND CUTTING DIES	
Onur ÇAVUŞOĞLU, Gökhan KÜÇÜKTÜRK	199
43. OPTIMIZATION OF PROCESS PARAMETERS OF SURFACE ROUGHNESS IN AL-7075 DRILLING PROCESS	
Ramazan ÇAKIROĞLU, Adem ACIR	203

44. DETERMINATION OF OPTIMUM PARAMETERS OF CUTTING FORCE IN DRILLING OF B₄C ALUMINUM COMPOSITE WITH TAGUCHI METHOD	
Adem ACIR, Ramazan ÇAKIROĞLU, Yakup YURGUT, Selçuk YAĞMUR	207
45. EFFECTS OF CUTTING PARAMETERS ON THE CUTTING FORCE AND TORQUE IN DRILLING OF AISI D2 STEEL	
İsmail TEKAÜT, Halil DEMR, Hacı Bekir ÖZERKAN, Ulvi ŞEKER	211
46. AN EXPERIMENTAL STUDY OF THE EFFECT OF ABRASIVE WATER JET AND LASER BEAM ON THE SURFACE INTEGRITY	
Duran KAYA, Gökhan KÜÇÜKTÜRK, H. Bekir ÖZERKAN	217
47. TIP-JET HELICOPTER PROPULSION SYSTEM TESTING	
Nenad KOLAREVIĆ, Nebojša KOSANOVIĆ, Marko MILOŠ	221
48. MODULAR CONSTRUCTION OF CIRCULAR MANIPULATOR AS A TEST BED FOR TESTING PNEUMATIC CONTROL	
Vule RELJIC, Dragan SESLIJA, Jovan SULC, Brajan BAJCI, Slobodan DUDIC, Ivana MILENKOVIC	225
49. INVESTIGATION OF MACHINING CARBON FIBER REINFORCED COMPOSITE MATERIALS WITH SOLID CEMENTITE CARBIDE TOOLS	
Selçuk YAĞMUR, Yafes ÇAVUŞ, Abdullah KURT, Hasan Basri ULAŞ, Ulvi ŞEKER	229
50. RISK ASSESSMENT EMISSION OF POLLUTION FROM ROAD TRANSPORT IN THE URBAN AREA CITY OF ZRENJANIN IN THE AIM OF ENVIRONMENT PROTECTION – USING THE SOFTWARE ADMS-ROADS	
Aleksandar ĐURIĆ, Miroslav VULIĆ, Una MARČETA, Bogdana VUJIĆ, Milan PAVLOVIĆ	235
INDEX	241

NUMERICAL ANALYSIS OF MOTORCYCLE SUSPENSION SYSTEM

Slavica MAČUŽIĆ
Jovanka LUKIĆ

Abstract: A shock absorber is the main part of a vehicle suspension system. This mechanical device has a role to reduce the bumpy road shocks and enable a more comfortable ride. In this study we investigated the behavior of a shock absorber, that is installed on the motorcycle, with three different material of helical springs. 3D model was created using Catia v5 r18. Numerical simulation was done by Ansys workbench 12.0. The results of von Mises stress, deformation and shear stress, in the case of three different materials of coil spring, are analyzed and presented.

Key words: shock absorber, suspension system, helical spring, finite element method

1. INTRODUCTION

A shock absorber presents a mechanical or hydraulic device that is designed to absorb the holes and bumps on the road. Kinetic energy of the shock is transformed into another form of energy, for example, in the heat, and then performs dissipation. A coil spring, as the main part of the shock absorber, is defined as an elastic body. Spring has a role to compress when loaded, and to return to the initial state, when the load disappears. In this study, we used three different materials of helical coil spring: structural steel, spring steel and chromium-vanadium steel. The last two materials are increasingly used in the suspension system. It is very important to determine which steel gives better results in real conditions.

2. LITERATURE REVIEW

A large number of researchers studying the suspension system of the vehicle. The goal is to design an optimal shock absorbers and using quality materials of helical coil, get better vehicle performance.

The authors [2] have presented an analysis of the shock absorber before and after optimization design. They executed the change in diameter of the coil and the use of

two materials showed how different loads affect the operation of the damper.

The author [3] observed the behavior of spring steel as the main material coils. It is a new material, invented by Japanese researchers, that has application in the suspension system. They concluded that spring steel having very high ultimate tensile strength.

Another author [4] has studied the behavior of the shock absorber when using two different materials coils. These materials are structural steel and aluminum alloy. A comparison was made for the same boundary conditions, and the result of research shows that best material for shock absorber is the steel.

As it is known, a composite material made from two or more constituent materials with significantly different physical or chemical properties. The resulting material has a better structure than the individual components. Recent research [5] studying composite materials. It was concluded that composite materials may find use in suspension systems because they have high strength, high stiffness and low weight.

3. MATERIALS AND METHODS

3.1. Model definition

A 3D computer model of a shock absorber was developed using the CATIA v5 r18. The total height is 336 mm. Helical coil spring has the following physical characteristics:

- height 220 mm,
- diameter of wire 10 mm,
- total number of coils 10,
- outer diameter of spring coil 70 mm.

Figure 1 show 3D geometry of a shock absorber.

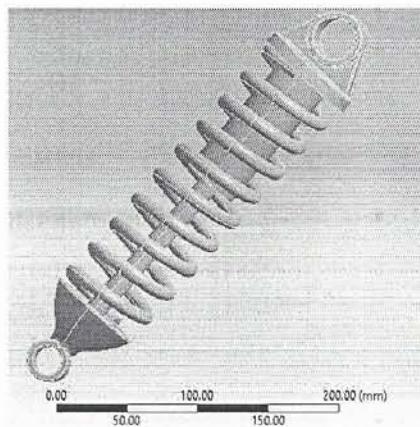


Fig. 1. Geometry of shock absorber

Weight of motorcycle is 125 kg. In this study, it is assumed that a vehicle has two passenger of 75 kg. Rear suspension absorbs 60% of the total weight, and the force that acting on the shock absorber has a value of 1618 N. One end of the model is fixed, while at the other end acts mentioned value of the force.

3.2. Material definition

Numerical simulations were conducted with three different materials of helical spring. The following

materials are used: structural steel, spring steel and chromium-vanadium steel. Table 1 shows main properties of used materials.

Table 1. Properties of materials [6], [7]

Properties	Structural steel	Spring steel	Chromium-vanadium steel
Young's Modulus (MPa)	2E+05	2.02E+05	2.1E+05
Density (kg/m ³)	7850	7820	7800
Poisson's ratio	0.3	0.29	0.29
Tensile strength (MPa)	460	570	940
Yield Strength (MPa)	250	360	620

3.3. Finite element formulation

Finite element has become the most popular method for the investigation of the suspension system of the vehicle. This method solves a large number of differential equations to calculate von Mises stress and deformation of the model. The method has been widely used to predict mechanical behavior of shock absorber in various driving situations such as driving over rough road, or sudden braking.

Principle of virtual work is one of the basic principles of continuum mechanics. Applying the boundary conditions in the equilibrium equations [8] virtual work of internal and external forces can be equal, and we have

$$\delta W_{int} = \delta W_{ext} \quad (1)$$

Matrix form of virtual work of the previous equation can be written as

$$\delta W_{int} = \int_V \delta \mathbf{e}^T \boldsymbol{\sigma} dV$$

$$\delta W_{ext} = \int_V \delta \mathbf{u}^T \mathbf{F}^V dV + \int_{S^{\sigma} \setminus A} \delta \mathbf{u}^T \mathbf{F}^S dV + \sum_i \delta \mathbf{u}^T \mathbf{F}^{(i)} \quad (2)$$

Applying the principle of virtual work and the constitutive relations for linear elastic material in matrix form, we have

$$\boldsymbol{\sigma} = \mathbf{C} \mathbf{e} \quad (3)$$

Applying the concept of isoparametric interpolation [9] in the finite element, we can write the equation of equilibrium finite elements

$$\mathbf{KU} = \mathbf{F}_{ext} \quad (4)$$

where K is element stiffness matrix, U displacements at the nodes and \mathbf{F}_{ext} - external forces in the element nodes. A basic assumption in the linear analysis of solids is that

the moving solids is infinitesimally small, the material is linearly elastic, and that the nature of the boundary conditions remain unchanged under the action of external loads. About that, last equation is related to the linear analysis of solids because the moving of the nodes is linear function of external forces.

4. RESULTS

Numerical simulation was done using Ansys workbench 12.0. Linear tetrahedral element was used as the final element. Finite element mesh consists of 138962 nodes and 77881 elements.

Numerical solutions of von Mises stress, deformations and shear stress are shown in the following figures. Figures 2, 3 and 4 shown result of simulations for the case when the material of helical spring is structural steel.

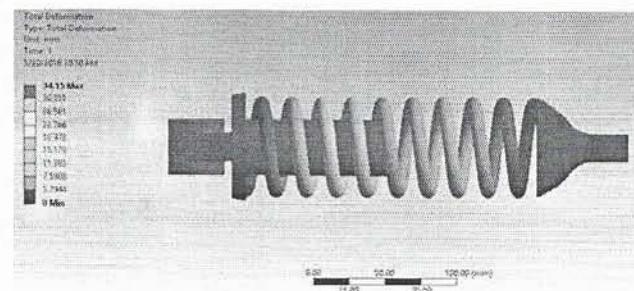


Fig.2. Total deformation of shock absorber for the first case

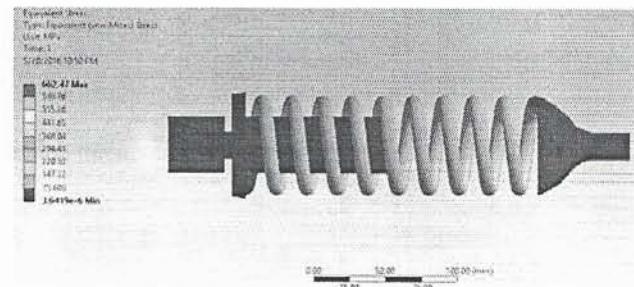


Fig.3. Von Mises stress of shock absorber for the first case

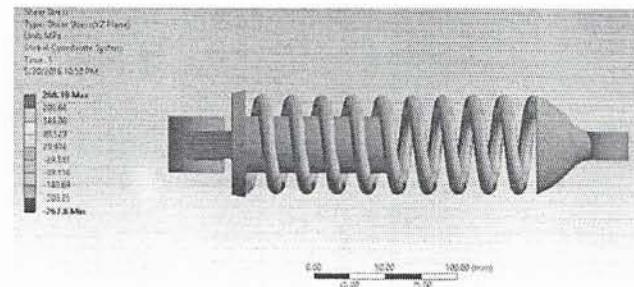


Fig.4. Shear stress of shock absorber for the first case

Figure 2 shows that the largest displacement appears in an area where the force is applied. The highest recorded value is 34.15 mm. Maximum von Mises stress (662.47 MPa) is developed at the inner side of the helical spring (Fig. 3). The maximum value of shear stress, 268.19 MPa, is recorded on a part of the helical spring which comes into contact with other parts of the coils during the compression process.

The simulation results for the second case, ie, when the material of coil is spring steel, are shown in the following three pictures.



Fig.5. Total deformation of shock absorber for the second case

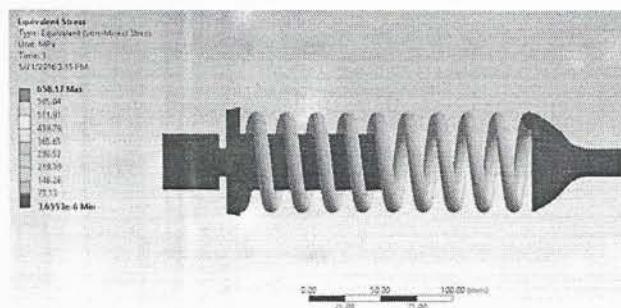


Fig.6. Von Mises stress of shock absorber for the second case

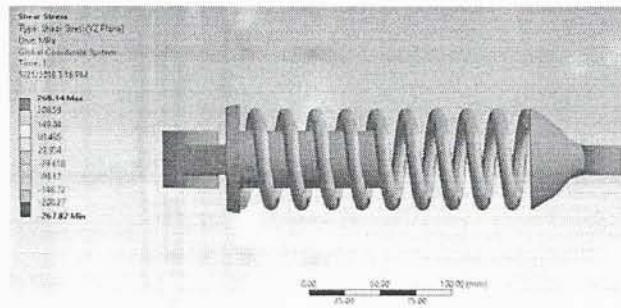


Fig.7. Shear stress of shock absorber for the second case

Results of the second case, show the same von Mises stress distribution, deformations and the shear stress. Maximum deformation is 33.61 mm, while von Mises stress has maximum value 658.17 MPa. Shear stress of shock absorber has maximum value 268.14 MPa. Finally, the third case involves the use of chromium-vanadium steel materials. The simulation results are shown in the following figures.

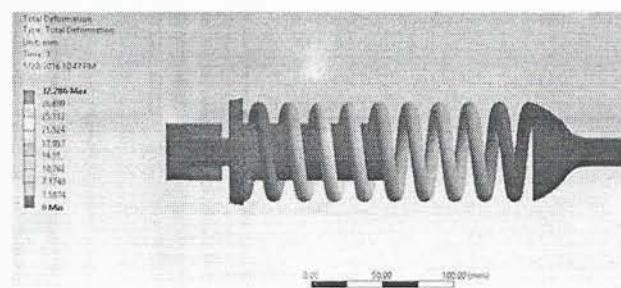


Fig.8. Total deformation of shock absorber for the third case

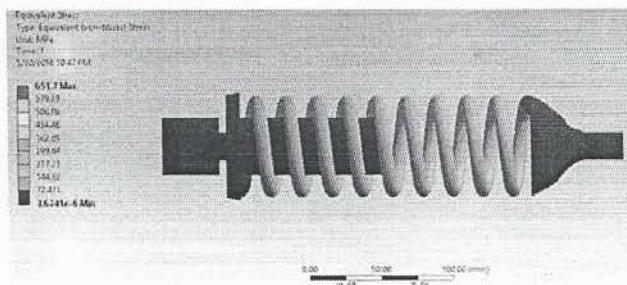


Fig.9. Von Mises stress of shock absorber for the third case

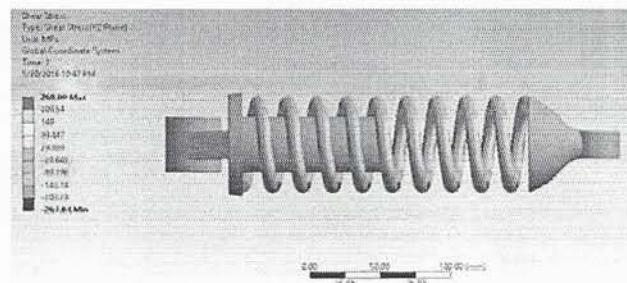


Fig.10. Shear stress of shock absorber for the third case

Fig. 8 shows that the deformations are smallest in this case, and have the maximum value of 12.29 mm. Also, the maximum value of von Mises stress (651.7 MPa) is smaller than in the previous two cases. Shear stress also has a lower maximum value (268.09 MPa). Next figure showed that the best solution, as the material of helical coils, is chromium-vanadium steel, because during the compression springs observed the smallest deformations (Fig. 11).

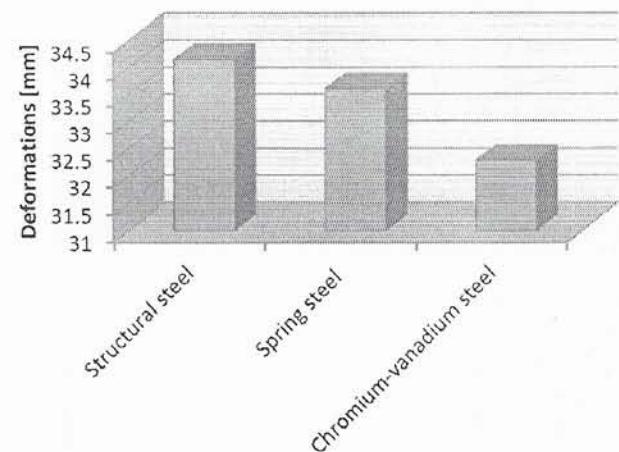


Fig.11. Comparison of the obtained deformations

5. CONCLUSION

In this study, we studied the behavior of the shock absorber in case loads its own weight and the weight of two passengers. In numerical simulations, we used three different materials spring: structural steel, spring steel and chromium-vanadium steel.

Results of the analysis showed that the best solution, as the material of helical springs, is chromium-vanadium steel, because during the compression springs observed the smallest deformations and von Mises stress.

Our future research will be in the direction of optimization design springs, and testing of dynamic loads. It would be interesting to find a solution by optimizing the design in order to find the application of materials that give a poor results during workloads.

ACKNOWLEDGEMENT

This research supported by the Ministry of Education, Science and Technological Development of Republic of Serbia through Grant TR35041.

REFERENCES

- [1] Martande, S.; Jangale, Y. N. & Motagi, N. S. (2013). Design and Analysis of Shock Absorber. *International Journal of Application or Innovation in Engineering and Management (IJAEM)*, Vol. 2, No. 3, page numbers 197-199
- [2] Prince Jerome Christopher, J. & Pavendhan, R. (2014). Design and analysis of two wheeler shock absorber coil spring. *Discovery*, Vol. 23, No. 78, page numbers 102-107
- [3] Bathias, C. & Paris Paul C. (2004). *Gigacycle fatigue in mechanical practice*, CRC Press, 0-8247-2313-9, New York
- [4] Raddy, S.; Thontaraj Urs T.S. (2008). Comparative Study of Static Structural Analysis of a Shock Absorber for Different Material, *International Journal of Engineering Science and Innovative Technology IJESIT*, Vol. 3, No. 6, page number 632, 2319-5967
- [5] Krishan, K. & Chawla. (2012) *Composite Materials*, Springer-Verlag, 978-1-4757-2966-5, New York
- [6] <http://www.makeitfrom.com/material-properties/Normalized-6150-Chromium-Vanadium-Steel>, Accessed on: 2016-05-22
- [7] ANSYS® Academic Research, Release 12.0, Help System, Workbench Guide, ANSYS, Inc.
- [8] Kojic, M.; Filipovic, N.; Stojanovic, B. & Kojic, N. (2008). *Computer Modeling in Bioengineering - Theoretical Background, Examples and Software*, John Wiley and Sons, 978-0-470-06035-3, Chichester, England
- [9] Bathe, K. J. (1996). *Finite Element Procedures*, Prentice - Hall, Inc., 097900490X, Englewood Cliffs, N.J.

CORRESPONDENCE

Slavica MACUZIC, phd student
University of Kragujevac
Faculty of Engineering
Sestre Janjic 6
34000 Kragujevac, Serbia
slavicamacuzic89@gmail.com

Jovanka LUKIC, prof. Ph.D.
University of Kragujevac
Faculty of Engineering
Sestre Janjic 6
34000 Kragujevac, Serbia
lukicj@kg.ac.rs

INDEX

A

1. Gheorghe ACHIMĂŞ 143
2. Adem ACIR 203, 207
3. Vasile ALEXA 113, 185
4. Zoran ANIŠIĆ 23
5. Aco ANTIĆ 13
6. Uğur ARABAÇI 177
7. Silviu Dan AVRAM 151
8. Silviu Răzvan AVRAM 151, 189

B

9. Brajan BAJCI 225
10. Milan BANIĆ 67
11. Mirko BLAGOJEVIC 55
12. Ilare BORDEAŞU 163
13. Stevo BOROJEVIĆ 13

C, Č, Č

14. Ramazan ÇAKIROĞLU 203, 207
15. Maja ČAVIĆ 41, 45
16. Yafes ÇAVUŞ 229
17. Onur ÇAVUŞOĞLU 199
18. Vasile George CIOATA 99, 193
19. Florin CORCIOVA 137
20. Olimpia COROIAN 109
21. Franc CUS 181

D, Đ, DŽ

22. Halil DEMR 211
23. Eleonora DESNICA 173
24. Aleksandar DIMIC 157
25. Jovan DORIĆ 89, 105
26. Slobodan DUDIC 225
27. Mića ĐURĐEV 13
28. Stefan ĐURĐEVIĆ 19, 29
29. Aleksandar ĐURIĆ 235
30. Dragan DŽODAN 1

F

31. Igor FÜRSTNER 23, 169

G

32. Cristian GHERA 163
33. Jasna GLISOVIC 83
34. László GOGOLÁK 23, 169
35. Marin GOSTIMIROVIC 59
36. Ivan GRUJIC 83, 93
37. Hakan GÜRUN 177
38. Csaba GYENGE 143

H

39. Gorazd HLEBANJA 7

I

40. Stefan ILIC 37
41. Lozica IVANOVIC 33

J

42. Drago JELOVAC 157
43. Marjan JENKO 7
44. Dušan JEŠIĆ 59
45. Mitar JOCANOVIC 89

K

46. Nemanja KAŠIKOVIĆ 19, 29
47. Duran KAYA 217
48. Imre KISS 99, 193
49. Ivan KNEŽEVIĆ 73, 137
50. Nenad KOLAREVIĆ 221
51. Nebojša KOSANOVIĆ 221
52. Pavel KOVAČ 59
53. Gökhan KÜÇÜKTÜRK 199, 217
54. Abdullah KURT 229
55. Siniša KUZMANOVIĆ 73

L

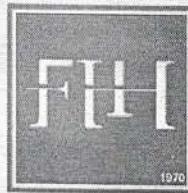
56. Dejan LUKIC 13
57. Jovanka LUKIĆ 79

M

58. Slavica MAČUŽIĆ 79
59. Marija MAJSTOROVIC 157
60. Tiberiu Stefan MĂNESCU 123, 151
61. Una MARČETA 235
62. Andrei MARCU 137
63. Marija MATEJIC 33
64. Milos MATEJIC 33, 55
65. Lavinia Madalina MICU 163
66. Ivana MILENKOVIC 225
67. Marijana MILICEVIC 33
68. Danijela MILORADOVIC 93, 117
69. Nenad MILORADOVIC 37
70. Marko MILOŠ 221
71. Mijodrag MILOŠEVIĆ 13
72. Miloš MILOVANČEVIĆ 63
73. Aleksandar MILTENOVIĆ 67
74. Đorđe MILTENOVIĆ 67
75. Cristian Marius MIMIŠ 123, 127
76. Žarko MIŠKOVIĆ 157
77. Radivoje MITROVIC 157

N

78. Atila NAD 23
79. Uroš NEDELJKOVIĆ 19
80. Nebojša NIKOLIĆ 89, 105
81. Dragoljub NOVAKOVIĆ 19, 29


O

82. Milosav OGNJANOVIC 1
83. Hacı Bekir ÖZERKAN 211, 217

P

84. Milan PAVLOVIĆ 235

85.	Marko PENČIĆ	41, 45	107.	Boris STOJIĆ	49, 117
86.	Ivan PINČJER	19, 29	108.	Jovan SULC	225
87.	Gábor PINTYE	143	T		
88.	Corneliu E. PODOLEANU	163	109.	İsmail TEKAÜT	211
89.	Mircea Octavian POPOVICIU	163	110.	Aleksandar TOMOVIĆ	173
90.	Aleksandar POZNIĆ	49, 117	111.	Sanjin TROHA	63
91.	Zeno-Iosif PRAISACH	123	U		
R					
92.	Milan RACKOV	73, 137	112.	Hasan Basri ULAŞ	229
93.	Sorin RAȚIU	113, 185	V		
94.	Vule RELJIC	225	113.	Miroslav VEREŠ	73
95.	Mileta RISTIVOJEVIC	157	114.	Gojko VLADIĆ	19, 29
96.	Dragan RUŽIĆ	131	115.	Gheorghe-Daniel VOINEA	137
S, Š					
97.	Laura Cornelia SALCIANU	163	116.	Rodoljub VUJANAC	37
98.	József SÁROSI	147	117.	Bogdana VUJIĆ	235
99.	Borislav SAVKOVIĆ	59	118.	Jovan VUKMAN	13
100.	Ulvi ŞEKER	211, 229	119.	Miroslav VULIĆ	173, 235
101.	Dragan SESLIJA	225	Y		
102.	Mirko SIMIKIĆ	131	120.	Selçuk YAĞMUR	207, 229
103.	Ivan SOVILJ-NIKIĆ	59	121.	Yakup YURGUT	207
104.	Nemanja SREMČEV	23	Z, Ž		
105.	Jelena STEFANOVIĆ-MARINOVIC	63	122.	Miodrag ZLOKOLICA	41, 45
106.	Nadica STOJANOVIC	83, 93	123.	Uros ZUPERL	181

Symposium KOD 2016 is supported by:

- ADEKO - Association for Design, Elements and Construction
- journal Machine Design
- Int.project CEEPUS: CIII-RS-0304; CIII-PL-0033;
CIII-BG-0703; CIII-BG-0722

oooADEKO

National symposiums:

1. KOD 2000 - May 24th 2000 in Novi Sad, 21 papers
2. KOD 2002 - May 22nd 2002 in Novi Kneževac, 36 papers
3. KOD 2004 - May 19th 2004, in Novi Sad, 43 papers

With international participation:

4. KOD 2006 - May 30-31 2006 in Palić, 79 papers

International symposium:

5. KOD 2008 - April 15-16 2008 in Novi Sad, 103 papers
6. KOD 2010 - 29-30 September 2010 in Palić, 69 papers
7. KOD 2012 - 24-26 May 2012 in Balatonfüred, 106 papers
8. KOD 2014 - 12-15.June 2014 in Balatonfüred, 51 papers

