

International Congress Motor Vehicles & Motors 2016

VEHICLE AS A KEY FACTOR IN TRANSPORTATION

Proceedings

Ministry of Education,
Science and Technological Development

October 6th - 7th, 2016
Kragujevac, Serbia

**International Congress
Motor Vehicles & Motors 2016**

**VEHICLE AS A KEY FACTOR
IN TRANSPORTATION**

PROCEEDINGS

October 6th - 7th, 2016
Kragujevac, Serbia

Publisher: Faculty of Engineering, University of Kragujevac
Serbia, 34000 Kragujevac, Street Sestre Janjić 6

For Publisher: Dr Dobrica Milovanović, prof. - Dean

Editors: Dr Jovanka Lukić, prof.
Dr Dragan Taranović, assist. prof.

Technical preparation: Dr Dragan Taranović, assist. prof.

Picture on the cover: Nemanja Lazarević

Print CD: Faculty of Engineering, University of Kragujevac, Kragujevac
ISBN 978-86-6335-037-3

Year of publication: 2016.

Number of copies printed: 200

CIP - Каталогизација у публикацији - Народна библиотека Србије, Београд

629.3(082)(0.034.2)
621.43(082)(0.034.2)

INTERNATIONAL Congress Motor Vehicles & Motors (6 ; 2016 ; Kragujevac)
Vehicle as a Key Factor in Transportation [Elektronski izvor] :
proceedings / International Congress Motor Vehicles & Motors 2016, [6th],
October 6th - 7th, 2016 Kragujevac ; [editors Jovanka Lukić, Dragan
Taranović]. - Kragujevac : Faculty of Engineering, 2016 (Kragujevac :
Faculty of Engineering). - 1 elektronski optički disk (DVD) ; 12 cm

Sistemski zahtevi: Nisu navedeni. - Tiraž 200. - Nasl. sa naslovne strane
dokumenta. - Bibliografija uz svaki rad.

ISBN 978-86-6335-037-3

a) Моторна возила - Зборници b) Моторни са унутрашњим сагоревањем -
Зборници
COBISS.SR-ID 226303756
--

Copyright © 2016 Faculty of Engineering, University of Kragujevac

Publishing of this book is supported by:

Ministry of Education, Science and Technological Development of the Republic of Serbia

SCIENTIFIC BOARD

- President:** Prof. Jovaka Lukić, Ph.D., FE Kragujevac, Serbia
- Secretaries:** Assist. prof. Danijela Miloradović, Ph.D., UniKg, FE, Serbia
Assist. prof. Jasna Glišović, Ph.D., UniKg, FE, Serbia
- Members:** Prof. Paul Andre, Ph.D., AQE Group, USA
Prof. Giovanni Belingardi, Ph.D., PoliTo, Italy
Prof. Bruno Dalla Chiara, Ph.D., PoliTo, Italy
Prof. Murat Ciniviz, Ph.D., SelUni, FT, Turkey
Assist. prof. Aleksandar Davinić, Ph.D., UniKg, FE, Serbia
Prof. Miroslav Demić, Ph.D., UniKG, FE, Serbia
Prof. Radan Durković, Ph.D., UniM, FME, Montenegro
Prof. Ivan Filipović, Ph.D., UniSa, FME, Bosnia and Herzegovina
Assist. prof. Jasna Glišović, Ph.D., UniKg, FE, Serbia
Prof. Dusan Gruden, Ph.D., TUV, Austria
Prof. Emil Hnatko, Ph.D., UniOs, FME Slavonski Brod, Croatia
Prof. Aleksandra Janković, Ph.D., UniKg, FE, Serbia
Prof. Zoran Jovanović, Ph.D., UniBg, Vinča INS, Serbia
Prof. Breda Kegl, Ph.D., UniMa, Slovenia
Prof. Božidar Krstić, Ph.D., UniKg, FE, Serbia
Prof. Vladimir Medica, Ph.D., UniRi, FE, Croatia
Assist. prof. Danijela Miloradović, Ph.D., UniKg, FE, Serbia
Assoc. prof. Slavko Muždeka, Ph.D., UniDef, MA, Serbia
Prof. Aleksandar Novikov, Ph.D., PSUni, Russia
Prof. Patrizio Nuccio, Ph.D., PoliTo, Italy
Prof. Radivoje Pešić, Ph.D., UniKg, FE, Serbia
Prof. Snežana Petković, Ph.D., UniBL, FME, Republic of Srpska, Bosnia and Herzegovina
Prof. Stojan Petrović, Ph.D., UniBg, FME, Serbia
Prof. Dragoljub Radonjić, Ph.D., UniKg, FE, Serbia
Prof. Rajko Radonjić, Ph.D., UniKg, FE, Serbia
Assist. prof. Dragan Ružić, Ph.D., UniNS, FTS, Serbia
Prof. Konstantinos Spentzas, Ph.D., NTUA, Greece
Assist. prof. Dragan Taranović, Ph.D., UniKg, FE, Serbia
Prof. Miroljub Tomić, Ph.D., UniBg, Vinča INS, Serbia
Prof. Stevan Veinović, Ph.D., UniKg, FE, Serbia
Prof. Milan Vujanić, Ph.D., UniBg, FTTE, Serbia

ORGANIZATIONAL BOARD

- President:** Assist. prof. Dr Dragan Taranović, Ph.D., FE Kragujevac, Serbia
- Secretaries:** Assist. prof. Danijela Miloradović, Ph.D., UniKg, FE, Serbia
Assist. prof. Jasna Glišović, Ph.D., UniKg, FE, Serbia

CONGRESS ORGANIZERS

- University of Kragujevac, Faculty of Engineering
- Department for Motor Vehicles and Motors, FE in Kragujevac
- International Journal "Mobility & Vehicle Mechanics"

CONGRESS PATRONS

- Government of the Republic of Serbia, Ministry of Education, Science and Technological Development,
- University of Kragujevac, Faculty of Engineering
- Road Traffic Safety Agency of the Republic of Serbia
- Centre for technical proper function of vehicles, FME Kragujevac

CONTENT

Predgovor	1
Foreword	2

INTRODUCTORY LECTURES

MVM2014-IL1	Dušan Gruden	DESIGN FOR RECYCLING – THINKING OF THE END AT THE BEGINNING	5
MVM2014-IL2	Ralph Pütz	THE VEHICLE AS A KEY FACTOR IN TRANSPORTATION ON THE EVE OF AN EPOCHAL PARADIGM SHIFT	17

SECTION A Power Train Technology

MVM2016_009	Slobodan Mišanović Slaven Tica Željko Milković Pavle Krstić Branko Milovanović	ECOLOGY AND ENERGY ASPECTS OF EXPLOITATION FULLY ELECTRICAL BUSES ON THE NEW LINE IN PUBLIC TRANSPORTATION BELGRADE	33
MVM2016_010	Rosen Hristov Krasimir Bogdanov Radostin Dimitrov	RESEARCH THE INFLUENCE OF SPARK PLUGS TYPES ON THE PERFORMANCE OF THE ENGINE OPERATING ON GASEOUS FUELS	41
MVM2016_013	Boran Pikula Dževad Bibić Ivan Filipović Mirza Smailbegović	ELECTRIC KARTING – FROM AN IDEA TO THE REALISATION	47
MVM2016_017	Nebojša Nikolić Jovan Dorić Nenad Raspopović	INFLUENCE OF AIR LEAKAGE IN THE AIR-INTAKE SYSTEM ON SOME OPERATION PARAMETERS OF AN AUTOMOBILE SPARK-IGNITION ENGINE	51
MVM2016_018	Jovan Dorić Nebojša Nikolić Stjepan Galamboš	UNCONVENTIONAL FLAT DOUBLE ACTING I.C. ENGINE	57
MVM2016_023	Branka Grozdanić Velimir Petrović Zlata Bracanović Đuro Borak	INSTALLED POWER ON PTO AS PROPERTIES FOR FAIR TRACTOR AGGREGATING	65
MVM2016_025	Zlata Bracanović Velimir Petrović Branka Grozdanić Đuro Borak	INFLUENCE OF MIXING AIR AND FUEL ON USAGE EFFICIENCY IN DIESEL ENGINE HEATER	71
MVM2016_032	Almir Blažević Ivan Filipović Dževad Bibić Boran Pikula	POSSIBILITIES OF USING DYNAMIC TORSIONAL VIBRATION DAMPERS WITH SPRINGS IN IC ENGINES FOR ROAD VEHICLES	79

MVM2016_033	Mikhail G. Shatrov Leonid N. Golubkov Andrey U. Dunin Pavel V. Dushkin Andrey L. Yakovenko	HYDRODYNAMIC EFFECTS IN COMMON RAIL FUEL SYSTEM IN CASE OF MULTIPLE INJECTION OF DIFFERENT FUELS	87
MVM2016_035	Saša Milojević Radivoje Pešić Dragan Taranović	FIRE PROTECTION OF BUSES ON NATURAL GAS EXPERIENCES	97
MVM2016_041	Zlatomir Živanović	PERSPECTIVES OF APPLICATION OF FUEL CELL ELECTRIC BUSES – SOME EXPERIENCES FROM THEIR OPERATION	107
MVM2016_044	Dragan Taranović Slobodan Mišanović Radivoje Pešić Slaven Tica	DEVELOPEMENT TENDENCIES FOR ELECTRICITY STORAGE SYSTEMS USED ON BUSES WITH PURE ELECTRIC DRIVE	119
MVM2016_045	Ivan Grujić Dragan Taranović Radivoje Pešić Nadica Stojanović	ECONOMIC ANALYSIS OF APPLICATION OF HYBRID DRIVE TRAINS IN VEHICLES	127
MVM2016_046	Nenad Kostić Nenad Marjanović Nenad Petrović	A NOVEL APPROACH FOR SOLVING GEAR TRAIN OPTIMIZATION PROBLEM	133
MVM2016_048	Vanja Šušteršić Dušan Gordić Mladen Josijević Vladimir Vukašinović	APPLICATION AND DESIGN OF HYDROTRANSMISSION FOR TRACTORS	139
MVM2016_059	Milan Bukvić Živojin Petrović Blaža Stojanović Saša Milojević	MODELS AND SIMULATIONS OF TRANSMISSION OF HYBRID AND ELECTRIC VEHICLES	149

SECTION B Vehicle Design and Manufacturing

MVM2016_008	Aleksandar Poznić Danijela Miloradović Dejana Herceg	ON MAGNETORHEOLOGICAL MULTI-POLE MULTI-T-ROTOR BRAKE FEM MODELLING	159
MVM2016_042	Marko Denić Zorica Đorđević Vesna Marjanović Nenad Petrović Nenad Kostić	COMPARATIVE COMPOSITE AND CONVENTIONAL DRIVE SHAFT ANALYSIS	167
MVM2016_053	Aleksandar Radaković Dragan Milosavljević Gordana Bogdanović Dragan Čukanović Vladimir Geroski	FREE VIBRATIONS ANALYSIS OF COMPOSITE LAMINATE PLATES USED IN AUTOMOTIVE INDUSTRY	173
MVM2016_054	Gordana Bogdanović Dragan Milosavljević Aleksandar Radaković Dragan Čukanović Vladimir Geroski	ACOUSTICAL TENSOR AND ELASTIC WAVE PROPAGATION IN ANISOTROPIC MATERIALS USED IN AUTOMOTIVE INDUSTRY	181
MVM2016_055	Mališa Cvetković Miloš Matejić Mirko Blagojević	RAPID PROTOTYPING OF CYCLOID DISC	187

SECTION C

Vehicle Dynamics and Intelligent Control Systems

MVM2016_003	Slavica Mačužić Danijela Miloradović Jovanka Lukić Jasna Glišović	FEM MODELLING OF MCPHEARSON SUSPENSION SYSTEM	195
MVM2016_006	Igor Saveljić Slavica Mačužić Nenad Filipović	NUMERICAL ANALYSIS OF BRAKE DISCS WITH DIFFERENT ANGLES OF BLADE INCLINATION	201
MVM2016_011	Rajko Radonjić Danijela Miloradović Dragoljub Radonjić	MODELING OF ROAD ROUGHNESS A BASE FOR VEHICLE PERFORMANCES OPTIMIZATION	207
MVM2016_012	Rajko Radonjić Danijela Miloradović Aleksandra Janković Dragan Taranović	INVESTIGATION OF VEHICLE RESPONSE TO DRIVER CONTROL	217
MVM2016_020	Nabil Khetou Aleksandar Grkic Slavko Muzdeka	MODELLING AND VALIDATION OF GROUND VEHICLE DYNAMICS USING MULTIBODY SIMULATION	227
MVM2016_036	Boris Stojić Aleksandar Poznić	RESEARCH AND MODELLING OF TRACTOR TYRE RADIAL DEFLECTION AND GROUND CONTACT LENGTH RESPONSE TO VERTICAL LOAD	235
MVM2016_060	Marko Topalović Vladimir Milovanović Aleksandar Djisić Ana Pavlović Miroslav Živković	NUMERICAL SIMULATIONS FOR ADDRESSING FLAWS IN THE FREIGHT WAGON DESIGN, ACHIEVING GOAL OF INCREASED EXPLOITATION FUNCTIONALITY	241
MVM2016_062	Milan Blagojević Miroslav Živković Saša Jovanović	CALIBRATION CERTIFICATION OF VEHICLE WHEEL ALIGNMENT LINE USING PHOTOGRAMMETRY	247

SECTION D

Driver/Vehicle Interface, Information and Assistance Systems

MVM2016_002	Zoran Marjanović Miomir Raos Jelena Milenović Nikolić	ECOLOGICAL CHARACTERISTICS OF ALTERNATIVE MOTOR VEHICLES	257
MVM2016_005	Igor Saveljić Slavica Mačužić Nenad Filipović	NUMERICAL ANALYSIS OF THE CHILD LUMBAR SPINE MOVEMENTS IN THE MOTOR VEHICLE CRASH	263
MVM2016_007	Zoran Papić Vuk Bogdanović Goran Štetić Nenad Saulić	ESTIMATION OF EES VALUES BY VEHICLE 3D MODELING	267
MVM2016_015	Stjepan Galamboš Jovan Dorić Dragan Ružić	WIND EFFECTS ON THE AGRICULTURAL SPRAYING USING CFD SIMULATIONS	277

MVM2016_016	Novikov Aleksandr Nikolaevich Katunin Andrev Aleksandrovich Tebekin Maxim Dmitrievich	MODERN METHODS OF DIAGNOSING THE TECHNICAL CONDITION OF BALL JOINTS	283
MVM2016_027	Lozica Ivanović Slavica Miladinović Blaža Stojanović Miloš Matejić	APPLICATION OF MAGNETIC TRANSMISSION IN AUTOMOTIVE INDUSTRY	289
MVM2016_030	Marko Tanasićević Jovanka Lukić	MODERN HVAC SYSTEMS IN SMALL AND MEDIUM SIZE BUSES	299
MVM2016_047	Aleksandar Peulic Zeljko Jovanovic	SMART SYSTEM FOR COMFORT PREDICTION AND ACTIVE SUSPENSIONS CONTROL	313
MVM2016_057	Danijela Miloradović Jasna Glišović Jovanka Lukić	REGULATIONS ON ROAD VEHICLE NOISE – TRENDS AND FUTURE ACTIVITIES	321
MVM2016_058	Dragan Ružić Stjepan Galamboš	THERMAL RADIATION BETWEEN THE DRIVER AND THE VEHICLE CABIN INTERIOR	331
MVM2016_061	Nadica Stojanović Jovanka Lukić Jasna Glišović Ivan Grujić	NUMERICAL ANALYSYS OF HIGH FREQUENCY NOISE OF DISC BRAKES FOR HEAVY DUTY VEHICLES	339
MVM2016_065	Ivan Krstić Ranko Božićković Vojislav Krstić Božidar Krstić	AUTOMATIZATION PROCESS OF GIVING DIAGNOSIS MOTOR VEHICLES	345

SECTION E

Transport Challenges in Emerging Economies

MVM2016_001	Perić Sreten Nedić Bogdan Stoiljković Mile Antunović Ranko	THE ANALYTICAL COMPOSITION OF THE BIODEGRADABLE UNIVERSAL TRACTOR OIL BASED ON THE VEGETABLE OILS	355
MVM2016_004	Slobodan Mišanović	DETERMINATION THE NORMS OF FUEL CONSUMPTION FOR BUSES IN THE PUBLIC TRANSPORTATION IN REAL CONDITIONS OF EXPLOITATION	365
MVM2016_034	Stevan Jovanović Dragan Knežević	THE COMPARATIVE ANALYSIS OF THE CUMULATIVE COSTS OF THE DIFFERENT DIESEL BUS ALTERNATIVES IN THE PUBLIC TRANSPORT OF BELGRADE	375
MVM2016_038	N. Ramesh Babu Harish M.	A STUDY OF RURAL PUBLIC TRANSPORT SYSTEM – A CASE STUDY OF MYSORE AND CHAMARAJANAGAR DISTRICTS	387
MVM2016_040	Isak Karabegović Ermin Husak	CHINA AS A LEADING COUNTRY IN THE WORLD IN AUTOMATION OF AUTOMOTIVE INDUSTRY MANUFACTURING PROCESSES	397
MVM2016_052	Snezana Petkovic Valentina Golubovic- Bugarski Zeljko Djuric Branko Miladinovic	IMPROVEMENT OF VEHICLE INSPECTION TECHNOLOGY BY INTRODUCING INTEGRATED INFORMATION SYSTEM	403

MVM2016_063	Darko Stanojević Nenad Lužanin Miloš Vasić Nada Stanojević	CONTRIBUTION TO THE CONSIDERATION OF SIGNIFICANCE OF HYBRID BUSES IMPLEMENTATION IN CITY TRAFFIC COMPANIES	411
MVM2016_064	Radivoje Pešić Snežana Petković Emil Hnatko Radmilo Stefanović Stevan Veinović	MISUSE OF ECOLOGY	419
MVM2016_066	Vojislav Krstić Boris Antić Srdjan Jović Božidar Krstić	ESTABLISHING THE ROUTES FOR TRANSPORTATION OF HAZARDOUS GOODS ON THE BASIS OF THE RISK LEVEL	445

S. Mačužić¹
D. Miloradović²
J. Glišović³
J. Lukić⁴

FEM MODELLING OF MCPHERSON SUSPENSION SYSTEM

ABSTRACT: The modern method construction of a system and its components involves the use of a specific software package. Application of the software packages for modeling and numerical analysis of the McPherson suspension system is presented in this paper. The advantage of using these packages is that the end results can be obtained directly and the influence of individual geometrical parameters can be analyzed. In addition, another advantage is that any change of external parameters resulting in a automatic change of model. Suspension system ensures stability, safety and comfort during cornering and on uneven surfaces. Its role is to provide a flexible connection between the vehicle structure and the axle with wheels.

KEYWORDS: McPherson suspension system, vehicle, shock absorber, numerical simulation

INTRODUCTION

The modern concept of development of motor vehicles is reflected primarily in an increase in traffic safety in all modes of travel. For this reason it is essential continuous improvement of steering system construction, braking and suspension, as well as the compliance of the functional characteristics for each car model. The suspension system has the primary task to transfer all the reactive forces and moments that occur in the contact point of the tire and the ground to the body with as much damping shock loads [1]. Also, it should provide the necessary stability of the vehicle especially when braking and cornering movement. Suspension system realizes flexible connection between the basic structure of a motor vehicle with wheels and axles. There are six degrees of freedom of the elements (rotation around each of the three axes and moving along all three axes).

McPherson suspension system is used in many vehicles because of its light weight and compatibility. This type of system is more prevalent on the front axle of the vehicle but is also used on the rear wheels of the vehicle. The required performance of the suspension system is to adequately support the weight of the vehicle, to ensure the efficiency of driving quality, and to maintain the stability of the vehicle. In addition, the use of McPherson suspension system allows better movement of the vehicle when cornering and better passengers comfort. Contemporary literature shows interest of researchers for this type of system in order to increase the vehicle's performance.

¹Slavica Mačužić, Ph.D., student, University of Kragujevac, Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, slavicamacuzic89@gmail.com

²Danijela Miloradović, Ph.D., assist. prof., University of Kragujevac, Faculty of Engineering University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, neja@kg.ac.rs

³Jasna Glišović, Ph.D., assist. prof., University of Kragujevac, Faculty of Engineering University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, jaca@kg.ac.rs

⁴Jovanka Lukić, Ph.D., prof., University of Kragujevac, Faculty of Engineering University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, lukicj@kg.ac.rs

MODELING MCPHERSON SUSPENSION SYSTEM

Modeling McPherson suspension system (Figure 1) was done in the software package CATIA V5R17. This software is a powerful tool for modeling of individual parts of a machine, and complete mechanical systems. We have used the Part design module to create the geometry of all parts of the system. After that, we used Assembly module in order to connect all the parts into one functional system. Figure 1 shows the main parts of the suspension system.

The most important parts of this system are the shock absorber and spring. The lower mounting point attaches to a lower control arm, and it is this connection that dictates both the longitudinal and lateral orientation of the wheel assembly. The upper mounting point of the hub is attached to an assembly that contains a coil spring and a shock absorber. The other main defining factor in a McPherson strut suspension is the way that the axis of the strut itself also serves as the upper steering pivot (the lower pivot is the mounting point between the knuckle and control or track arm.) This upper pivot point is attached to a tie rod end that, in turn, is attached to the steering gear.

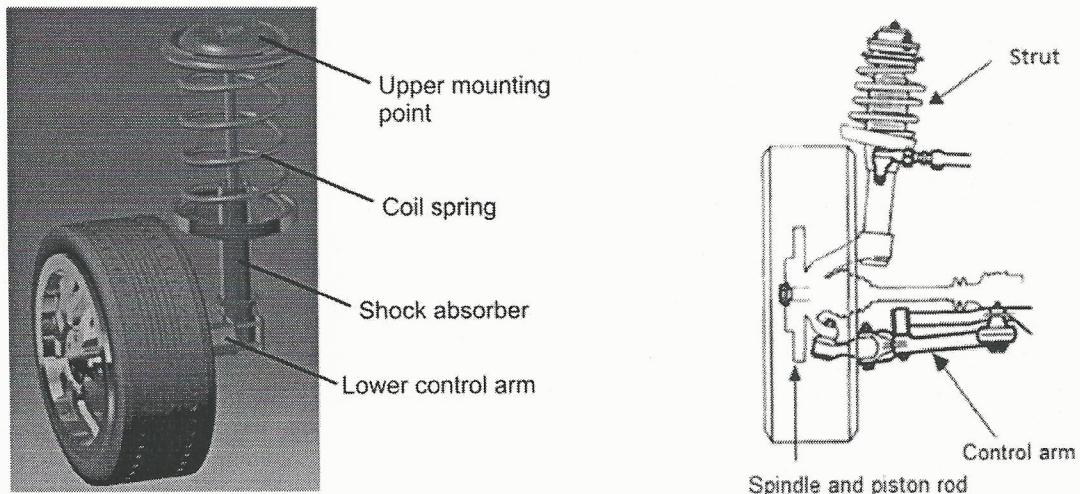
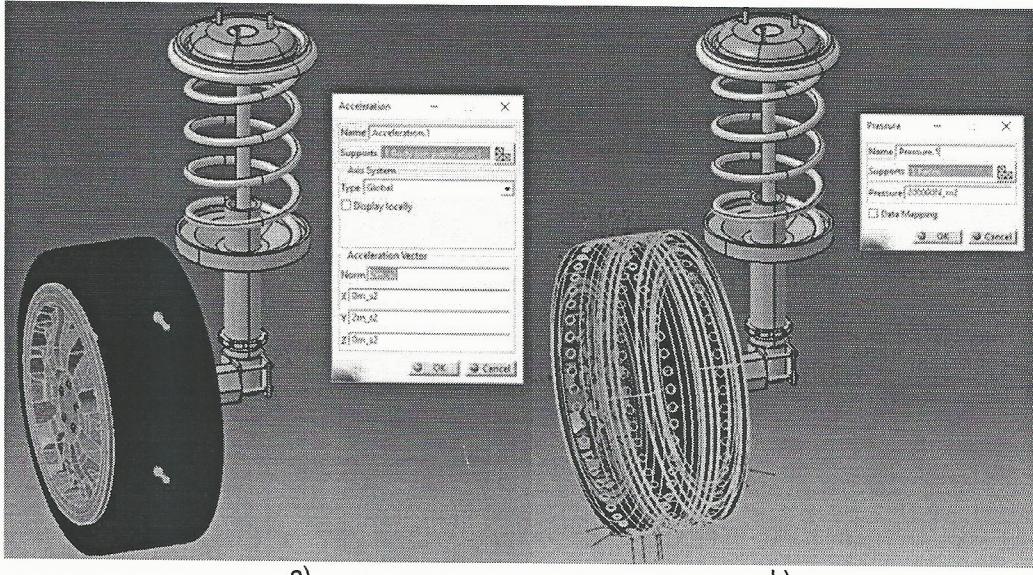
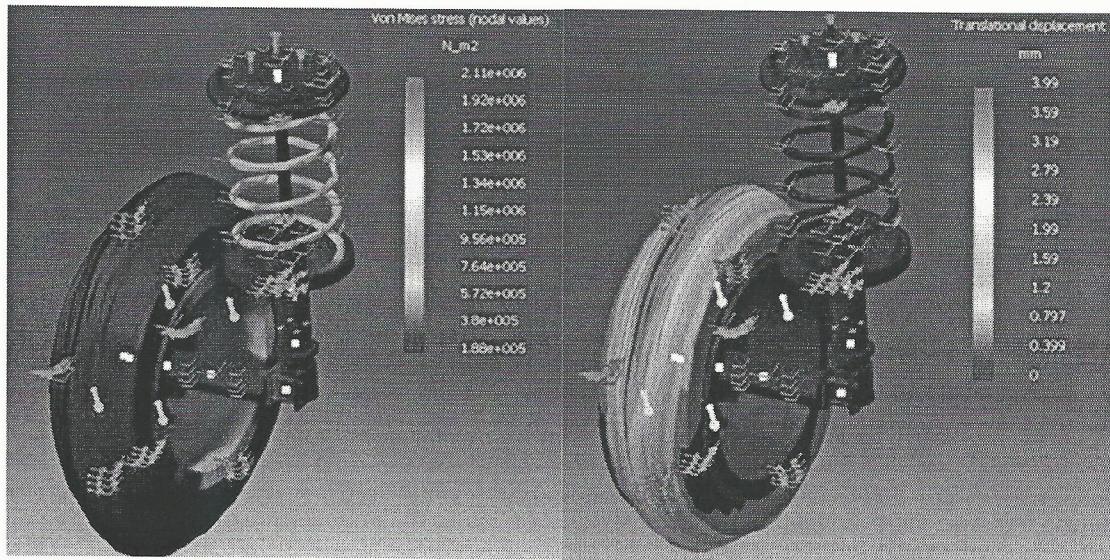
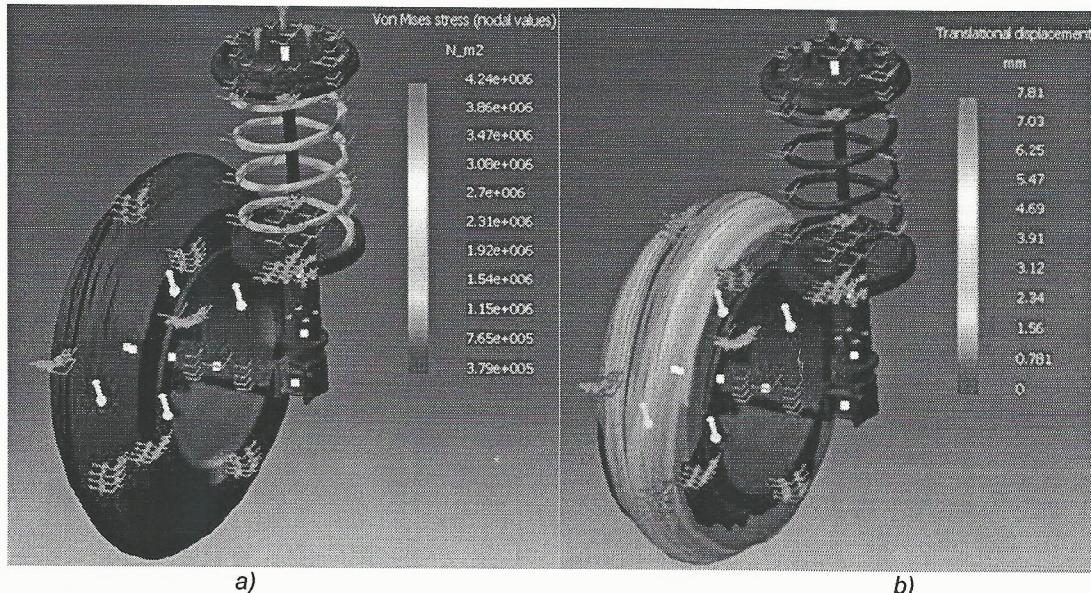



Figure 1 3D model and schematics of the McPherson strut suspension [12]

NUMERICAL SIMULATION OF THE MCPHERSON SUSPENSION SYSTEM


The mechanic system of levers that binds the wheel recesses for the bodywork is made of rigid connection with the joints [7-9]. Using Catia v5R17 software package we designed the existing vehicle parts which are used in series production and are used in almost all vehicles depending on the purpose and functionality of the system. This is covered by a complete set of shock absorbers and springs to point in one unit where they did not take into account the additional stabilization elements in this analysis because the criteria are placed on the most critical parts of suspension [10]. The influence of other elements does not affect too much on the analysis so that they will not be considered. Analysis includes the following parts: spring, shock absorber, piston shock absorber, protective rubber shock absorber, a cup shock absorber, strut bearing, tire and rim. Using static analysis, we checked the distribution of pressure for different acceleration and different pressures in the wheel. We used linear tetrahedron as the final element. Finite element mesh consists of 41781 of nodes and 79224 elements. Regarding the boundary conditions, clamp is placed at the junction of the bodywork at the top of the shock absorber. Boundary conditions are input value, while the simulation results are output. Material of tire is isotropic material - rubber, the value of Young module $2 \cdot 10^6$ MPa, poisson coefficient of 0.49 and density of 910 kg/cm³. Spring steel was used as coil spring material (Young module $2.02 \cdot 10^5$ MPa, poisson coefficient 0.29 and density of 7820 kg/cm³). All other parts of the suspension are modeled as structural steel (Young module $2 \cdot 10^5$ MPa, poisson coefficient 0.3 and density of 7850 kg/cm³).

A slower acceleration rate means that the car is weaker and will take longer to respond to the driver's controls. Acceleration is necessary when avoiding a crash. In this study we wanted to examine the behavior of a system of suspension for three different acceleration [11]. Acceleration and pressure are set according to Figure 2.


Figure 2 Setting boundary conditions; a) sets the acceleration values, b) placing pressure values

The value of the acceleration is 2 m/s^2 and this value acting on the center point of the rim of the wheel hub. Tyre pressure is 2 bar. After determining an entrapment and set value for acceleration and tire pressure changes, we running simulation.

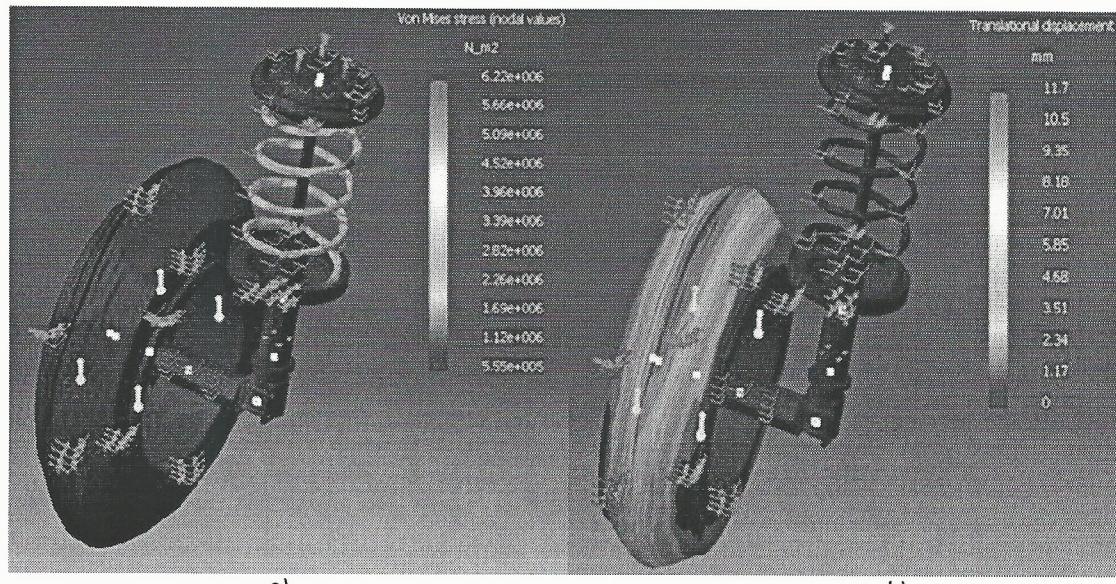


Figure 3 The simulation results for the acceleration of 2 m/s^2 and the tire pressure of 2 bar; a) stress distribution, b) displacement field

The maximum value of the Von Mises stress is approximately 2.1 MPa on the upper parts of the spring, for the first case of acceleration. Spring is the most exposed to the highest stress (shown in red). Its role is to mitigate sudden shocks hence the greatest load in this part of the suspension system. At the junction on the bodywork (the place with clamp) as a connection between the upper shock absorber and body, the stress has a small value. The maximum value of the displacement field on the tire in the vertical direction is marked in red, due to the nonlinear behavior of the material. Other displacements are relatively small. The simulation is also performed with acceleration values of 4 and 6 m/s^2 . The following figures shows the stress distribution and displacement field for a set of acceleration values and tire pressure of 2 bar.

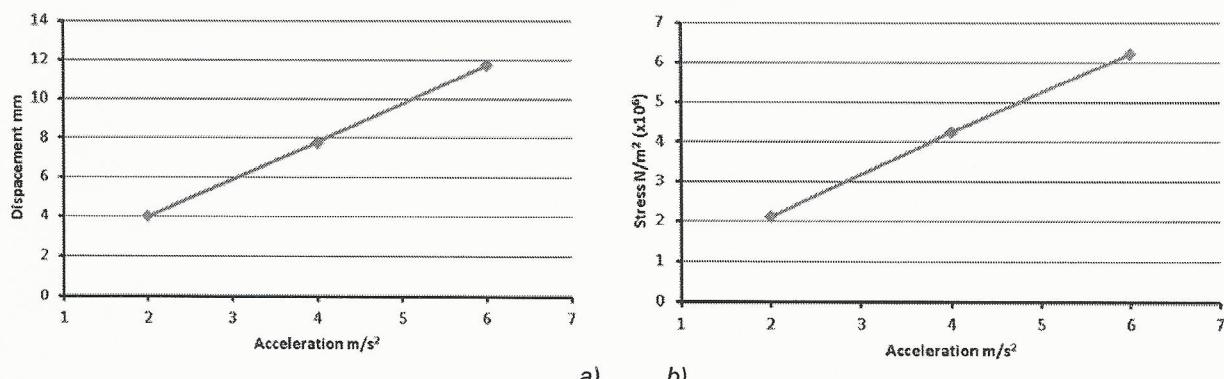


Figure 4 The simulation results for the acceleration of 4 m/s² and the tire pressure of 2 bar; a) stress distribution, b) displacement field

Figure 5 The simulation results for the acceleration of 6 m/s² and the tire pressure of 2 bar; a) stress distribution, b) displacement field

Previous figures shows that with increasing acceleration comes to major deformation of the tire in case the same pressure on them. In the first case, when the acceleration was 2 m/s^2 , were observed on the tire displacement of 3.99 mm, while the highest Von Mises stress of the spring was 2.1 MPa. With the rise in the value of acceleration to 4 m/s^2 , the displacement of the tire reaches 7.81 mm, and the stress on the spring 4.24 MPa. The last case, an acceleration of 6 m/s^2 , causing maximum displacement of the tire, whose values are going up to 11.7 mm, and the Von Mises stress at the upper parts of the spring to 6.22 MPa. Figure 6 is a diagrammatic representation almost linear dependence of displacement field of the tire and the Von Mises stress on the spring with increasing acceleration.

Figure 6 Change of displacement of the tire and Von Mises stress on the spring as a result of different acceleration values, respectively

CONCLUSIONS

Simulation covers the most vital parts of suspension type McPherson. This work shows the greatest load zone system that has been modeled, during the movement of vehicles on the road. The importance of these simulations is that before installation of certain parts of the car we can see their loads and behavior. To make the system much more realistic, we modeled all important parts that influence the behavior and stability of vehicles in motion. Future development of this work could be done in the direction of determining the behavior of the system when the car meets the road with holes, and see how they behave certain parts of the McPherson system.

ACKNOWLEDGMENTS

This research supported by the Ministry of Education, Science and Technological Development of Republic of Serbia through Grant TR35041.

REFERENCES

- [1] Simić, D.: "The dynamics of motor vehicles fluctuations and suspension car", 1975, Faculty of Mechanical Engineering, Kragujevac,
- [2] Colombo, D., Gobbi, M., Mastinu, G., Pennati, M.: "Analysis of an unusual McPherson suspension failure", Engineering Failure Analysis 16, 2009, Page 1000–1010,
- [3] Gadhia Utsav, D., Sumant Patel, P.: "Design and Problem Identification of Wagon-R car's rear suspension", International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459, Volume 2, Issue 7, July, 2012, Page 111-113,
- [4] Pathmasharma, S., Suresh, J. K., Viswanathan, P. and Subramanian, R.: "Analysis of Passenger Car Suspension System Using Adams", International Journal of Science, Engineering and Technology Research (IJSETR) Volume 2, No. 5, May, 2013, Page 1186-1193,
- [5] Dodiya, D. V., Patel, P. H., Chauhan, M. J.: "Dynamic Analysis Of Leading Arm Suspensions System With Horizontal Spring Damper Assembly", International Journal of Advance Engineering and Research Development (IJAERD), Volume 1, Issue 2, March, 2014, Page 1-6,
- [6] Purushotham, A.: "Comparative Simulation studies on Mcpherson Suspension System", International Journal of Modern Engineering Research (IJMER), Vol. 3, Issue 3, May-June, 2013, Page 1377-1381
- [7] Den Hartog, J.P.: "Vibrations in mechanical engineering", construction books, 1972, Belgrade,
- [8] Vuković, D., Ekinović, E.: "Theory of oscillations", Faculty of Mechanical Engineering in Zenica, 2004, Zenica,
- [9] Stojić, B.: "The theory of the movement of road vehicles", Department of Motor Vehicles, 2012, Novi Sad,
- [10] Filipović, I.: "Motorcycles and motor vehicles", Faculty of Mechanical Engineering, University of Tuzla, 2006, Page 190-210.
- [11] <http://hypertextbook.com/facts/2001/MeredithBarricella.shtml>, Accessed 25.06.2016
- [12] Fallah M. S., Bhat R., Xie W. F.: "New model and simulation of Macpherson suspension system for ride control applications", Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, Vol. 47, No. 2, 2009, pp. 195-220.

ISBN 978-86-6335-037-3

A standard 1D barcode representing the ISBN number 978-86-6335-037-3.

9 788663 350373