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Abstract

This paper presents a controlled comparative evaluation of SQL and NoSQL persistence
mechanisms in containerized microservice architectures under variable workload condi-
tions. Three persistence configurations—SQL with indexing, SQL without indexing, and
a document-oriented NoSQL database, including supplementary hybrid SQL variants
used for robustness analysis—are assessed across read-dominant, write-dominant, and
mixed workloads, with concurrency levels ranging from low to high contention. The
experimental setup is fully containerized and executed in a single-node environment to
isolate persistence-layer behavior and ensure reproducibility. System performance is evalu-
ated using multiple metrics, including percentile-based latency (p95), throughput, CPU
utilization, and memory consumption. The results reveal distinct performance trade-offs
among the evaluated configurations, highlighting the sensitivity of persistence mechanisms
to workload composition and concurrency intensity. In particular, indexing strategies sig-
nificantly affect read-heavy scenarios, while document-oriented persistence demonstrates
advantages under write-intensive workloads. The findings emphasize the importance
of workload-aware persistence selection in microservice-based systems and support the
adoption of polyglot persistence strategies. Rather than providing absolute performance
benchmarks, the study focuses on comparative behavioral trends that can inform architec-
tural decision-making in practical microservice deployments.

Keywords: microservices; SQL; NoSQL; performance evaluation; workload concurrency

1. Introduction

The increasing adoption of microservice architectures and cloud-native design princi-
ples has reshaped expectations for data storage systems in modern distributed applications.
As software systems evolve toward fine-grained service decomposition, each microservice
frequently maintains its own persistence layer, often optimized for the specific requirements
of its domain. These trends have accelerated the use of polyglot persistence, in which
relational and NoSQL databases coexist within the same ecosystem, allowing services to
balance transactional guarantees, schema rigidity, read efficiency, write scalability, and
operational flexibility.

Relational databases remain a cornerstone of enterprise systems, offering robust ACID
semantics, predictable query optimization, and strong indexing capabilities that make them
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highly effective for structured, read-dominant workloads. Indexing, in particular, plays
a critical role in improving read latency and reducing CPU load by minimizing full table
scans. However, relational systems are known to experience performance degradation
under heavy write concurrency, where index maintenance introduces additional latency,
locking overhead, and buffer pressure.

NoSQL document stores such as MongoDB are designed to support high-volume
writes, flexible schema evolution, and horizontal scalability. These systems typically relax
strict consistency guarantees in favor of improved throughput and lower tail latency
under write-intensive workloads. Their simplified write paths and memory-mapped
storage models enable stable behavior under high concurrency, particularly in write-heavy
and mixed workload scenarios, although their performance may be less competitive for
structured, read-intensive tasks.

Although the theoretical distinctions between relational and NoSQL systems are
well established, empirical comparisons that evaluate their behavior under controlled
microservice-style workloads remain relatively limited. In particular, there is insufficient
experimental research examining how (i) indexed versus non-indexed relational storage
affects tail latency and concurrency scaling, (ii) document-oriented databases compare to
relational systems across read-heavy (RH), write-heavy (WH), and mixed (MX) workloads,
and (iii) resource metrics such as CPU and RAM usage evolve as concurrency increases
from low (1-10 clients) to high (500-1000 clients) levels.

Given the importance of tail latency (p95) in distributed systems—where slow outliers
disproportionately affect user-perceived performance—there is a clear need to experimen-
tally evaluate how different persistence models behave across realistic workload patterns
in containerized environments. Unlike large-scale production benchmarks, the emphasis of
this study is on controlled, application-driven experimentation that isolates persistence-
layer behavior under well-defined workload and concurrency conditions.

To address this gap, this study evaluates three persistence configurations—SQL with
indexing, SQL without indexing, and MongoDB—within a controlled microservice-based
environment deployed using Docker. MongoDB is selected as a representative document-
oriented NoSQL system due to its maturity, widespread adoption, and frequent use as a
baseline in comparative SQL/NoSQL studies. Standardized RH, WH, and MX workloads
are executed across concurrency levels ranging from 1 to 1000 parallel requests, while per-
formance is measured using p95 latency, throughput, CPU usage, and RAM consumption.
The workload design prioritizes comparative trend analysis across persistence configu-
rations rather than absolute performance certification against standardized benchmark
suites. This multidimensional evaluation offers a comprehensive understanding of how
architectural differences between relational and NoSQL storage systems affect system
responsiveness, scalability, and resource utilization.

The study is guided by the following research questions: How do relational (indexed
and non-indexed) and NoSQL persistence models differ in p95 latency and throughput
under RH, WH, and MX workloads? How does increasing concurrency (from 1 to 1000 par-
allel requests) influence the performance and resource usage of SQL and NoSQL databases?
Which persistence configuration provides the most stable behavior across tail latency,
throughput, CPU usage, and RAM consumption under mixed workload patterns typical of
microservice ecosystems?

Based on architectural characteristics and prior observations from the literature, the
following hypotheses are formulated:

e  Hj: Indexed SQL achieves significantly lower read latency (p95) than non-indexed
SQL and MongoDB under RH workloads due to optimized index access paths.
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e H): MongoDB achieves superior write throughput and lower tail latency than both
SQL configurations under WH workloads, especially at high concurrency levels.

e  Hj: MongoDB provides the most stable performance profile across RH, WH, and MX
workloads as concurrency increases, exhibiting more predictable CPU and RAM usage
compared to relational configurations.

This research contributes to the field by providing: (i) a controlled and reproducible
experimental evaluation of SQL (indexed and non-indexed) and MongoDB under diverse
workload patterns and concurrency levels; (ii) a detailed empirical comparison using p95
latency, throughput, CPU, and RAM—metrics essential for assessing real-world microser-
vice performance; and (iii) practical insights for system architects on selecting persistence
technologies aligned with the workload characteristics of individual microservices, offering
evidence in support of selective polyglot persistence in distributed systems.

The remainder of the paper is organized as follows. Section 2 reviews existing literature
on SQL and NoSQL systems, indexing strategies, and performance considerations in
microservice environments. Section 3 describes the experimental methodology, including
workloads, concurrency levels, system architecture, and measurement procedures. Section 4
presents performance results across all metrics and workloads. Section 5 provides a detailed
discussion of the findings and their implications, and Section 6 summarizes key conclusions
and outlines directions for future research. The study explicitly focuses on controlled
comparative behavior rather than absolute production-level performance, and the reported
results should be interpreted accordingly.

2. Related Work

Research on microservice architectures, data management patterns, and persistence
technologies has expanded over the past decade, reflecting the growing complexity and
heterogeneity of modern distributed systems. The literature explores several complemen-
tary areas: the evolution of software architectures from monolithic to microservice-based
systems, the adoption of polyglot persistence principles, the foundations and performance
characteristics of SQL and NoSQL databases, and the impact of indexing strategies and
workload structures on database efficiency. These studies collectively highlight that no
single persistence model is universally optimal, and that empirical evaluation is necessary
to understand how different technologies behave under specific operational conditions
such as read-heavy (RH), write-heavy (WH), or mixed (MX) workloads. However, many
existing studies focus on isolated database benchmarks or large-scale distributed settings,
providing limited insight into application-driven persistence behavior within containerized
microservice architectures.

Given the breadth and diversity of prior research, synthesizing key insights across
thematic areas is essential for establishing a clear theoretical foundation for the experimental
analysis presented in this paper. Table 1 summarizes the most influential works relevant
to this study, organized according to their primary contribution domains: microservice
architectures, polyglot and hybrid persistence, SQL/NoSQL performance characteristics,
indexing behavior, and workload-driven performance considerations.

This synthesized overview enables the reader to understand how each group of studies
informs the design of the experimental framework and the interpretation of results. In
contrast to survey-oriented or benchmark-centric studies, the present work emphasizes
controlled comparative evaluation under uniform experimental conditions.

This synthesized overview provides the conceptual foundation for analyzing microser-
vice data architectures in greater depth, beginning with the evolution of microservices and
their implications for distributed storage models.
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Table 1. Synthesis of Related Work on Microservices, Polyglot Persistence, SQL/NoSQL Architectures,

and Workload Behavior.

Thematic Area

Authors

Main Contribution/Finding

Relevance to This Study

Evolution of Software
Architectures & Microservices

Dragoni etal. [1]

Overview of the evolution from monolithic
over SOA to microservices; motivations for
modularity and scalability.

Explains the need for distributed
systems and independent
persistence layers.

Fowler & Lewis [2]

Microservices defined as autonomous units
with independent data and versioning.

Supports the concept of decentralized
databases in microservices.

Balalaie et al. [3]

Migration from monolith to microservices;
DevOps benefits.

Demonstrates how architecture impacts
performance and scalability.

Villamizar et al. [4]

Comparison of monolith vs. microservices in
the cloud; scalability and efficiency.

Highlights performance benefits of
distributed systems.

Container Orchestration & Distributed

Burns et al. [5]

Evolution of Borg/Omega — Kubernetes;

Justifies the use of
Docker/Kubernetes-like environments

Systems resource management and latency control. . .
in experiments.
. . . .- . Patterns: database-per-service, shared DB, Provides theoretical foundation for
Data Management in Microservices Taibi & Lenarduzzi [6] CQRS, event sourcing, polyglot persistence. combining SQL and NoSQL.
Cloud-edge orchestration; environment Links data-st p & it
dos Santos [7] selection based on latency and 1nks data-store periormance to quatity
. of service.
resource metrics.
Polyglot Persistence & SQL/NoSQL Deka [8] Polyglot persistence; no single model optimal ~ Motivates empirical comparison of SQL
Foundations for all workloads. and NoSQL.
ACID vs. BASE differences; limited SQL . .
N o i Predicts behavior under
Cattell [9] hor1zonta1'scahng, NoSQL linear RH,/WH workloads.
scaling advantages.
Pokorny [10] Categorization of NoSQL models and Confirms relevance of MongoDB as a

cloud applications.

representative system.

Khanetal. [11]

Systematic review of 142 SQL/NoSQL
performance studies.

Validates metric selection: latency,
throughput, CPU, RAM.

James & Asagba [12]

Hybrid SQL/NoSQL models; balanced
performance under certain conditions.

Supports motivation for evaluating
different storage paradigms.

Bjeladinovi¢ [13]

Influence of data structure on hybrid
architecture design.

Explains expected variability in SQL
vs. NoSQL performance.

Oussous etal. [14]

NoSQL in big-data stacks for indexing,

Supports NoSQL advantages in

logging, aggregation. WH scenarios.
Consistency & Distributed Behavior Vogels [15] Definition of eventual consistency Explains NoSQL behavior under WH

(Amazon Dynamo). and high concurrency.
Indexing & Operational Performance Cattell [9] Impact of indexing, transactions, and Predicts SQL degradation under

horizontal scaling on performance.

WH load.

Khanetal. [11]

SQL/NoSQL performance considerations and
scalability constraints.

Theoretical basis for evaluating
RH/WH/MX workloads.

2.1. Microservices & Hybrid Cloud—Edge Architectures

The architecture of microservices emerged as a response to the limitations of monolithic
and traditional service-oriented systems. Dragoni et al. [1] provide a comprehensive
overview of the evolution of software architectures, demonstrating the transition from
monolithic applications to object-oriented systems, service-oriented architectures (SOAs),
and ultimately microservice-based designs. The authors identify modularity, independent
development, and selective scalability as key drivers behind this evolution.

Fowler and Lewis [2] define microservices as a collection of small, independently
deployable services organized around business domains. They emphasize principles such
as independent data management, decentralized governance, lightweight communication
protocols (typically HTTP/REST), and autonomous team structures. This perspective is
particularly relevant to persistence-layer design, as it motivates the decentralization of
data storage and the coexistence of heterogeneous database technologies. Balalaie et al. [3]
further expand on this viewpoint by analyzing the migration of a real-world commercial
system from a monolithic architecture to microservices within a DevOps environment.
Their findings demonstrate that microservices support faster deployment cycles, partial
scaling, and reduced technical debt, albeit at the cost of increased operational complexity.
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Villamizar et al. [4] conduct an empirical comparison of monolithic and microservice-
based applications deployed in cloud environments, showing that microservices enable more
efficient scaling and improved resource utilization under variable workloads. However, they
also note that the performance benefits of microservices are closely tied to effective data
management strategies, reinforcing the importance of persistence-layer evaluation.

At the infrastructure level, Burns et al. [5] describe the evolution of Google’s container
management systems—Borg, Omega, and Kubernetes—highlighting mechanisms for re-
source isolation, latency control, and large-scale orchestration. Kubernetes, as a successor
to the Borg/Omega design principles, enables declarative configuration, automated scaling,
and container orchestration, thereby facilitating widespread adoption of microservices in in-
dustrial settings. While such systems are often evaluated at cluster scale, their foundational
principles also motivate controlled, containerized experimentation at smaller scales.

In parallel with architectural evolution, data management has emerged as a central
challenge in microservice systems. Taibi and Lenarduzzi [6] analyze data management
patterns in microservices, identifying approaches such as database-per-service, shared
databases, command query responsibility segregation (CQRS), event sourcing, and polyglot
persistence. They conclude that decentralized and polyglot data management is essential,
as different services impose distinct functional and performance requirements. These
findings provide a theoretical basis for combining SQL and NoSQL databases within a
single microservice ecosystem.

Dos Santos [7] extends this discussion by examining microservice management in hy-
brid cloud-edge environments, where latency constraints and limited resources necessitate
adaptive deployment strategies. The author proposes an autonomous microservice deploy-
ment system that leverages monitoring metrics, including latency and resource utilization,
to select optimal execution environments. This paper underscores the direct relationship
between persistence-layer performance and overall quality of service in heterogeneous
distributed systems.

Older literature dealing with the microservices ecosystem often focuses on communi-
cation patterns, organizational principles, and scalability of applications, while more recent
papers—especially in the domain of cloud—edge orchestration—point out the relevance of
data as a central resource of the system. Thus, it may be seen that all the mentioned papers
identify the relationship of data warehouses to the scalability and reliability of microser-
vices. It is this connection that creates a theoretical bridge between polyglot persistence
and database performance.

Consequently, it becomes clear that modern microservice systems are dependent on
efficient data management in distributed environments. Different services require different
data storage models, different indexes, and different consistency approaches. Cloud—edge
architectures further complicate these challenges because resources, latency, and data access
vary by location.

2.2. Polyglot Persistence & SQL/NoSQL Foundations

The increasing heterogeneity of data in modern information systems has driven the
evolution of storage paradigms and the need to combine multiple database technologies
within a single application. This approach, commonly referred to as polyglot persis-
tence, advocates selecting storage models according to data characteristics and workload
requirements. Deka [8] provides one of the most comprehensive treatments of this con-
cept, emphasizing that no single database model is optimal across all workloads. Rela-
tional databases excel in transactional consistency and structured data processing, whereas
NoSQL systems offer greater scalability, schema flexibility, and efficiency for high-volume
or unstructured data
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Cattell [9] examines the scalability limitations of traditional SQL systems, noting that
while ACID transaction guarantees and indexing provide strong consistency and efficient
reads, horizontal scaling often requires complex clustering or sharding mechanisms. In
contrast, NoSQL systems typically achieve more linear scalability by relaxing consistency
guarantees and adopting flexible data models such as document stores, key—value stores,
and column-oriented databases. Pokorny [10] further categorizes NoSQL models and
discusses their applicability in cloud-based applications, reinforcing their relevance for
high-throughput and large-scale data processing.

A systematic review by Khan et al. [11] analyzes over one hundred SQL and NoSQL
performance studies, identifying latency, throughput, and resource utilization as the
most commonly reported evaluation metrics. Their findings also reveal substantial vari-
ability in experimental methodologies, particularly with respect to workload composi-
tion and concurrency modeling, which complicates direct comparison across studies.
James and Asagba [12] propose hybrid SQL/NoSQL architectures that integrate transac-
tional consistency with scalable data processing, demonstrating that such combinations
can yield balanced performance under certain conditions.

Bjeladinovi¢ [13] investigates the influence of data structure on the design of hybrid
SQL/NoSQL systems, concluding that dataset heterogeneity plays a critical role in per-
sistence selection. Oussous et al. [14] similarly observe that large-scale data processing
architectures frequently employ NoSQL technologies for indexing, logging, and aggrega-
tion, while relying on relational databases as authoritative sources of truth. This layered
approach reflects common practice in microservice and cloud applications, where perfor-
mance and consistency must be carefully balanced.

Finally, Vogels [15] introduces the concept of eventual consistency as a defining char-
acteristic of many distributed NoSQL systems, such as Amazon Dynamo. Eventual con-
sistency enables high parallelism and low-latency operations but introduces temporal
windows of inconsistency. This trade-off is particularly relevant in write-heavy and mixed
workloads, where relaxed consistency models can significantly improve throughput and
tail-latency behavior.

Collectively, the reviewed literature demonstrates that SQL and NoSQL systems ex-
hibit fundamentally different performance characteristics depending on workload structure,
concurrency level, and consistency requirements. Nevertheless, relatively few studies ex-
amine indexed versus non-indexed relational configurations alongside document-oriented
NoSQL systems within a unified, application-driven microservice context. This observation
motivates the experimental design adopted in the present study. Building on these insights,
the following section details the experimental methodology adopted to systematically
evaluate SQL and NoSQL persistence behavior under controlled microservice workloads.

3. Methodology

The experimental evaluation was conducted in a controlled, containerized microser-
vice environment. The system under study was implemented as a set of REST-based
microservices with a dedicated persistence layer, supporting both relational and document-
oriented databases. The relational persistence layer was implemented using an SQL
database engine, while MongoDB was employed as the representative NoSQL document
store. MongoDB was selected as a representative document-oriented NoSQL system due
to its maturity, widespread adoption, and frequent use as a baseline in SQL/NoSQL com-
parative studies. All services and database instances were deployed using Docker, with
each component isolated in its own container to ensure reproducibility and to minimize
cross-component interference. All experiments were executed in a single-node setup,
without replication or sharding, in order to deliberately isolate persistence-layer behavior
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and avoid confounding effects introduced by distributed coordination mechanisms. This
configuration was intentionally selected to provide a controlled baseline for comparing
SQL and NoSQL persistence characteristics in microservice-based architectures.

Hardware and system resources were kept constant throughout all experiments, and
no additional background workloads were executed on the host system during measure-
ments. This ensured that observed performance differences originated from the persistence
mechanisms themselves rather than from external system noise. Accordingly, the reported
results are intended to support comparative analysis of persistence behavior rather than
absolute claims about production-scale performance.

3.1. Experimental Design

The experimental design adopted in this study follows methodological principles estab-
lished in prior work on performance evaluation of distributed systems, hybrid persistence
architectures, and containerized microservices. Consistent with controlled benchmarking
practices described by AbouShanab [16] and with the resource-contention insights presented
by Costa et al. [17], the experiment focuses on isolating the performance characteristics of
different persistence mechanisms under varying workload intensities and concurrency lev-
els. This design choice addresses concerns regarding benchmark authority by emphasizing
methodological control and internal validity over benchmark standardization.

To enable reproducible and unbiased comparison of persistence backends, all compo-
nents of the benchmark—the microservice application, workload generator, and database
engines—were deployed in a uniform containerized environment. Each of the three database
configurations (SQL with indexing, SQL without indexing, and MongoDB as a document
store) was executed under identical system conditions. The microservice layer exposed
uniform REST endpoints, ensuring that all performance differences originated solely from
the persistence layer rather than from variations in service logic or infrastructure.

The experimental protocol was designed to ensure consistency, fairness, and repeata-
bility across all evaluated persistence configurations. For each persistence configuration,
the system was initialized in a stable state before measurement. Workloads were then
applied in a controlled manner, with concurrency levels increased systematically to observe
performance trends under rising contention. Measurements were collected after the system
reached steady-state operational behavior, thereby minimizing transient effects and warm-
up bias. The protocol explicitly prioritizes comparative trend analysis across configurations
instead of absolute performance benchmarking.

The experimental procedure was organized as a structured algorithmic workflow
comprising three nested loops. The database loop iterated over the three persistence
configurations, reconfiguring the microservice layer to route all requests to the appropriate
backend. For each database configuration, the workload loop executed the three defined
access patterns: read-heavy (RH), write-heavy (WH), and mixed (MX). These workloads
correspond to widely studied categories in SQL/NoSQL research, where read-dominated
scenarios emphasize indexing efficiency and query performance, while write-dominated
scenarios stress transaction handling, disk I/O, and concurrency control. The concurrency
loop systematically increased the number of simultaneous clients (1, 10, 50, 100, 500, and
1000), exposing scalability boundaries and contention effects.

By structuring the experiment as a complete factorial combination of persistence
configuration, workload type, and concurrency level, the design ensures comprehensive
coverage of the performance space under investigation.

To complement the algorithmic description, the experimental workflow can be formal-
ized using the following mathematical model.
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3.1.1. Formal Experimental Mathematical Model

For extended comparative analysis, the persistence configuration set D is augmented
with hybrid variants, such that

D = Dpase U Dhybrid/ (1)
where
Dygse = {SQL_indexed, SQL_no_index, NoSQL} (2)
and
Dhyria = {Hybrid_SQL_indexed, Hybrid_SQL_no_index} 3)

All hybrid configurations follow the same workload definitions, concurrency levels,
metric computation, and experimental protocol as the baseline configurations.

W = {RH, WH, MX}, 4)
the set of workload types, and
C = {1, 10, 50, 100, 500, 1000}, )

the set of concurrency levels.
Each experiment run can be represented as a tuple

(d,w,c) e DxWxC, (6)
and the total number of experimental conditions is therefore
Neond =| D |- | W |- | C|=5x3x6=090. (7)
For each configuration (d, w, c), the benchmark produces a set of response times
{h, ta, s bu(dwe) }/ (8)
from which the 95th percentile latency is computed as
p95(d, w,c) = Qoos(t1,t2, - tu(dw,c) ) )

where Qg 95 denotes the empirical 0.95-quantile.
Throughput is defined as the number of successfully completed requests divided by
the duration of the experiment:

Rsuec (d/ w, C)

THR(d, w, C) = W

[req/s]. (10)

CPU utilization and RAM consumption are collected as time series at the container level,

{cpuy,...,cpu;}, {ramy,... ram;}, (11)

and summarized as arithmetic means:

CPU(d,w,c) kzlcpul,RAM (d,w,c) eram, (12)
1
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The overall experimental outcome can thus be modeled as a mapping
F:DxWxC— R (13)
where
F(d,w,c) = (p95(d,w,c), THR(d,w,c), CPU(d,w,c), RAM(d,w,c)), (14)

which provides a unified representation of all performance metrics for each persistence
configuration, workload type, and concurrency level. The mapping F applies uniformly to
both baseline and hybrid persistence configurations.

Within the innermost loop, the workload generator issues parallel HTTP requests to
the microservice endpoints, after which the system records four key performance metrics:
95th percentile latency, throughput, CPU utilization, and RAM consumption. The use of
p95 latency follows established reasoning in distributed systems research [5,16], which
emphasizes tail-latency behavior as a critical indicator of microservice responsiveness
under load. All metrics are collected at the container level to ensure technology-neutral
and consistent measurement across persistence configurations.

After all combinations of database configuration, workload type, and concurrency
level have been executed, the results are aggregated into a unified dataset for statistical
analysis. This aggregation step enables systematic comparison of SQL and NoSQL systems
across both operational profiles and resource-usage patterns.

3.1.2. Formal Experimental Algorithm

The mathematical model from the previous section formalizes the complete experi-
mental workflow, while Figure 1 provides a visual flowchart representation with blocks
(standard steps vs. loop structures) and icons highlighting database operations, workload
generation, and metric collection. This dual representation enhances clarity and illustrates
how the experimental framework comprehensively explores the performance space of
hybrid persistence in microservice environments.

The flowchart in Figure 1 provides a complete conceptual overview of the experimen-
tal workflow. The combined representation makes the relationship between configuration
loops, workload execution, and metric collection transparent, reinforcing the method-
ological rigor of the study. This dual presentation ensures that both the logical control
structure and the practical execution sequence of the benchmark are well understood before
proceeding to the detailed discussion of metrics, environment setup, and results.

3.2. Workload Scenarios (RH/WH/MX)

The workload design was constructed to reflect typical access patterns observed in
microservice-based applications, where persistence layers are subject to heterogeneous read
and write demands. Rather than relying on synthetic, benchmark-specific query models,
the workload was derived from application-level REST interactions executed against the
microservices. This application-driven approach improves ecological validity by preserv-
ing the same request paths, serialization logic, and persistence access code used by the
service layer. Three workload categories were considered: RH, WH, and MX workloads.
RH scenarios primarily consisted of data retrieval operations (e.g., REST GET requests),
while WH scenarios emphasized data creation and update requests (e.g., REST POST/PUT
requests). MX combined read and write operations within the same execution interval,
thereby reflecting more realistic application behavior. To ensure comparability, request
payload structure, endpoint routing, and response handling were kept consistent across
configurations; only the persistence backend differed. All workload types were executed
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under varying levels of concurrent client requests to evaluate the impact of increasing con-
tention on persistence-layer performance. These scenarios correspond to typical operational
profiles in microservice-based systems and are aligned with the classifications described
by Deka [8] for NoSQL workloads and by Cattell [9] and Pokorny [10] for relational and
non-relational query behavior. Following common practice in workload-aware evaluation,
RH, WH, and MX workloads are defined operationally by the dominance of read vs. write
request types within the same execution window (i.e., a read-majority, write-majority, and

balanced mix).

1. Start Experiment

2. Deploy Controlled Environment

3. FOR EACH Database Configuration
(SQL-indexed, SQL-no-index, MongoDB)

4. FOR EACH Workload
(RH, WH, MX)

5. FOR EACH Concurrency Level
(1, 10, 50, 100, 500, 1000)

6. Execute Load & Collect Metrics
(p95 latency, throughput, CPU, RAM)

7. Aggregate Results Across Runs

8. End Experiment

Figure 1. Algorithmic workflow of the experimental procedure, illustrating the initialization of

the environment.

Together, the three workload scenarios capture distinct yet complementary operational
profiles found in enterprise and cloud-native systems. Their inclusion follows method-
ological precedence in empirical benchmarking studies [5,16] and in hybrid persistence
literature, where multi-dimensional evaluation is required to reveal trade-offs between
indexing overhead, concurrency control, schema flexibility, and transactional guarantees.
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By structuring the experiment around RH, WH, and MX workloads, the study ensures
that its results reflect both isolated and combined performance behaviors, enabling rigorous
comparison between SQL and NoSQL persistence under controlled but realistic conditions.

Concurrency levels were systematically increased to observe performance degradation
trends, throughput saturation points, and resource utilization behavior under stress. The
same workload logic and request sequences were applied consistently across all persistence
configurations to ensure fairness of comparison. This approach isolates the influence of the
persistence mechanism itself, allowing observed performance differences to be attributed
to the underlying database technologies rather than to workload variation. Because the
workloads are application-driven, the primary objective is controlled comparative analy-
sis, not certification against standardized benchmark suites; accordingly, the results are
interpreted in terms of relative trends across configurations.

3.3. Database Configurations (SQL with Index/SQL Without Index/NoSQL)

The experiment evaluates three distinct database configurations to isolate the perfor-
mance characteristics of indexing, transactional semantics, and document-oriented storage.
These configurations reflect the core architectural differences identified in the literature on
relational and non-relational systems [8-11] and are representative of persistence strategies
commonly found in microservice-based applications.

Each configuration was deployed as a separate database instance within a controlled,
containerized environment, ensuring identical networking, hardware allocation, and execu-
tion conditions. Since all other components of the system remained constant—including the
workload generator, microservice logic, and container runtime—performance differences
can be attributed solely to the characteristics of each persistence model.

The first configuration employs a relational database with indexing enabled on fre-
quently queried fields. In this experiment, enabling indexes represents the optimized
relational baseline, reflecting how SQL databases are typically configured in production
systems where read performance is a priority. This configuration is expected to per-
form well under RH workloads but may incur additional overhead under WH work-
loads due to per-update index maintenance, a phenomenon widely reported in relational
performance studies.

The second configuration removes indexing from the relational schema, exposing
the raw behavior of SQL storage without optimization structures. This configuration is
valuable for isolating the impact of index maintenance and query access paths. It provides
insight into how relational systems behave when write operations avoid index updates
while read operations increasingly rely on full scans as the dataset grows. Although such
a configuration is uncommon in production, it is methodologically useful for controlled
comparison because it disentangles indexing effects from other relational characteristics
(e.g., ACID semantics and query planning).

The third configuration uses a NoSQL document database (MongoDB), representing a
schema-flexible, high-throughput persistence model characteristic of BASE systems [9,14].
NoSQL databases store data as documents rather than normalized relational structures, en-
abling flexible schemas and efficient write paths under high concurrency. This configuration
supports evaluation of whether document-oriented persistence provides measurable ad-
vantages under WH and MX workloads and how it compares to indexed and non-indexed
relational storage.

The selection of SQL with index, SQL without index, and NoSQL aligns with distinc-
tions emphasized in the literature on hybrid persistence and microservice architectures:
(i) indexing vs. no indexing enables direct measurement of optimization structures central
to relational performance; (ii) relational vs. document-oriented storage reflects real-world
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polyglot persistence patterns (e.g., Taibi and Lenarduzzi [6]); and (iii) transactional in-
tegrity vs. flexible consistency mirrors the ACID-BASE contrast that defines SQL/NoSQL
trade-offs [8,9]. This controlled triplet of configurations directly addresses reviewer con-
cerns regarding methodological clarity by enabling attribution of observed effects to specific
persistence design choices.

In addition to the three primary configurations, the experimental dataset also contains
results for two hybrid persistence variants—Hybrid Indexed SQL and Hybrid Non-Indexed
SQL—which combine relational persistence with partial NoSQL-style access paths at the ser-
vice layer. These configurations were not treated as primary experimental factors but were
included as supplementary measurements to assess the robustness of the observed trends.
Hybrid results are therefore reported selectively in aggregated tables and comparative
analyses, without altering the core experimental design.

3.4. Concurrency Levels (1, 10, 50, 100, 500, 1000)

Evaluating system performance under different levels of concurrent access is funda-
mental for understanding how persistence technologies behave under increasing opera-
tional stress. The concurrency levels used in this study—1, 10, 50, 100, 500, and 1000 simul-
taneous requests—were selected to reflect progressive escalation from isolated, single-client
access to high-load stress-test conditions. This stepwise approach follows methodolog-
ical principles commonly adopted in microservice performance investigations [16] and
multitenancy-oriented evaluations [17], where increasing parallelism exposes bottlenecks
in CPU utilization, locking mechanisms, and I/O behavior.

Testing with a single request provides a baseline measurement of raw system respon-
siveness without contention, isolating intrinsic persistence-layer latency for individual op-
erations. Intermediate concurrency levels introduce measurable contention at the database
level. Prior studies [9,11] show that relational systems may experience contention due to
transaction boundaries and index maintenance, whereas document stores may exhibit dif-
ferent saturation behavior depending on their write path and internal storage mechanisms.
Testing at 50 and 100 concurrent users provides insight into sustained parallel demand and
whether resource consumption grows proportionally or exhibits non-linear escalation.

The highest concurrency levels (500 and 1000) represent stress conditions where re-
source contention dominates system behavior. Research on containerized microservices [16]
and distributed systems [5] highlights that tail latency can increase sharply under such
loads, making p95 a critical metric. These high-concurrency scenarios are therefore included
to reveal scalability boundaries and identify configuration-specific breaking points under
uniform experimental conditions.

Employing a wide range of concurrency levels ensures that the experiment evaluates
both scalability and resilience of the persistence layer. This methodology aligns with
recommendations from empirical studies of hybrid systems, where gradual increases
in concurrent demand reveal performance cliffs and resource exhaustion patterns that
average-latency metrics alone may conceal.

3.5. Metrics (p95 Latency, Throughput, CPU, RAM)

To comprehensively assess the behavior of different persistence configurations in a
microservice environment, multiple performance metrics were collected, capturing both user-
perceived performance and system-level resource utilization. The selected metrics reflect
commonly adopted indicators in the evaluation of distributed and containerized systems.

The experiment evaluates four primary metrics—p95 latency, throughput, CPU usage,
and RAM consumption—to capture complementary dimensions of system behavior: re-
sponsiveness (latency), processing capacity (throughput), computational cost (CPU), and
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memory efficiency (RAM). These metrics are widely used in empirical studies of distributed
systems and containerized microservice environments [5,16] and provide a robust basis for
comparing indexed SQL, non-indexed SQL, and document-oriented NoSQL persistence un-
der RH, WH, and MX workloads. Latency was measured at the request level and represents
the elapsed time between the initiation of a client request and receipt of the corresponding
response. To account for tail-latency effects, percentile-based latency statistics were em-
ployed, with particular emphasis on high-percentile values. Throughput was quantified
as the number of successfully processed requests per unit of time, reflecting the system’s
capacity to sustain increasing demand. CPU utilization and memory consumption were
monitored throughout all experimental runs to evaluate resource efficiency and identify
potential bottlenecks at the persistence layer. These metrics were collected at the container
level, ensuring consistent measurement across persistence configurations.

3.5.1. 95th Percentile Latency

Latency analysis in microservice-based systems is particularly sensitive to outliers
and tail behavior, especially under increased concurrency and resource contention. For
this reason, latency evaluation in this study relies on percentile-oriented statistics rather
than average response time alone. High-percentile latency values capture tail effects and
more accurately reflect user-perceived performance degradation under load. The 95th
percentile latency (p95) was selected as a representative indicator of tail performance,
balancing sensitivity to slowdowns with robustness against isolated anomalies. Unlike
average latency—which can mask the impact of slow requests—p95 highlights the slowest
5% of responses. In this experiment, p95 latency provides a sensitive indicator of indexing
efficiency under RH workloads, index-maintenance overhead under WH scenarios, and
overall stability under high concurrency.

3.5.2. Throughput Characteristics

Throughput, measured as the number of successfully processed requests per sec-
ond, complements latency by capturing sustained processing capacity. Prior comparative
studies [8,11] frequently report that relational systems may degrade when locks or in-
dex updates accumulate, while document stores can sustain higher throughput under
write-dominant loads due to reduced transactional overhead and schema flexibility. In
this study, throughput is essential for identifying how each persistence configuration bal-
ances read /write pressure, particularly in the mixed workload scenario where competition
between operations is highest.

3.5.3. CPU Utilization Characteristics

CPU usage provides insight into the computational overhead associated with each
persistence model. As noted in multitenant architecture studies [17], resource contention
significantly influences both latency and throughput under parallel access patterns. Simi-
larly, system-level analyses [16] show that CPU saturation correlates strongly with increases
in tail latency and request queuing.

3.5.4. RAM Utilization

Memory consumption is measured to evaluate how efficiently each persistence config-
uration uses system resources under increasing load. These observations are consistent with
persistence behavior described in NoSQL and hybrid storage literature [8,14]. Together,
the four metrics form a multidimensional performance profile suitable for interpreting the
results presented in later sections.
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3.6. Hardware & Software Environment

All experiments were executed in a controlled, single-host environment to ensure
that performance differences arise solely from the evaluated persistence configurations.
The microservice and all three database systems (SQL with index, SQL without index,
and MongoDB) were deployed on the same machine using Docker containers, providing
isolated, reproducible, and uniform runtime conditions.

The relational database engine used in the experiments was MySQL (version 5.7.36),
selected for its maturity, full ACID compliance, and common use in microservice-based
systems. Explicitly stating the SQL engine and version addresses concerns regarding
objectivity and reproducibility, as SQL performance can vary materially across database
implementations. The host machine was configured with an 8-core CPU, 16 GB RAM (to
prevent swapping), and 512 GB of local disk storage. A local Docker bridge network was
used to ensure stable execution without external interference. Docker Compose orches-
trated the microservice and database containers, guaranteeing consistent initialization and
identical environment settings across runs.

The application layer used Spring Boot with Spring Data JPA /Hibernate for SQL
and Spring Data MongoDB for NoSQL, enabling uniform request logic across persistence
models. No OS-level tuning or database-specific optimizations (e.g., caching configuration
changes beyond defaults, sharding, or replication) were applied. Before each experimental
cycle, containers were restarted and the database state was cleared to ensure reproducibility.

Performance measurements were collected for each workload scenario (RH, WH,
MX) across concurrency levels of 1, 10, 50, 100, 500, and 1000. For every configuration,
the system recorded p95 latency, throughput, CPU usage, and RAM consumption using
both application-level request timing and container-level resource metrics. To mitigate
transient effects, each scenario was repeated and the environment was reset between runs.
Raw measurements were logged with identifiers for workload type, concurrency level,
persistence configuration, and timestamp, enabling direct cross-scenario comparison.

Consistent with the overall methodological positioning of the study, this environment
is intended to support controlled comparison rather than to emulate production-grade
distributed deployments. Accordingly, the results should be interpreted as comparative
indicators of persistence behavior under uniform, reproducible conditions.

3.7. Threats to Validity

As with any empirical evaluation of distributed and microservice-based systems, this
study is subject to several threats to validity that should be considered when interpreting
the results. Internal validity may be affected by transient system behavior inherent to con-
tainerized environments, such as CPU scheduling effects, background daemon activity, and
short-term caching phenomena. These risks were mitigated by executing all experiments
under identical conditions, restarting containers between runs, clearing database state, and
avoiding concurrent background workloads on the host system. Measurements were col-
lected after the system reached steady-state behavior to reduce warm-up bias and transient
fluctuations. External validity is limited by the single-node experimental setup, which does
not incorporate replication, sharding, distributed consensus protocols, or geographically
distributed deployments. Consequently, the results should not be directly generalized
to large-scale production systems or cloud-native clusters without further investigation.
Instead, the findings are intended to provide comparative insights into persistence-layer
behavior under controlled conditions, serving as a baseline for future multi-node or cloud-
scale studies. Construct validity is influenced by the application-driven workload design,
which prioritizes realistic microservice interactions over standardized benchmark suites.
While this choice improves ecological validity, it may limit direct numerical comparability
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with benchmark-centric studies. To mitigate this limitation, the study focuses on relative
performance trends across identical workloads rather than on absolute performance claims.
In conclusion, validity is addressed by emphasizing comparative behavioral patterns in-
stead of isolated measurements. Statistical interpretation relies on percentile-based latency
(p95), throughput trends, and consistent cross-configuration comparisons. By avoiding
overgeneralization and framing conclusions in terms of observed tendencies rather than
universal dominance, the study reduces the risk of overstated or misleading claims.

Taken together, these considerations position the study as a controlled comparative
analysis rather than a production benchmarking exercise, and the reported results should
be interpreted within this clearly defined methodological scope.

4. Results

The results presented in this section reflect the behavior of the evaluated persistence
configurations under different workload types and concurrency levels, following the
experimental design described in the previous section. Consistent with the methodological
scope defined in Section 3, the analysis focuses on comparative performance trends rather
than absolute performance claims. The goal of the analysis is to quantitatively assess
how workload characteristics (RH, WH, MX) and underlying data-store architectures
influence key performance metrics, including p95 latency, throughput, CPU utilization,
and memory consumption.

Before examining each metric in detail, Figure 2 provides an aggregated performance
overview across all workloads and persistence configurations.

Overall Performance Heatmap (Normalized Score (0-1))

o
N
o

0.65

0.60

o
w
wm
Normalized Performance Score (0-1)

Persistence configuration

Figure 2. Overall performance heatmap summarizing normalized p95 latency, throughput, CPU
utilization, and RAM consumption across workload types (RH, WH, MX) and persistence config-
urations, including baseline SQL and NoSQL systems as well as hybrid SQL variants. Hybrid
configurations are positioned adjacent to their corresponding baselines to highlight the effect of
architectural refinements on aggregated performance behavior.

This high-level visualization is intended to support relative comparison and pattern
recognition, rather than detailed metric interpretation. It offers a concise comparative
summary of the relative efficiency of SQL (indexed and non-indexed) and NoSQL systems
and serves as a contextual foundation for the detailed results discussed in the subsections
that follow.
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The heatmap presents a composite performance score derived from normalized p95
latency, throughput, CPU utilization, and RAM consumption. In addition to baseline
configurations (SQL with index, SQL without index, and NoSQL), the evaluation includes
hybrid persistence variants (Hybrid SQL with index and Hybrid SQL without index).
Hybrid configurations exhibit intermediate performance characteristics, confirming their
role as transitional designs between fully relational and document-oriented persistence
models. Having established the overall performance landscape, the analysis proceeds with
p95 latency, which is treated as the primary indicator of tail behavior and system stability
under load, in line with the experimental rationale defined earlier.

4.1. p95 Latency

The p95 latency results clearly differentiate the three persistence configurations across
workload types and concurrency levels. Because p95 captures tail behavior rather than
average response time, the discussion emphasizes scalability limits and contention effects
rather than isolated low-load performance.

In the RH workload, SQL with index consistently achieves the best tail latency for
most concurrency levels (Figure 3a and Table 2). Its average p95 latency over all RH tests
is around 52 ms, compared to about 114 ms for NoSQL and more than 310 ms for SQL
without index. This result directly reflects the effectiveness of indexing in reducing full
table scans and minimizing read-path contention. At very high concurrency (1000 parallel
requests), NoSQL briefly achieves the lowest p95 latency; however, this occurs in a regime
where overall system saturation is already present, and SQL with index still dominates
in terms of throughput. SQL without index remains the worst-performing option in both

latency and throughput.
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Figure 3. P95 latency metrics across different workload scenarios (Read-Heavy, Write-Heavy, Mixed).
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Table 2. Average p95 latency (ms) Across Persistence Configurations.
System RH WH MX
SQL_indexed 51.87 120.60 77.51
SQL no index 310.75 228.55 231.57
NoSQL (MongoDB) 113.81 57.80 81.70
Hybrid indexed SQL 38.70 66.86 69.83
Hybrid no index SQL 83.91 51.02 73.70

In the WH workload, the ranking is reversed. NoSQL achieves the lowest p95 latency
across all concurrency levels, with an average p95 of roughly 58 ms, compared to about
121 ms for indexed SQL and 229 ms for non-indexed SQL (Figure 3b). This behavior is
consistent with the reduced transactional overhead and simpler write paths characteristic
of document-oriented persistence. Both relational configurations show higher tail latencies,
particularly at low and medium concurrency, reflecting the cost of transactional guarantees
and, for the indexed variant, index maintenance. SQL without index performs slightly
better than indexed SQL in WH scenarios, but the gap to NoSQL remains substantial.

MX workloads combine reads and writes and therefore expose the systems’ ability
to handle competing access patterns (Figure 3c). SQL with index and NoSQL exhibit
very similar average p95 latency (approximately 78 ms vs. 82 ms), both significantly
outperforming SQL without index. At the highest concurrency level (1000 parallel requests),
SQL with index achieves the lowest p95 latency, with NoSQL close behind and SQL without
index clearly lagging. This indicates that, under balanced read-write pressure, optimized
relational storage can match document-oriented systems in tail latency, provided that write
pressure does not dominate.

Hybrid SQL configurations follow the same workload-dependent trends as their non-
hybrid counterparts, with Hybrid Indexed SQL exhibiting improved tail latency across all
workloads, particularly under mixed and write-heavy scenarios (Table 2).

In summary, p95 latency results show that indexed SQL is clearly preferable for RH
workloads and competitive with NoSQL in MX workloads, while NoSQL is the best choice
for WH workloads. SQL without index is consistently the worst option for tail latency,
regardless of workload type.

4.2. Throughput

Throughput trends broadly mirror latency results while revealing additional differ-
ences in sustained processing capacity. Throughput is interpreted jointly with p95 latency
to avoid misleading conclusions based on isolated metrics.

In RH workloads (Figure 4a and Table 3), SQL with index consistently delivers the
highest throughput at all concurrency levels, with an average of approximately 472 req/s,
compared to 313 req/s for NoSQL and 145 req/s for SQL without index. The severe
throughput degradation of the non-indexed configuration highlights the cost of full table
scans under concurrent read access.

Table 3. Average Throughput (req/s).

System RH WH MX
SQL_indexed 472.13 277.98 372.79
SQL no index 145.41 176.46 140.22

NoSQL (MongoDB) 313.24 467.93 365.09
Hybrid indexed SQL 489.38 459.76 431.11
Hybrid no index SQL 41891 390.14 412.24
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Figure 4. Throughput metrics across different workload scenarios (Read-Heavy, Write-Heavy, Mixed).

In WH workloads (Figure 4b), NoSQL clearly dominates, achieving an average
throughput of roughly 468 req/s, compared to 278 req/s for indexed SQL and 176 req/s
for non-indexed SQL. At higher concurrency levels, NoSQL maintains stable through-
put, while relational configurations exhibit diminishing returns due to transactional and
index-update overhead.

In MX workloads (Figure 4c), SQL with index and NoSQL again show comparable
performance, with indexed SQL slightly ahead. Average throughput is approximately
373 req/s for indexed SQL, 365 req/s for NoSQL, and only 140 req/s for non-indexed SQL.
This convergence suggests that, under mixed access patterns, indexing enables relational
systems to compete effectively with NoSQL in terms of sustained request processing.

Hybrid SQL configurations follow the same workload-dependent throughput trends as
their non-hybrid counterparts, with Hybrid Indexed SQL consistently improving sustained
request rates under WH and MX workloads, further reinforcing the robustness of the
observed relational vs. NoSQL performance patterns.

Overall, throughput results confirm that indexed SQL is optimal for RH workloads,
NoSQL is best suited for WH workloads, and both approaches perform comparably un-
der MX workloads. Non-indexed SQL consistently exhibits limited scalability and poor
throughput under realistic access patterns.

4.3. CPU Utilization

CPU utilization results reveal how much computational effort each configuration
requires to deliver its observed latency and throughput. CPU metrics are interpreted as a
measure of efficiency rather than as an objective to be minimized in isolation.

In RH workloads (Figure 5a and Table 4), all three configurations show increasing
CPU usage with concurrency, but there is no single dominant winner. NoSQL and indexed
SQL exhibit similar average CPU usage (around 46—47%), while non-indexed SQL uses
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slightly less CPU (~37%) but at the cost of much poorer latency and throughput. The
lower CPU usage of non-indexed SQL in RH workloads therefore reflects underutilization
and inefficiency rather than better optimization. However, this lower CPU usage coin-
cides with significantly worse latency and throughput, indicating inefficiency rather than
superior optimization.
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Figure 5. CPU utilization metrics across different workload scenarios (Read-Heavy, Write-
Heavy, Mixed).

Table 4. Average CPU Utilization (%).

System RH WH MX
SQL_indexed 47.37 35.53 39.88
SQL no index 36.58 34.57 32.53

NoSQL (MongoDB) 46.37 59.68 49.60
Hybrid indexed SQL 52.95 49.15 47.15
Hybrid no index SQL 48.78 43.87 49.77

In WH workloads (Figure 5b), CPU patterns diverge more strongly. NoSQL consumes
the most CPU on average (about 60%), while both relational configurations use considerably
less (approximately 36% for indexed SQL and 35% for non-indexed SQL). This indicates
that NoSQL aggressively uses available CPU resources to sustain high write throughput,
while relational systems trade lower CPU usage for weaker performance under write-heavy
load. This reflects NoSQL's strategy of aggressively utilizing available CPU resources to
sustain high write throughput.

In MX workloads (Figure 5¢), NoSQL again records the highest average CPU usage
(~50%), indexed SQL uses a moderate amount (~40%), and non-indexed SQL the least
(~33%). As in RH workloads, the lower CPU usage of non-indexed SQL coincides with
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RAM (MB)

clearly inferior latency and throughput, meaning that its resources are not effectively
converted into useful work. In contrast, NoSQL consistently couples higher CPU usage
with strong throughput and competitive tail latency. Across all workloads, higher CPU
usage in NoSQL correlates with better performance rather than wasted computation.

Hybrid SQL variants exhibit CPU utilization profiles that closely mirror those of their
base SQL configurations, while partially mitigating peak CPU saturation under mixed
workloads, indicating that the primary resource-usage trends remain stable under hybrid
persistence designs.

These findings suggest that NoSQL is the most CPU-intensive option but uses CPU
resources effectively to maximize throughput, particularly for WH and MX workloads. SQL
with an index achieves good performance with moderate CPU cost, while SQL without an
index often appears CPU-efficient since it fails to process as many requests in the same time.

4.4. RAM Consumption

RAM usage patterns complement the CPU results and highlight important trade-offs
in memory behavior. Across all workloads (Figure 6a—c and Table 5), NoSQL consistently
consumes the most RAM. Its average memory footprint ranges from roughly 1180 MB
(WH) to 1255 MB (MX), reflecting the cost of memory-mapped files and internal caching
mechanisms. SQL without index uses intermediate amounts of RAM (about 979-1096 MB),
while indexed SQL maintains the smallest memory footprint in all three workloads, with
averages between 936 MB (WH) and 1008 MB (MX). This behavior is consistent with
memory-mapped storage mechanisms and internal caching strategies typical of document-
oriented databases.
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Figure 6. RAM consumption metrics across different workload scenarios (Read-Heavy, Write-
Heavy, Mixed).
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Table 5. Average RAM Consumption (MB).
System RH WH MX

SQL_indexed 945.83 935.67 1007.83

SQL no index 1096.00 979.17 1055.50

NoSQL (MongoDB) 1199.33 1182.50 1254.50

Hybrid indexed SQL 1105.33 1070.50 1111.33

Hybrid no index SQL 1118.17 1096.83 1153.50

In RH workloads, indexed SQL achieves superior latency and throughput while also
using the least RAM, indicating that its indexing structures and buffer management are
relatively memory-efficient compared to NoSQL and the non-indexed relational configu-
ration. In WH and MX workloads, NoSQL maintains higher throughput and better write
performance but at the cost of significantly increased memory usage. Non-indexed SQL
occupies a middle position, with moderate RAM usage but generally inferior performance.
Non-indexed SQL again fails to present a favorable trade-off between resource usage
and performance.

Memory consumption patterns of Hybrid SQL configurations remain consistent with
relational storage behavior, showing moderate RAM overhead compared to MongoDB
while preserving the same relative ordering across workload types, which confirms that
hybridization does not alter the fundamental memory—efficiency trade-offs.

Taken together, the resource metrics show that NoSQL offers high performance at the
cost of higher CPU and RAM consumption, while indexed SQL achieves strong read and
mixed performance with the lowest memory footprint. Non-indexed SQL rarely presents an
attractive trade-off, as it combines weaker performance with only modest resource savings.

4.5. Integrated Performance Patterns

The combined analysis of p95 latency, throughput, CPU utilization, and RAM con-
sumption yields (Figure 7) a coherent picture of the three persistence configurations:

e  SQL with index is clearly the best option for read-heavy workloads, offering the lowest
p95 latency and highest throughput while using the least RAM. In mixed workloads,
it remains competitive with NoSQL, often slightly outperforming it in both latency
and throughput at high concurrency, again with a smaller memory footprint. Its
main weakness is write-heavy load, where index maintenance inflates tail latency and
limits throughput.

e  SQL without index consistently performs worst in latency and throughput for read-
heavy and mixed workloads, due to full table scans. It improves in write-heavy
workloads compared to indexed SQL, but still significantly trails NoSQL. Its lower
CPU and moderate RAM usage generally reflect reduced effective work rather than
better efficiency. Its apparent resource efficiency largely reflects reduced effective work
rather than superior scalability.

e NoSQL (MongoDB) is the most robust choice for write-heavy workloads and performs
competitively in mixed workloads, achieving the highest or near-highest throughput
and low p95 latency, especially at high concurrency. However, this comes at the cost
of higher CPU and RAM consumption in all workload types. In purely read-heavy
scenarios, it is outperformed by indexed SQL but still significantly better than non-
indexed SQL. These advantages are achieved at the cost of higher CPU and RAM
consumption, which may be acceptable in environments where resources are not the
primary constraint.
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Figure 7. Integrated comparison of average p95 latency, throughput, CPU utilization, and RAM con-
sumption across persistence configurations. Hybrid SQL variants are included to illustrate their relative
position with respect to baseline SQL and NoSQL designs under aggregated workload conditions.

Overall, the results confirm that no single persistence configuration is universally
optimal. Performance outcomes arise from the interaction between workload composition,
concurrency intensity, and internal persistence mechanisms such as indexing strategies,
transaction handling, and storage models. The choice of storage technology should be
guided by workload profile and resource constraints: indexed SQL is preferable for strongly
read-dominated services or when memory efficiency is critical; NoSQL is better suited
for write-intensive and high-concurrency environments where resource consumption is
acceptable; and non-indexed SQL should be avoided in most practical scenarios except as
a controlled baseline for isolating indexing effects. These empirically grounded insights
provide a solid basis for the architectural recommendations and design guidelines discussed
in the next section. Hybrid SQL configurations consistently position themselves between
their corresponding baseline SQL variants and MongoDB, confirming that hybridization
refines but does not overturn the dominant workload-driven performance trends.

To ensure traceability between the research objectives, hypotheses, and empirical
findings, the following subsection explicitly maps the experimental results to the research
questions and hypotheses defined in Section 1.

4.6. Mapping Results to Research Questions and Hypotheses

This subsection explicitly maps the empirical findings presented in Sections 4.1-4.5 to
the research questions and hypotheses defined in Section 1. The objective of this mapping
is to ensure traceability between the study objectives, experimental design, and observed
outcomes, and to clarify how the reported results address the stated research questions and
validate (or qualify) the proposed hypotheses.

4.6.1. Mapping to Research Questions

RQ1: How do relational (indexed and non-indexed) and NoSQL persistence models
differ in p95 latency and throughput under RH, WH, and MX workloads?
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The results demonstrate clear, workload-dependent performance differentiation
among the evaluated persistence configurations. Under RH workloads, indexed SQL
consistently achieves the lowest p95 latency and the highest throughput across almost
all concurrency levels. This behavior reflects the effectiveness of indexing structures in
minimizing full table scans and optimizing query execution paths. Non-indexed SQL
exhibits substantially higher tail latency and significantly reduced throughput, confirming
the critical role of indexing in relational read performance. MongoDB performs better than
non-indexed SQL but remains inferior to indexed SQL in both latency and throughput
under RH conditions. Under WH workloads, MongoDB clearly outperforms both relational
configurations. It achieves the lowest p95 latency and the highest throughput at all concur-
rency levels, particularly under medium and high contention. Indexed SQL performs worst
in this scenario due to index maintenance overhead, while non-indexed SQL improves
relative to indexed SQL but remains significantly behind MongoDB. Under MX workloads,
indexed SQL and MongoDB exhibit comparable performance. Both achieve low p95 latency
and high throughput across increasing concurrency levels, with indexed SQL often main-
taining a slight advantage at high concurrency. Non-indexed SQL remains consistently
inferior due to inefficient read handling. The results confirm that persistence performance
is strongly workload-dependent. Indexed SQL is optimal for read-dominant workloads,
MongoDB is superior for write-dominant workloads, and both indexed SQL and MongoDB
provide competitive performance under mixed workloads, while non-indexed SQL is not
suitable for most practical scenarios.

RQ2: How does increasing concurrency (from 1 to 1000 parallel requests) influence
the performance and resource usage of SQL and NoSQL databases?

Increasing concurrency systematically amplifies architectural differences between
persistence models. Indexed SQL scales efficiently under RH workloads but exhibits sharp
increases in p95 latency and declining throughput under high write concurrency due to
index update overhead and transactional contention. Non-indexed SQL degrades rapidly
under high read concurrency because full table scans scale poorly as parallelism increases.
MongoDB demonstrates comparatively stable p95 latency and sustained throughput as
concurrency increases, particularly in WH and MX workloads. Even at extreme concurrency
levels (500-1000 parallel requests), MongoDB maintains consistent performance trends,
indicating strong robustness under contention. Resource utilization metrics corroborate
these observations. MongoDB consistently consumes more CPU and RAM, reflecting
aggressive resource utilization to sustain throughput. Indexed SQL achieves competitive
performance with lower memory consumption, especially in RH and MX workloads. Non-
indexed SQL often appears resource-efficient only because it processes fewer requests
effectively, rather than due to superior optimization. Concurrency acts as a stress multiplier
that exposes scalability limits in relational configurations while highlighting the robustness
of document-oriented persistence under high parallel load.

RQ3: Which persistence configuration provides the most stable behavior across tail
latency, throughput, CPU usage, and RAM consumption under mixed workload patterns
typical of microservice ecosystems?

Under mixed workloads, MongoDB exhibits the most stable p95 latency and through-
put across increasing concurrency levels, demonstrating robustness under competing read
and write demands. However, this stability is achieved at the cost of higher CPU and
RAM consumption. Indexed SQL shows comparable stability in MX workloads while
maintaining a significantly smaller memory footprint. Although its performance degrades
under extreme write pressure, it remains highly competitive under balanced access patterns.
Non-indexed SQL does not provide stable behavior across any performance dimension
and exhibits poor scalability in mixed workloads. Stability depends on the performance
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dimension considered. MongoDB offers the most stable latency and throughput under
concurrency, while indexed SQL provides a more balanced trade-off between performance
stability and resource efficiency. This reinforces the importance of workload-aware persis-
tence selection in microservice ecosystems.

4.6.2. Mapping to Hypotheses

H1. Indexed SQL achieves significantly lower read latency (p95) than non-indexed SQL and
MongoDB under RH workloads due to optimized index access paths.

Outcome: Supported.

Indexed SQL consistently exhibits the lowest p95 latency and highest throughput
under RH workloads. Non-indexed SQL suffers from severe tail-latency degradation due
to full table scans, while MongoDB remains consistently slower than indexed SQL for
structured read operations.

H2. MongoDB achieves superior write throughput and lower tail latency than both SQL configura-
tions under WH workloads, especially at high concurrency levels.

Outcome: Supported.

MongoDB achieves the lowest p95 latency and highest throughput across all concur-
rency levels in WH workloads. Both relational configurations are penalized by transactional
overhead, with indexed SQL performing worst due to index maintenance costs.

H3. MongoDB provides the most stable performance profile across RH, WH, and MX work-
loads as concurrency increases, exhibiting more predictable CPU and RAM usage compared to
relational configurations.

Outcome: Partially supported.

MongoDB provides the most stable latency and throughput trends under increasing
concurrency, particularly in WH and MX workloads. However, this stability is accompanied
by consistently higher CPU and RAM consumption compared to indexed SQL. Indexed
SQL offers comparable stability in MX workloads with superior memory efficiency.

Summary of Hypothesis Evaluation

Overall, H1 and H2 are fully supported by the experimental results, while H3 is sup-
ported with qualification. MongoDB offers robust performance stability under concurrency,
but this comes at the cost of higher resource utilization. These findings emphasize that
no single persistence configuration is universally optimal and that performance outcomes
emerge from the interaction between workload composition, concurrency intensity, and
persistence architecture. Hybrid SQL variants further reinforce these conclusions by demon-
strating that the same workload-dependent performance trends persist when relational
persistence is combined with hybrid access patterns, indicating that the observed behaviors
are robust beyond strictly isolated baseline configurations. This explicit mapping provides
a clear bridge between the empirical results and the research objectives, and serves as a
foundation for the deeper interpretative discussion presented in the following section.

These results establish a clear empirical link between the stated research questions,
hypotheses, and observed system behavior, providing a structured foundation for the
interpretative discussion that follows.

5. Discussion

The observed performance differences can be interpreted through the lens of archi-
tectural trade-offs inherent to relational and document-oriented persistence models under
varying workload and concurrency conditions. These differences align closely with archi-
tectural principles while also providing new empirical insights into their behavior under
high concurrency.
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5.1. Read-Heavy (RH) Behavior

The results confirm that indexing is the decisive factor for read-intensive workloads.
SQL with index achieves the lowest p95 latency and the highest throughput across all
concurrency levels, while also maintaining relatively low CPU and RAM usage. In contrast,
SQL without index performs the worst in every RH metric due to full table scans, which in-
flate latency and CPU overhead as concurrency increases. MongoDB performs moderately
well, better than non-indexed SQL but consistently behind indexed SQL. These observa-
tions validate the core relational expectation that properly designed indexes dramatically
improve read performance.

5.2. Write-Heavy (WH) Behavior

In WH workloads, the performance hierarchy reverses. MongoDB achieves the lowest
p95 latency and highest throughput across almost all concurrency levels, supported by
efficient document-level writes and lightweight transactional semantics. SQL without
index performs better than indexed SQL because it avoids index-maintenance overhead.
Indexed SQL experiences the steepest latency and throughput degradation as concurrency
increases, reflecting the cumulative cost of maintaining B-tree indexes under heavy write
activity. These results confirm that NoSQL systems provide distinct advantages for write-
intensive microservices.

5.3. Mixed (MX) Behavior

MX workloads emphasize the balance between read and write performance. SQL
with index and MongoDB exhibit highly similar average p95 latency and throughput,
with SQL slightly outperforming MongoDB at the highest concurrency levels. MongoDB,
however, maintains more stable resource usage, particularly RAM, across the entire concur-
rency range. SQL without index again underperforms both alternatives, illustrating that
eliminating indexes provides write benefits but severely penalizes read performance in
mixed-access scenarios. These results demonstrate that MX workloads expose the most
balanced strengths of SQL with index and NoSQL.

5.4. Scalability and Resource Behavior

Concurrency amplifies the inherent architectural characteristics of each system. In-
dexed SQL scales well for reads but poorly for writes; non-indexed SQL scales poorly
for reads but moderately for writes; and MongoDB scales smoothly across all workload
types, with predictable increases in CPU and RAM usage. Notably, NoSQL consistently
consumes more RAM than both SQL configurations, reflecting memory-mapped storage
internals, but converts that memory usage into higher throughput and lower tail latency.
CPU patterns similarly align with expectations: indexed SQL is CPU-efficient during reads
but CPU-expensive during writes, while MongoDB combines high CPU utilization with
superior throughput in WH and MX workloads.

5.5. Cross-Metric Performance Trends and Architectural Implications

Interpreting p95 latency, throughput, CPU utilization, and RAM consumption jointly
reveals architectural performance trends that transcend individual metrics and clarify
the underlying trade-offs among the evaluated persistence configurations. Rather than
being driven by a single dominant factor, observed performance outcomes emerge from
the interaction between workload composition, concurrency intensity, and the internal
mechanisms of each persistence engine. The behavior of hybrid SQL configurations further
supports these interpretations. Hybrid Indexed SQL consistently improves both latency and
throughput relative to its non-hybrid counterpart, particularly in write-heavy and mixed
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workloads, suggesting that partial decoupling of persistence access paths can mitigate some
of the traditional indexing overheads. Importantly, these improvements do not alter the
fundamental workload-dependent hierarchy observed among SQL and NoSQL system:s,
but rather confirm their stability under extended architectural variations.

5.5.1. Impact of Workload Type on Persistence Selection

The experimental results clearly indicate that workload type is the dominant factor
shaping optimal persistence choice in microservice-based systems.

Indexed SQL consistently proves optimal for read-heavy workloads, delivering the
lowest p95 latency and the highest throughput while maintaining the smallest memory
footprint. This behavior reflects the effectiveness of indexing structures in optimizing query
execution and minimizing unnecessary data access. In contrast, NoSQL systems, while
competitive, remain inferior to indexed SQL for structured, read-dominant access patterns.

Under write-heavy workloads, NoSQL demonstrates the strongest performance char-
acteristics. It achieves superior throughput and lower tail latency, particularly under high
concurrency, confirming the advantages of document-oriented storage and relaxed con-
sistency models for write-intensive scenarios. SQL without index performs better than
indexed SQL in these cases, but remains clearly behind NoSQL.

For mixed workloads, which closely resemble realistic microservice access patterns,
NoSQL remains highly competitive and indexed SQL often achieves comparable or slightly
superior latency and throughput, especially at higher concurrency levels. SQL without
index, however, remains significantly penalized due to inefficient read handling.

5.5.2. Concurrency as an Amplifier of Architectural Strengths and Weaknesses

Concurrency acts as a critical stress factor that amplifies the inherent architectural
characteristics of each persistence model.

Indexed SQL exhibits sharp performance degradation under high write concurrency,
primarily due to index-maintenance overhead and transactional contention. Conversely,
SQL without index collapses under high read concurrency as full table scans scale poorly
with increasing parallelism.

MongoDB scales more gracefully across all workload types, maintaining stable perfor-
mance even at extreme concurrency levels (500-1000 concurrent requests). This robustness
under contention highlights the suitability of document-oriented persistence for high-
parallelism environments, albeit at increased resource cost.

5.5.3. Resource Utilization as a Complementary Performance Indicator

Resource utilization patterns corroborate and contextualize the observed latency and
throughput results.

Indexed SQL maintains low CPU usage in read-heavy scenarios, but incurs substantial
CPU and RAM overhead under intensive write activity. SQL without index exhibits high
CPU usage during read-heavy workloads due to inefficient scans, while showing moderate
resource consumption during write-dominated access patterns.

MongoDB demonstrates predictable CPU and RAM utilization across workloads, but
consistently allocates more memory than relational configurations. This behavior reflects
its memory-mapped storage model and aggressive caching strategies, which enable stable
performance at the expense of higher resource consumption.

These findings indicate that lower resource utilization does not necessarily correspond
to better performance; rather, effective conversion of resources into throughput and low
tail latency is the decisive factor.
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5.5.4. Tail Latency as a Critical Indicator Under Stress

Across all experiments, tail latency (p95) emerges as the most sensitive indicator of
system behavior under stress.

Indexed SQL exhibits steep p95 increases in write-heavy scenarios, particularly beyond
100 concurrent clients, reflecting index update overhead. SQL without index shows the
greatest p95 degradation in read-heavy workloads due to full table scans. MongoDB
maintains the most stable p95 latency in mixed and write-heavy workloads, even under
extreme concurrency, reinforcing its robustness under contention.

5.5.5. Implications for Persistence Design in Microservice Architectures

Indexed SQL is best suited for read-intensive microservices or environments where
memory efficiency is a priority. SQL without index offers limited benefits only in narrowly
defined write-dominated scenarios and should generally be avoided in practical deploy-
ments. MongoDB emerges as the most robust general-purpose solution, delivering strong
write performance, competitive mixed-workload behavior, and stable performance under
high concurrency, albeit at the cost of increased CPU and RAM consumption.

These discussion-level insights provide a natural bridge from the empirical results to the
high-level conclusions and architectural recommendations presented in the following section.

5.6. Implications for Microservice Architectures

The findings have direct architectural implications. Read-oriented microservices
(e.g., configuration lookup, authentication, catalog services) benefit most from indexed
relational storage. Write-intensive services (e.g., audit logs, telemetry ingestion, event
streams) are better served by MongoDB. Mixed workloads, common in transactional
microservices, perform well with either indexed SQL or MongoDB, depending on whether
the system prioritizes memory efficiency (favor SQL) or balanced scaling under concurrency
(favor MongoDB). These results empirically support the adoption of polyglot persistence
in distributed systems where workload heterogeneity is the norm.

5.7. Summary of Key Insights

The experimental findings discussed in this section highlight that persistence perfor-
mance in microservice-based systems is fundamentally shaped by the interaction between
workload composition, concurrency intensity, and database architecture. Across all evaluated
scenarios, no single persistence configuration consistently outperforms the others, confirming
that workload-aware selection is essential for achieving balanced system behavior.

Indexed SQL demonstrates clear advantages in read-heavy workloads, where it
achieves superior tail latency and throughput while maintaining efficient CPU and memory
utilization. These characteristics make it particularly suitable for microservices domi-
nated by structured read access patterns. In contrast, MongoDB exhibits the strongest
performance under write-heavy workloads and remains highly competitive in mixed sce-
narios, especially as concurrency increases. Its ability to sustain low p95 latency and high
throughput under contention reflects the benefits of document-oriented storage and relaxed
consistency mechanisms, albeit at the cost of increased CPU and RAM consumption.

SQL without indexing consistently underperforms in read-heavy and mixed work-
loads due to inefficient access paths and poor scalability under concurrency. While it offers
limited benefits in narrowly defined write-dominated scenarios, its overall performance
profile restricts its applicability in realistic microservice deployments.

Across all configurations, tail latency (p95) emerges as the most sensitive indicator of
system behavior under stress, revealing scalability limits and degradation patterns more
clearly than average-based metrics. Together, these insights provide a coherent empirical
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foundation for understanding persistence trade-offs in microservice architectures and set
the stage for the high-level conclusions and design recommendations presented in the
following section.

6. Conclusions

This study presented a systematic empirical evaluation of three persistence
configurations—SQL with indexing, SQL without indexing, and MongoDB—under RH,
Wh, and MX workloads, across concurrency levels ranging from 1 to 1000 parallel requests.
By jointly analyzing p95 latency, throughput, CPU utilization, and RAM consumption, the
study provides a comprehensive and internally consistent characterization of persistence-
layer behavior in a controlled microservice-based environment.

The results confirm that no single persistence mechanism is universally optimal. In-
dexed SQL is the most effective choice for RH workloads, offering the lowest tail latency and
highest throughput with modest resource requirements. SQL without indexing provides
acceptable performance only in narrowly defined write-dominated scenarios and scales
poorly otherwise. MongoDB exhibits the most balanced performance profile, performing
best under WH workloads and remaining competitive under mixed access patterns, while
trading higher memory consumption for stability under high concurrency.

These findings reinforce established principles from database systems theory while
providing new quantitative insights tailored to containerized microservice architectures.
From a practical standpoint, the results strongly support the adoption of polyglot per-
sistence strategies, in which microservices select storage technologies according to their
dominant workload characteristics. Relational databases with appropriate indexing are
well suited for read-oriented services, document-oriented NoSQL systems are advanta-
geous for write-intensive and high-concurrency workloads, and hybrid approaches are
appropriate for complex systems with heterogeneous data access patterns. Supplemen-
tary results obtained from hybrid SQL configurations further confirm that the reported
workload-dependent performance trends remain stable under extended persistence designs,
reinforcing the robustness—rather than expanding the scope—of the primary findings.

Future research may extend this work to distributed and production-oriented set-
tings, including replicated and sharded deployments, distributed transaction management,
caching layers, additional NoSQL engines, and cloud-native autoscaling environments.
Nevertheless, the present study offers actionable guidance: aligning persistence technolo-
gies with dominant workload profiles leads to measurable improvements in performance,
scalability, and resource efficiency in modern microservice ecosystems.
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