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On m-Exponential Convexity with Respect to s and Its
Applications

Nemanja Vuciéevié

ABSTRACT. The concept of convexity represents one of the funda-
mental notions of mathematical analysis and optimization. Various
extensions of the concept of convexity have contributed to a wide
range of applications, including the study of integral inequalities,
approximation theory and other areas of applied mathematics. In
this paper, we start from exponentially convex functions defined
with respect to s and introduce a new class of m-exponentially con-
vex functions with respect to s. Furthermore, the basic algebraic
properties of this class are analyzed. In the second part, special
attention is devoted to the application and the meaning of the ex-
tension of the Hermite-Hadamard inequality, where a more general
framework is provided compared to the existing ones. The obtained
results, in addition to their theoretical significance, also point to the
potential for applications in data analysis, optimization and further
generalizations.

1. INTRODUCTION

The theory of convexity nowadays occupies a very important place in
both theoretical and applied mathematics. Among other things, it is one
of the key tools in the development of inequalities, the construction of
various numerical methods and the theoretical frameworks of optimiza-
tion. For example, the Hermite-Hadamard inequality and its variants
are used to characterize convex functions. Furthermore, they find appli-
cations in mathematical analysis, statistics, economics and other fields.
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In recent years, there has been a growing interest in introducing new
types of convexity, both for theoretical and practical reasons. New types
of convexity often generalize existing ones or are defined for specific
classes of functions. For instance, very basic generalizations such as m-
convex functions ([15, 18, 21, 22]), s-convex functions ([4]) and (s, m)-
convex functions ([1]) have been introduced. Building on them, classes of
exponential convex functions have been obtained ([9, 19, 20]), as well as
exponential type P-functions [[] and exponential trigonometric convex
functions [§]. In all of these works, special attention has been given to
the Hermite-Hadamard inequality, which we will also analyze in this
paper.

Parallel to the development of various types of convexity, fractional
calculus has also gained increasing importance, with a large number of
studies already exploring the application of these types of convexity in
that field. The connection between convexity and fractional calculus has
proven to be particularly fruitful, as it allows for the proof of new integral
inequalities, through which not only theoretical extensions are obtained
but also practical tools in physics, biomedicine, signal processing and so
on. With deeper development and the establishment of new inequalities,
these results become significantly applicable. The previously described
applications and extensions can be found in [[10, 11, [13, L6, 17]]. Other
works also explore the possibility of applying these results to inequalities
and connections with arithmetic, geometric and other means ([2]). The
paper [p] investigates generalized Humbert polynomials whose integral
and series representations can serve as a basis for examining various
types of convexity, including extensions, with particular emphasis on
their potential applications. In the context of functions and their appli-
cations, the paper [12] demonstrates the potential use of new classes of
functions, as well as their connection with convex functions.

The motivation for this paper arises precisely from these new direc-
tions of development. In [6], Kadakal introduced the concept of expo-
nential convex functions with respect to the parameter s, thereby sig-
nificantly extending the notion of classically defined exponential convex
functions.

2. PRELIMINARIES

The following definitions introduce the concept of convexity with ex-
tensions: m-convexity and (s, m)-convexity. There also exist several
other variants of generalizations of the first definition.

Definition 2.1 (Convex function). Let I C R be an interval. A function
f: I — Ris called convez if for every x,y € I and for every t € [0, 1] it
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holds that
fltz+ 1 =t)y) <tf(x)+ (1 -1)f(y)
Definition 2.2 ([15, 18, 21]). Let I C R4 and m € [0,1]. A function

f: I — R is called m-convex if for every z,y € I and for every t € [0, 1]
it holds that

f(te +m(1 —t)y) < tf(x) +m(l—1)f(y).
Definition 2.3 ([l]). Let s,m € (0,1]. A function f : [0,00) — R is
called (s, m)-convez if for every z,y € [0,00), s,m € (0,1] and for every
t € [0,1] it holds that

[tz +m(1 = t)y) < t*f(z) + m(1 —1)°f(y).

The following three definitions introduce the concepts of exponential
convexity, m-exponential convexity and exponential m-convexity. In
the indicated papers, one can find properties related to such types of
functions.

Definition 2.4 ([9]). Let I C R. A function f : I — R is called
exponentially convez if for every z,y € I and t € [0, 1] it holds that
fltz+ (1 =t)y) < (" =) f(x)" + (e = 1) f(y).

Definition 2.5 ([3]). A nonnegative function f : I — R is called (s, m)-
exponential type conver for some fixed s, m € (0,1], if

fltz+m(1—t)y) < (€ = Df (@) +m (0 =1) £(y).
holds for all z,y € I and ¢ € [0, 1].

Definition 2.6 ([15]). Let m € [0,1] and I C R be a m-convex set.
Then a real-valued function f : I — R is said to be exponentially m-
convex if

e/ (=tetmly) < (1 _ 1)/ (@) 4 nte/ W),
for all z,y € I, t € [0,1].

As emphasized in the introduction, particular attention has been
drawn to the paper that introduced the concept of exponentially convex
functions with respect to the parameter s.

Definition 2.7 ([6]). A nonnegative function f : I — R is said to be
exponentially convex with respect to s, if for all x,y € I and all ¢t € [0, 1]
it holds that

(2.1) flte+ (1 —t)y) <ts'"f(x) + (1= 1)s' f(y).

The properties described in the following two lemmas will be used in
proving some key theorems in this paper.
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Lemma 2.8 ([20]). Let 0 < ¢ < 1 and a mapping [ : [a, g] — R is

differentiable on (a, %) withb>a >0 and m € [0,1]. If f' € L, [a, ;ﬂ,
then

fla) + £ (") c ¥
2 "~ mb—ca /a f()dt
mb — ca .

= /01(1 —2t)f (ta +m(1— t)i) dt.

Lemma 2.9 ([20]). Let 0 < ¢ < 1 and a mapping [ : [ca,b] — R is
differentiable on (ca,b) with b > a >0 and m € [0,1]. If f" € Ly [ca, b],
then
b I
flmea) + £ () fa

2 b—ca Jmea

b — mca

1
- /0 (1= 20)f (tb + me(1 — £)a) dt.

3. MAIN RESULTS

In the following, the key contribution of this paper will be defined,
namely the m-exponential convexity with respect to the parameter s.
Let I C R be an interval and fix m € (0,1] and s > 0.

Definition 3.1 (m-exponential convexity with respect to s). A non-
negative function f : I — R is said to be m-exponentially convex with
respect to s, if for all x,y € I and all t € [0, 1] it holds that

(3.1) ftz+m(l —t)y) <ts'tf(z) +m(l —t)s'f(y).

Remark 3.2. The set of all m-exponentially convex functions with re-
spect to s will be denoted by mECFs.

Remark 3.3. 1) For s =1and m =1, (@) reduces to convexity:
fltz+(1 —ﬁ) <tf(z)+ (1 =0)f(y)

2) For s = 1, (B.1)) reduces to m-convexity:

[z +m(1l—t)y) <tf(z) +m(l—1)f(y).

3) For m = 1, (@) reduces to the exponential convexity with
respect to s: f(tz + (1 —t)y) < ts' 7t f(x) + (1 —t)st f(y).

Example 3.4. Let f(z) = 22, z € [0,00). Show that f is m-exponentially
convex with respect to s, i.e.,

fltz+m(1 —t)y) < ts' " f(x) +m(1 —1)s" f(y),
for all z,y >0, ¢t € (0,1}, m € (0,1] and s > 1.
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Proof. Since f(z) = % is convex on [0, 00), it follows that

(tx +m(1 —t)y)? < tx? + (1 —t)(my)?

= tz? + m2(1 — t)y>.

Because m? < m for m € (0,1] and s'=% > 1, s* > 1 for s > 1, we
obtain
te? + m2(1 —t)y? < ts' 7t + m(1 —t)s'y>
Combining the inequalities gives
(tz +m(1 — t)y)? < ts'7ta? + m(1 — t)s'y>.
O

In the following properties, some basic algebraic characteristics valid
for the functions of the set mECFs will be studied.

Theorem 3.5. Let f : I — R, z,y € I arbitrary and let m € (0, 1].

1) If f is m-exponentially convex with respect to s, then f is m-
convex for every s < 1.

2) If f is m-convez, then f is m-exponentially conver with respect
to s for every s > 1.

Proof. Let f: I — R, x,y € I arbitrary and let m € (0, 1].
1) Let the function f be m-exponentially convex with respect to
s. Then, since s < 1, it follows that tsi—t < ¢.
On the other hand, we have: m(1 — t)s* < m(1 — t). Hence,
from the assumption that f is a function that is m-exponentially
convex with respect to s, it follows that

fltz +m(1 —t)y) < ts' =" (@) +m(1 - t)s'f(y).

Therefore, f is an m-convex function.

2) Now suppose that f is an m-convex function and let s > 1. Then
s'=t > 1, which implies ts'~* > t. Moreover, since 1 —¢ > 0 and
m > 0, it follows that m(1 — t)s* > m(1 — t). Thus, for every
xz,y € I, we have:

ftx+m(l—t)y) <tf(z)+m(l—1t)f(y)
<ts' ' f(x) +m(1 —1)s' f(y).

Therefore, f is an m-exponentially convex function with respect
to s.

O

Theorem 3.6. Let f,g : I — R be m-exponentially convex functions
with respect to s and let m € (0,1]. Then,
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1) f+ g is a function that is m-exponentially convex with respect
to s.

2) If ¢ > 0, then cf is an m-exponentially convex function with
respect to s.

Proof. From Definition @, for fixed m € (0,1] and s > 0, the proof is
obvious. O

Theorem 3.7. Let g : I — J be an m-convex function and let f :
J — R be an m-exponentially convex function with respect to s that
is non-decreasing, where I,J C R are intervals and m € (0,1]. Then,
fog:I— R is an m-exponentially convexr function with respect to s.

Proof. Let x,y € I. Then:
(fog)(te +m(l —1t)y) = f(g(tx +m(1 - t)y)
< fltg(z) + m(1 —t)g(y))
<ts' T f(g(x)) +m(1—t)s"f(9(y))-

Therefore, f o g is an m-exponentially convex function with respect to
S. O

Theorem 3.8. Let f; : I — R be an arbitrary family of m-exponentially
convex functions with respect to s and let m € (0,1] and define f(x) =

sup fi(z). If
C={zel]l f(x) < +oo},

then C' is an interval and f is an m-exponentially convex function on

C.
Proof. Let x,u € I be arbitrary points, then:
J(tz+m(1 = t)y) = sup (fi(tz +m(1 = t)y))
< sup (ts' 7' fi(x) + m(L —t)s' fi(y))
< tsll‘t sup fi(x) +m(1 —t)s"sup f;(y)

=ts' 7 f(z) + m(1 — t)s' f ().

Therefore, the previous relation proves that C is an interval and that f
is an m-exponentially convex function with respect to s. O

In the continuation of this paper, the application of the new convexity
will be analyzed through extensions of the Hermite-Hadamard inequal-
ity. Furthermore, the space L[a,b] will be considered, which represents
the space of integrable functions over |[a, b].
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Theorem 3.9. Let f : [a,mb] — R be an m-exponentially conver func-
tion with respect to s, for m € (0,1] and let a < mb. If f € Li[a, mb],
then

1) for alls > 1:

jgf <“+2mb> < mbl_a ( ambf(t)dtJr/ab f(t)dt>
<20 () s )+ (5 () +10)))

a+mb 1 mb b
2f< . ) <L ( [ ptoe+ /; f(t)dt>

1 a
<5 (F@+r®+m (1 () +10)).
Proof. Let the assumptions described in the theorem hold.

1) Let

A

x1 =ta+m(1l—1t)b, and zo = (1 —t)% +tb,t € [0, 1].

Then, using the properties of an m-exponentially convex func-
tion with respect to s, we have:

a+mb r1 +mxa
() = (75)

B (ta+m(1 —1t)b) + ((1 — t)a + mtb)
- ; )

< ¥ flaa-+ m(1 — ) + LA~ Da+ mib)
_ V; (F(ta+m(1 — £)b) + F((1 — t)a + mtb)).

By integrating the previously obtained inequality over the in-
terval [0, 1] with respect to ¢, we obtain

f<a+mb> gf (/Olf(taer(l—t)b)dtJr/Olf((1—t)::L+tb)dt>

2
s 1 @ m b
T2 <a —mb mbf(t>dt a—mb /51 f(t)dt>

_vs 1 ( mbf(t)dt—l—m/jf(t)dt)

2 mb-a
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. mbl_ - ( amb F(H)dt +m /b f(t)dt)

1 1 a
:/0 f(ta+m(1—t)b)dt+/0 =02 1) ar

1
< / (ts''f(a) + m(1 — t)s' £ (b)) dt
0

+ /01 (tslftf(b) +m(l - t)stf (%)) dt

:f(a)s_hl;_l +mf(b)s_1n8_1+f(b)s_lns_1

In“ s

a\ s—Ins—1
(1) it
mf m? In?s
s—Ins—1

_smmemd <f(a)+f(b)+m(f (%) +f(b))),

In“s

In? s In?s

which completes the proof.
2) The inequality is obtained in a completely analogous manner to
the procedure presented above.

O
Theorem 3.10. Let f : (0, %] — R be a differentiable function on (0 b} ,

‘e
such that the conditions 0 < a < b and 0 < ¢ < 1 hold. Suppose that
|f17 is an m-exponentially convex function with respect to s on (0, %]

for every ¢ > 1 and % + % = 1. Then the following holds:
1)

J@+f(m) e
| : e IR
- mb — ca 1 ,
=T (p+ 1)
(A (@l (B)]) pratssn
2)
mb mb
‘f(a) +2f( v) mbc_ — [
Smb2zca<; <|f,(a)|q+m f, (i) q>>qa fOT’S:L
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Proof. Let us prove relation 1); relation 2) follows by an analogous ar-
gument. Starting from the left-hand side of the equality in relation 1)
and by applying Lemma @, we obtain

fla+f(™)

2 mb—ca J,

/01(1 —2t)- f (ta—i—m(l — t)i) dt‘

’ I (ta~l—m(1 —t)i)

mb — ca 1 P 1 d .
g(/ 1—2typdt) (/ dt> )
20 0 0

where Holder’s inequality was applied to obtain the last relation. Then,

using
f (ta—i—m(l — t)i) f (i)

and using the theorem’s assumption—mnamely, since f’ is m-exponentially
convex—we obtain the upper bound of the last relation as

mb
f(t)dt

mb — ca
2c

q q
<tsHf(a)|1 + m(1 —t)s*

)

mb — ca ! > !
mh - </0 |1—2t|pdt> (/O
mb — ca ! g
§26</0 |1—2t\pdt>
1 b q %
(/ <t51_t|f’(a)]q—|—m(1—t)st r <C) >dt>
0
mb — ca 1 \7 /[ Ins—s+1 , AANE .
-2 ) (e (rerenlr Q)))

Which was to be shown. For s = 1, the only difference is in the step
where the integration is performed and by the same procedure the de-
sired relation 2) is also obtained. |

1
q q
dt)

f! <ta +m(1— t)i)

Theorem 3.11. Let f : (0, %] — R be a differentiable function on (0, g} ,
such that the conditions 0 < a < b and 0 < ¢ < 1 hold. Suppose that
|f'17 is an m-exponentially convex function with respect to s on (0 b]

for every q > 1. Then the following holds: ‘
1)
+f (2 o
O IEE) e [ s

mb—ca J,
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mb — ca 1 l_é
< R
- 2c 2

(4 (@ +m

bY |9\ @
fl(c) )) ,  foralls>1,

— —1)2 _1n2 —
where A — 4(/s —1)* —In 133+ (s +2ys—3) lns‘
n’s

2)

mb mb
'f(“Hf(c)— L

2 mb—ca J,

cmoen (Vs
=2 2 wrm

f <b> q>q, for s =1.
c

Proof. To prove the desired inequality, let us start from the left-hand
side and first, as in the proof of the previous theorem, apply Lemma
and then apply the power mean. After that, we use the fact that the
function f’ is m-exponentially convex with respect to s.

fa)+f (%) e [%F
‘ 2 _mb—ca/a J()dt

b— 1 b
ca — 9t ta+m(1—1)2 )| dt
mn 1— 21 | ' 1 d
2c 0 c
1

1
mb — ca =g
|1 — 2t|dt
26 0
1 b q %
. </ ’1—2t| f/ <ta—|—m(1—t)> dt)
0 C
1
b— ! 3
mh (/ - 2t\dt>
0

2c
. (/01 11— 2t| <tsl‘t|f’(a)lq +m(l—t)st|f (i) q) dt)é

mb — ca <1>1—§ <—4(\/§— 1)2—In%s+ (s +2y/5—3)Ins

2c 2 In3 s
%
1)

IN

IN

IN

2

(ir@im
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which completes the proof. By substituting s = 1 in the preceding
procedure and evaluating the corresponding integrals, relation 2) follows
directly. O

Theorem 3.12. Let f : (0,b] — R be a differentiable function on X,
such that 0 < a < b and 0 < ¢ < 1 hold. Suppose that |f'|? is an m-
exponentially convex function with respect to s on (0,b] for every ¢ > 1
with % + % =1 and m € (0,1]. Then the following holds:

)

f(mea) + f
’ 2 —ca/f dt‘

b— mea 1 q
< —
- 2 p+1 2

' (_11;2_1 (mlf'(ca)l® + [ f <b>\q)) . foralls>1,

Q=

2)

‘f(mca) +./() 1 /b

2 "~ b—mca

o

mca

b — mca » H
<P () (5) el 0 ors =1,

Proof. For the proof of the first part, i.e., when s > 1, we apply Lemma
and then apply Holder’s inequality. After that, we use the fact that
the function f’ is m-exponentially convex with respect to s.

f(ca) +f
| i o
b — mca , t :
§2</0 \2t—1\pdt> (/0 |f (tb—l—mc(l—t)a)}th)
b — mca ! v
<o ()

([ G100+ i = st o) )

b — meca % s—1Ins— q
=1 (o) (s e e mls )

Q=

1=
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which proves the first relation. For s = 1, using the same properties as
in the first part, it follows that

ca b
He) 2 I8 [ e

1 1
bh— 1 > 1 b
< </ |2t—1|pdt>p</ \f’(tb+mc(1—t)a)\th>q
0 0
1
b— ! >
< mca(/ |2t—1|Pdt>
2 0

) (/01 (ts" ()| + m(1 — t)s'| f/(ca)|9) dt) !

=t ([ updtf ([ e+ ma—oiseor) dt)é
-5 <pi1>; (; (7 @I +mlf <ca>\q));-
O

Theorem 3.13. Let f : (0,b] — R be a differentiable function on X,
such that the conditions 0 < a < b and 0 < ¢ < 1 hold. Let |f'|? be

an m-exponentially convex function with respect to s on (0,b] for every
q>1 and m € [0,1]. Then the following holds:

)
'f(mca) i) 1 /”

2 "~ b—mca

b—ca 1 17%
< N
- 2 2

_ (—4(\/§—1)2—ln25+(3+2\/§—3)ln8

f(t)dt‘

mca

1

(mlf (ca)lt + |/ <b>\q)) q

In? s
for all s > 1,
2)
f(mea) + f (b) 1 k
‘ 2 "~ b—mca /mca f(t)dt‘

141 L
< b—;nca . (;) " (m|f'(ca)|? + |f' ()|")7, fors=1.

Proof. For the proof of this theorem, we use Lemma @, the power mean
inequality and the fact that |f’|? is an m-exponentially convex function
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with respect to s.

f(ca) + f (b) 1 ’
‘ 2 B b—ca acf(t)dt'
< bomea /1|1—2t| |/ (tb + me(1 — t)a) | dt
0

2

_ 1 -3
< b= mca </ |2t — 1ydt) '
2 0

. </01 11— 2t |/ (tb + me(1 —t)a)|th>}1

b — mca 1 -3
< </ |2t — 1]dt>
2 0

: (/01 11 =2t (ts" 7 f'(0)|7 + m(1 — t)s" | £ (ca)|) dt)
_ b—mea (1)1‘2 <—4(\/§—1)2—ln25+(s+2f—3)lns

2 2 In3 s

q

2

1

PO+ m | (ea)|?) ) g

As can be seen, we must provide a separate proof for the case s = 1.
Using the same properties as in the previous part, we obtain the following
relations.

2 b—ca J,

b — mca
- 2

< bomea (/ 12t — 1ydt> '
2 0

: </01 11— 2t| | f (tb+ me(1 —t)a)|th>é

1
b— ! T
<2 me (/ 2t—1ydt> '
2 0
1

1 q
- ( [ =2t e+ m -0 ) dt)

/1 |1 — 2t] |f’ (tb + mc(1 —t)a)|dt
0
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Q=

— mca 1+%
:”2@ - (mlf'(ca)| + [ 1 ()] )7 . -

4. CONCLUSION

In this paper, a new class of functions is defined, obtained by gener-
alizing exponentially convex functions with respect to s, thus providing
an extension of m-exponentially convex functions with respect to s. In
this work, some basic algebraic properties of such defined functions are
presented. Special attention is devoted to the application of these func-
tions in the domain of extensions of the Hermite-Hadamard inequality.
The obtained results indicate a great potential for the application of the
introduced class of functions, both in theoretical research and especially
in applications. Moreover, they point to the possibility of various gen-
eralizations in terms of other types of convexity. Recent studies in this
field indicate that various forms of convexity and convex functions can
be effectively applied in the analysis of fractional integral and differential
inequalities (as has been done specifically for exponentially convex func-
tions in [14]). Building upon these ideas and concepts from fractional
calculus, future research could continue in this direction, especially since
the parameter m introduces an additional correction to convexity that
may also have significant applications.
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