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Hamming energy of sunlet and n-barbell graphs

Bojana Borovićanin, Nenad Stojanović, Nemanja Vučićević

Abstract: The Hamming matrix of a graph arises from the notion of Hamming distance and
provides a matrix-based framework for studying vertex dissimilarity. The corresponding Ham-
ming energy, defined as the sum of the absolute values of the eigenvalues of the Hamming ma-
trix, represents a natural spectral invariant that is closely related to the classical graph energy.
In this paper, we investigate the Hamming matrix of two important families of graphs, namely
sunlet graphs and barbell graphs. By applying the technique of equitable vertex partitions and
methods from matrix spectral theory, we obtain explicit expressions for the H-spectrum and the
H-energy of these graphs. Our results extend and complement existing studies on energy-like
invariants for special classes of graphs.
Keywords: Hamming energy, Sunlet graph, n-Barbell graph

1 Introduction

Graphs are among the fundamental objects of discrete mathematics, and their matrix rep-
resentations enable the application of spectral methods for the study of the structure and
properties of networks. The classical graph energy, introduced by Gutman [2], is defined
as the sum of the absolute values of the eigenvalues of the adjacency matrix and has found
numerous applications in mathematical chemistry and applied mathematics [3, 4, 5, 6, 9].

The Hamming distance originates from coding theory and measures the number of po-
sitions at which two binary strings differ. In graph theory, this concept can be naturally
applied by associating each vertex with a binary string obtained from the corresponding
row of the incidence matrix of the graph. Based on this idea, the Hamming index of a graph
is introduced as a global measure of dissimilarity between vertices, defined as the sum of
Hamming distances over all pairs of vertices. This index relates the structure of a graph to
the geometry of the set of binary strings representing its vertices and appears as a natural
analogous of classical spectral invariants [10, 13].
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Since a graph can be described by different types of matrices, several extensions of this
concept have been introduced in the literature. Among them, a recently defined invariant,
known as the Hamming energy [13], has attracted particular attention. This invariant is
based on the so-called Hamming matrix and has been shown to be comparable with classical
graph energy, as well as to possess chemical relevance [12]. Further fundamental properties
of the Hamming energy were established in [11].

In this paper, we study the Hamming matrix of two classes of graphs, namely sun-
let graphs and barbell graphs. For these families, we derive explicit formulas for the H-
spectrum and the corresponding H-energy by employing the technique of equitable vertex
partitions combined with tools from matrix spectral theory. This approach yields closed-
form expressions for the eigenvalues and allows us to analyze their behavior as the number
of vertices increases. The graph classes considered here have been the subject of numer-
ous studies, particularly in connection with graph energy and various topological indices
[7, 8]. The results obtained in this paper complement existing research on different notions
of graph energy for special classes of graphs.

2 Preliminaries

Let G = (V (G),E(G)) be a simple graph with the vertex set V (G) = {v1, . . . ,vn} and edge
set E(G) = {e1, . . . ,em}. Two vertices vi and v j are adjacent if they are joined by an
edge, which we denote by vi ∼ v j; otherwise, vi ̸∼ v j. An edge is incident to each of its
end–vertices, and the degree of a vertex v in G, written as dG(v) or simply d(v), is the
number of edges incident to v.

The adjacency matrix of G is the n× n matrix A(G) = (ai j) whose entries record the
adjacency of vertices, while the degree matrix D(G) is the diagonal matrix with diagonal
entries equal to the degrees of the vertices of G.

We write I = In for the identity matrix of order n and Jm×n for the all–ones matrix of
size m×n; when m = n, we simply write Jn or J if the order is clear from the context.

Remark 2.1. The all–ones matrix Jn has one non–zero eigenvalue, namely n, with eigen-
vector 1 = (1,1, . . . ,1︸ ︷︷ ︸

n

)T . All remaining eigenvalues are equal to 0 (with multiplicity n−1),

and their eigenvectors are orthogonal to 1.

In addition to the adjacency matrix A(G) and the degree matrix D(G), we consider the
incidence matrix B(G) = (bi j)n×m of G, defined by

bi j =

{
1, if vi is incident with e j,
0, otherwise.

Interpreting each row of B(G) as a binary string, we denote by s(v) the string corresponding
to a vertex v. Following [10], the Hamming index (or H-index) of G is

HB(G) = ∑
i< j

Hd
(
s(vi),s(v j)

)
,
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where Hd(s(vi),s(v j)) is the usual Hamming distance between the binary strings s(vi) and
s(v j).

In [13] the Hamming matrix H(G) = (hi j)n×n of a graph G was introduced by

hi j = Hd
(
s(vi),s(v j)

)
, i, j = 1, . . . ,n. (1)

To distinguish spectra of different graph matrices, the eigenvalues of A(G) and H(G) will
be called A-eigenvalues and H-eigenvalues, respectively; their multisets are the A-spectrum
and the H-spectrum of G. The Hamming energy of G (or H-energy) is defined as the sum
of absolute values of the H-eigenvalues.

Since H(G) is symmetric, all H-eigenvalues are real. We order them as λ1 ≥ λ2 ≥ ·· · ≥
λn and write Spec(H(G)) for the multiset of these eigenvalues. For repeated eigenvalues
we use the shorthand λ [k] to indicate that λ has multiplicity k.

A useful tool for computing H(G) is a result from [10], which will be employed several
times in what follows.

Theorem 2.2. [10] Let u and v be vertices of a graph G. Then

Hd(G)(s(u),s(v)) =


d(u)+d(v)−2, if u ∼ v,
d(u)+d(v), if u ̸∼ v,
0, if u = v.

Its trace satisfies tr(H(G)) = ∑
n
i=1 λi = ∑

n
i=1 hii = 0. Furthermore, all properties that hold

for Hermitian or non-negative matrices also apply to H(G).
Having in mind Theorem 2.2 we conclude that all off-diagonal entries of H(G) are

strictly positive except in the graphs K2 and nK1. Consequently, H(G) is a nonnegative
irreducible matrix for every graph other than K2 and nK1.

In what follows, we present fundamental properties of irreducible matrices that will be
utilized in the subsequent analysis.

Theorem 2.3. [1] Let M be an irreducible symmetric matrix with non-negative entries.
Then the largest eigenvalue λ1 of M is simple, with a corresponding eigenvector whose
entries are all positive (known as the Perron vector). Moreover, |λ | ≤ λ1 for all eigenvalues
λ of M.

Theorem 2.4. [1] Let A be a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn.

Given a partition {1,2, . . . ,n}= ∆1 ∪∆2 ∪ ·· ·∪∆m, with |∆i|= ni > 0,
m
∑

i=1
ni = n, consider

the corresponding blocking A = (Ai j) such that Ai j is an ni ×n j block. Let ei j be the sum of
the entries in Ai j and set Q =

(
ei j/ni

)
(so ei j/ni is the average row sum in Ai j). Then the

spectrum of Q is contained in the segment [λn,λ1].

Theorem 2.5. [1] Let A be any non-negative symmetric matrix partitioned into blocks as
in Theorem 2.4. Let the blocks Ai j have constant row sums qi j and set Q = (qi j). Then the
spectrum of Q is contained in the spectrum of A (taking into account the multiplicities of
the eigenvalues). Furthermore, the largest eigenvalue (index) of Q is equal to the largest
eigenvalue of A.
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Remark 2.6. The matrix Q defined in Theorem 2.4 is called the quotient matrix of A. In
the case of constant row sums of Ai j for each pair i and j, Q is called an equitable quotient
matrix of A, and the corresponding partition of the matrix A into blocks Ai j is called an
equitable partition.

3 Main Results

In this section, we concentrate on two notable classes of graphs, namely the sunlet graphs
Sn and the n-barbell graphs. For each of these families, we exploit the symmetry of their
structure to introduce a suitable equitable partition of the vertex set, which yields a low-
dimensional quotient matrix B. The eigenvalues of B are contained in the H-spectrum of
the Hamming matrix H(G), and the remaining H-eigenvalues can then be determined from
the block structure. In this way, we obtain closed expressions for the H-spectrum and, in
particular, for the Hamming energy of the sunlet and n-barbell graphs.

3.1 The H-spectrum of the sunlet graph Sn

The sunlet graph Sn is obtained by taking a simple n-gon, that is, a cycle with vertices
v1, . . . ,vn, and attaching to each vertex vi a new pendant vertex ui. In this way, we obtain
a graph with 2n vertices: the “inner” cycle, whose vertices all have degree 3 (two neigh-
bours on the cycle and one pendant neighbour), and the “outer” set of n leaves of degree 1.
Because of this structure, the graph is often called a sunlet or n–sun in the literature, with
the inner cycle playing the role of the “sun” and the pendants corresponding to its “rays”.
This symmetric, circular organization is well suited for spectral analysis: the adjacency ma-
trix and the corresponding Hamming matrix admit a natural 2-block structure (cycle versus
pendants), so that their spectra can be described by combining the quotient matrix of this
equitable partition with the Fourier diagonalization of the cycle.

Figure 1 shows a sunlet graph with 2n vertices.

Fig. 1. Sunlet Sn graph with 2n vertices.

In the next theorem we determine the H-spectrum of the sunlet graph Sn and derive an
explicit formula for its H-energy.
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Theorem 3.1. Let Sn be the sunlet graph on 2n vertices obtained from the cycle Cn by
attaching one pendant vertex to each vertex of Cn. Then the H-spectrum of Sn is

Spec
(
H(Sn)

)
=
{

4n−6±2
√

5n2 −8n+5
}

∪
{

µ
±
k : k = 1,2, . . . ,n−1

}
,

where for each k = 1, . . . ,n−1,

µ
±
k =−4−2cos

2kπ

n
±
√

4cos2 2kπ

n
+8cos

2kπ

n
+8 .

Furthermore, the H-energy of Sn is

HE(Sn) = 4
√

5n2 −8n+5+8n−12.

Proof. Label the vertices on the cycle Cn of Sn by v1,v2, . . . ,vn, and by u1, . . . ,un the re-
maining vertices, so that ui is pendant at vi. Thus, the natural equitable partition of V (Sn)
is

C1 = {v1, . . . ,vn}, C2 = {u1, . . . ,un}.

Every vertex vi ∈C1 has degree 3, and every vertex ui ∈C2 has degree 1. By Theorem
2.2, the entries of the Hamming matrix H(Sn) follow directly from these degrees:

• two adjacent cycle vertices contribute d(vi)+d(v j)−2 = 4,

• the remaining n−3 cycle vertices contribute d(vi)+d(v j) = 6,

• ui contributes d(vi)+d(ui)−2 = 2,

• each u j ( j ̸= i) contributes d(vi)+d(u j) = 4,

• each pair ui,u j (i ̸= j) contributes d(ui)+d(u j) = 2.

With respect to the ordering (v1, . . . ,vn,u1, . . . ,un), the matrix H(Sn) therefore has the
block form

H(Sn) =

[
H11 H12

H21 H22

]
,

where

H11 = 6(Jn − In)−2A(Cn), H22 = 2(Jn − In), H12 = HT
21 = 4Jn −2In.

Since the partition {C1,C2} is equitable, the corresponding quotient matrix is

B =

[
2 ·4+(n−3) ·6 (n−1) ·4+2
(n−1) ·4+2 (n−1) ·2

]
=

[
6n−10 4n−2
4n−2 2n−2

]
.
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The eigenvalues of B satisfy det(B−λ I2) = 0, yielding

λ1,2 = 4n−6±2
√

5n2 −8n+5.

By Theorem 2.5, these two eigenvalues belong to the spectrum of H(Sn), and the index of
H(Sn) equals λ1 = 4n−6+2

√
5n2 −8n+5.

For n ≥ 3 it is easy to check that λ1 > 0 and λ2 < 0.
To obtain the remaining 2n− 2 eigenvalues, we consider eigenvectors whose coordi-

nates in each n-vertex part sum to zero (i.e., they are orthogonal to 1 in both parts). For
any such vector x we have Jnx = (1T x)1 = 0, hence every term containing Jn vanishes.
Therefore, on this set of vectors the matrix H(Sn) acts as

H̃ =

[
−6In −2A(Cn) −2In

−2In −2In

]
.

Recall that the adjacency matrix of Cn is diagonalised by the Fourier vectors

x(k) =
(
1,ωk,ω2k, . . . ,ω(n−1)k)T

, ω = e2πi/n, k = 0,1, . . . ,n−1,

and
A(Cn)x(k) = λk x(k), λk = 2cos

2kπ

n
.

For k ≥ 1 the vectors x(k) are orthogonal to 1, so Jnx(k) = 0. Hence, for each k = 1, . . . ,n−1
we may look for eigenvectors of H̃ of the form[

αx(k)

βx(k)

]
,

which leads to a 2×2 eigenvalue problem[
−6−2λk −2

−2 −2

][
α

β

]
= µ

[
α

β

]
.

Therefore, for each k = 1, . . . ,n−1, the remaining eigenvalues are the roots of

det

[
−6−2λk −µ −2

−2 −2−µ

]
= 0,

that is,

µ
±
k =−4−λk ±

√
λ 2

k +4λk +8

with λk = 2cos 2kπ

n , which gives the stated form

µ
±
k =−4−2cos

2kπ

n
±
√

4cos2 2kπ

n
+8cos

2kπ

n
+8 .
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This yields all 2n eigenvalues of H(Sn).
To compute the H-energy, first note that for λk ∈ [−2,2] we have

µ
±
k ≤ 0, k = 1, . . . ,n−1,

and for even n one of them is 0 (when k = n/2 and λk =−2). Moreover

µ
+
k +µ

−
k =−8−2λk.

Since both eigenvalues are non–positive,

|µ+
k |+ |µ−

k |=−(µ+
k +µ

−
k ) = 8+2λk.

Hence the contribution of these 2n−2 eigenvalues to HE(Sn) is

n−1

∑
k=1

(
|µ+

k |+ |µ−
k |
)
=

n−1

∑
k=1

(
8+2λk

)
= 8(n−1)+2

n−1

∑
k=1

λk.

Since
n−1

∑
k=0

λk = 2
n−1

∑
k=0

cos
2kπ

n
= 0,

we obtain
n−1

∑
k=1

λk =−λ0 =−2,

and therefore
n−1

∑
k=1

(
|µ+

k |+ |µ−
k |
)
= 8(n−1)+2(−2) = 8n−12.

Finally, since λ1 > 0 and λ2 < 0,

|λ1|+ |λ2|= λ1 −λ2 = 4
√

5n2 −8n+5.

Thus

HE(Sn) =
(
|λ1|+ |λ2|

)
+

n−1

∑
k=1

(
|µ+

k |+ |µ−
k |
)
= 4

√
5n2 −8n+5+8n−12,

which completes the proof.

3.2 The H-spectrum of the n-barbell graph BBn

A class of graphs for which the full spectrum of the Hamming matrix, and thus the Ham-
ming energy, can be determined is the class of n-barbell graphs. These graphs are con-
structed by connecting two complete graphs Kn with a single edge. In this way, we obtain a
graph in which two vertices have degrees greater by one than that of the other vertices.

Note that the 3-barbell graph is isomorphic to the kayak paddle graph KP(3,3,1). For
illustration purposes, a 5-barbell graph is shown in Figure 2.

By applying the equitable partition technique, we can determine the H-spectrum as well
as the H-energy of the n-barbell graph BBn.
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Fig. 2. A representation of the 5-barbell graph

Theorem 3.2. The H-spectrum of the n-barbell graph BBn is given by

Spec(H(BBn)) =
{

λ1,λ2,−4(n−1),−2(n−2)[2n−3]
}
,

where the set {λ1,λ2} is the spectrum of the equitable quotient matrix B corresponding to
the Hamming matrix H(BBn).

Theorem 3.3. Let BBn be the n-barbell graph obtained by joining two copies of Kn with a
single edge. Let v1 and v2 be the two vertices incident with the bridging edge, and consider
the equitable partition

C1 = {v1,v2}, C2 =V (BBn)\C1.

The corresponding (equitable) quotient matrix of the Hamming matrix H(BBn) is

B =

[
2n−2 4(n−1)2

4(n−1) 2(n−1)2 +2(n−2)2

]
.

Let λ1,λ2 be the eigenvalues of B. Then the H-spectrum of BBn is

Spec(H(BBn)) =
{

λ1,λ2,−4(n−1),
(
−2(n−2)

)[2n−3]
}
.

Proof. Let V (BBn) denote the vertex set of the graph BBn. Since exactly two vertices have
degree greater than all others, we collect them into the first partition class C1. The remaining
vertices all share the same degree and thus form the second partition class C2.

Without loss of generality, label the vertices so that the first complete subgraph Kn has
vertex set {v1,v3, . . . ,vn+1} and the second complete subgraph Kn has vertex set {v2,vn+2,
. . . ,v2n}, with the unique bridging edge being {v1,v2}. Then, v1 and v2 are the only vertices
of degree n in BBn. Accordingly, we define the partition classes

C1 = {v1,v2}, C2 =V (BBn)\C1.
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Based on the definition of the Hamming matrix of a graph, we can explicitly construct
the matrix H(BBn), which takes the form

H(BBn)=



0 2n−2 2n−3 2n−3 · · · 2n−3 2n−1 2n−1 · · · 2n−1
2n−2 0 2n−1 2n−1 · · · 2n−1 2n−3 2n−3 · · · 2n−3
2n−3 2n−1 0 2n−4 · · · 2n−4 2n−2 2n−2 · · · 2n−2
2n−3 2n−1 2n−4 0 · · · 2n−4 2n−2 2n−2 · · · 2n−2

...
...

...
...

. . .
...

...
...

. . .
...

2n−3 2n−1 2n−4 2n−4 · · · 0 2n−2 2n−2 · · · 2n−2
2n−1 2n−3 2n−2 2n−2 · · · 2n−2 0 2n−4 · · · 2n−4
2n−1 2n−3 2n−2 2n−2 · · · 2n−2 2n−4 0 · · · 2n−4

...
...

...
...

. . .
...

...
...

. . .
...

2n−1 2n−3 2n−2 2n−2 · · · 2n−2 2n−4 2n−4 · · · 0


,

and can be expressed as a block matrix

H = H(BBn) =

[
H11 H12
H21 H22

]
,

where H11 is the 2×2 block corresponding to the two highest-degree vertices from the class
C1 = {v1,v2}. The block H12 is a 2× (2n−2) matrix representing the connections between
the vertices {v1,v2} and all the remaining vertices. Accordingly, H21 = HT

12. Finally, H22 is
the (2n−2)× (2n−2) block corresponding to the vertices from the class C2.

The quotient matrix B = (bi j)2×2 of this equitable partition has the following elements:
b11 = 2n−2, b12 = 4(n−1)2, b21 = 4n−4, and b22 = 2(n−1)2 +2(n−2)2, so we have

det(B−λ I) =
∣∣∣∣2(n−1)−λ 4(n−1)2

4(n−1) 2(n−1)2 +2(n−2)2 −λ

∣∣∣∣= 0,

from where we determine λ1 and λ2

λ1,2 = 2n2 −5n+4±
√

4n4 −12n3 +25n2 −36n+20.

By Theorem 2.5, the obtained eigenvalues λ1 and λ2 belong to the spectrum of H(BBn),
and the index (i.e., the largest eigenvalue) of H(BBn) is equal to λ1. We will show that
H(BBn) also has the eigenvalue −2(n − 2) with multiplicity 2n − 3 and the eigenvalue
−4(n− 1) with multiplicity 1. To prove this, we will construct a set of 2n− 2 linearly
independent eigenvectors corresponding to these eigenvalues.

Let us consider the space R2n and observe the standard basis S = {e1,e2, . . . ,e2n} of
R2n. We construct the vectors y(1)1 , y(2)i for i = 1, . . . ,n−1, and y(3)j for j = 1, . . . ,n−2, in
the following way.
Set

y(1)1 = e2 − e1 + en+2 + en+3 + · · ·+ e2n − e3 − e4 −·· ·− en+1.
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Next, let
y(2)i = e1 − e2 − e3 + e2n+1−i,

where i = 1, . . . ,n−1, and
y(3)j =−e3 + en+2−i,

where j = 1, . . . ,n−2.
Set w(1)

1 =
(
y(1)1

)T , w(2)
i =

(
y(2)i

)T for i= 1, . . . ,n−1, and w(3)
j =

(
y(3)j

)T for j = 1, . . . ,n−2.

The vectors w(1)
1 ,w(2)

1 , . . . ,w(2)
n−1,w

(3)
1 ,w(3)

2 , . . . ,w(3)
n−2 are linearly independent and satisfy the

relations
H(BBn) ·w(1)

1 =−4(n−1) ·w(1)
1 ,

H(BBn) ·w(2)
i =−2(n−2) ·w(2)

i , i = 1,2, . . . ,n−1,

and
H(BBn) ·w(3)

j =−2(n−2) ·w(3)
j , j = 1,2, . . . ,n−2.

Thus, the spectrum of H(BBn) is given by

Spec(H(BBn)) =
{

λ1,λ2,−4(n−1),(−2(n−2))[2n−3]
}
.

Now that we have determined the spectrum of H(BBn), we can easily compute the
Hamming energy of the graph BBn.

Corollary 3.4. The Hamming energy of the n-barbell graph BBn is given by

HE(BBn) = |λ1|+ |λ2|+4(n−1)+2(n−2)(2n−3),

where λ1 and λ2 are the eigenvalues of the equitable quotient matrix B corresponding to
the matrix H(BBn).

4 Conclusions

In this paper we determined the Hamming spectra and Hamming energies of two notable
graph families: sunlet graphs and n-barbell graphs. By exploiting the symmetry of these
graphs and using equitable vertex partitions, we derived closed–form expressions for the
eigenvalues of the Hamming matrix H(G) and, in particular, for the corresponding Ham-
ming energies, thus adding new examples to the list of graphs with explicitly known H-
spectra.

Further research may focus on extending these techniques to other structured graph
classes and to various graph products, as well as on clarifying how the Hamming energy of
a composite graph (for instance, a product or corona) relates to the Hamming energies of
its factor graphs.
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