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Hamming energy of sunlet and n-barbell graphs

Bojana Borovi¢anin, Nenad Stojanovi¢, Nemanja Vucicevic¢

Abstract: The Hamming matrix of a graph arises from the notion of Hamming distance and
provides a matrix-based framework for studying vertex dissimilarity. The corresponding Ham-
ming energy, defined as the sum of the absolute values of the eigenvalues of the Hamming ma-
trix, represents a natural spectral invariant that is closely related to the classical graph energy.
In this paper, we investigate the Hamming matrix of two important families of graphs, namely
sunlet graphs and barbell graphs. By applying the technique of equitable vertex partitions and
methods from matrix spectral theory, we obtain explicit expressions for the H-spectrum and the
H-energy of these graphs. Our results extend and complement existing studies on energy-like
invariants for special classes of graphs.
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1 Introduction

Graphs are among the fundamental objects of discrete mathematics, and their matrix rep-
resentations enable the application of spectral methods for the study of the structure and
properties of networks. The classical graph energy, introduced by Gutman [2], is defined
as the sum of the absolute values of the eigenvalues of the adjacency matrix and has found
numerous applications in mathematical chemistry and applied mathematics [3, 4, 5, 6, 9].

The Hamming distance originates from coding theory and measures the number of po-
sitions at which two binary strings differ. In graph theory, this concept can be naturally
applied by associating each vertex with a binary string obtained from the corresponding
row of the incidence matrix of the graph. Based on this idea, the Hamming index of a graph
is introduced as a global measure of dissimilarity between vertices, defined as the sum of
Hamming distances over all pairs of vertices. This index relates the structure of a graph to
the geometry of the set of binary strings representing its vertices and appears as a natural
analogous of classical spectral invariants [10, 13].
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Since a graph can be described by different types of matrices, several extensions of this
concept have been introduced in the literature. Among them, a recently defined invariant,
known as the Hamming energy [13], has attracted particular attention. This invariant is
based on the so-called Hamming matrix and has been shown to be comparable with classical
graph energy, as well as to possess chemical relevance [12]. Further fundamental properties
of the Hamming energy were established in [11].

In this paper, we study the Hamming matrix of two classes of graphs, namely sun-
let graphs and barbell graphs. For these families, we derive explicit formulas for the H-
spectrum and the corresponding H-energy by employing the technique of equitable vertex
partitions combined with tools from matrix spectral theory. This approach yields closed-
form expressions for the eigenvalues and allows us to analyze their behavior as the number
of vertices increases. The graph classes considered here have been the subject of numer-
ous studies, particularly in connection with graph energy and various topological indices
[7, 8]. The results obtained in this paper complement existing research on different notions
of graph energy for special classes of graphs.

2 Preliminaries

Let G = (V(G),E(G)) be a simple graph with the vertex set V(G) = {vi,...,v,} and edge
set E£(G) = {e1,...,en}. Two vertices v; and v; are adjacent if they are joined by an
edge, which we denote by v; ~ v;; otherwise, v; ¢ v;. An edge is incident to each of its
end-vertices, and the degree of a vertex v in G, written as dg(v) or simply d(v), is the
number of edges incident to v.

The adjacency matrix of G is the n x n matrix A(G) = (a;;) whose entries record the
adjacency of vertices, while the degree matrix D(G) is the diagonal matrix with diagonal
entries equal to the degrees of the vertices of G.

We write I = I, for the identity matrix of order n and J,,x, for the all-ones matrix of
size m X n; when m = n, we simply write J,, or J if the order is clear from the context.

Remark 2.1. The all-ones matrix J,, has one non—zero eigenvalue, namely n, with eigen-
vector 1 = (1,1,...,1)T. All remaining eigenvalues are equal to 0 (with multiplicity n — 1),
N———
n

and their eigenvectors are orthogonal to 1.

In addition to the adjacency matrix A(G) and the degree matrix D(G), we consider the
incidence matrix B(G) = (b;j)nxm of G, defined by

{ I, if v;is incident with e;,
ij =

0, otherwise.

Interpreting each row of B(G) as a binary string, we denote by s(v) the string corresponding
to a vertex v. Following [10], the Hamming index (or H-index) of G is

Hp(G) =Y Hy(s(vi),s(v})),

i<j
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where Hy(s(v;),s(v;)) is the usual Hamming distance between the binary strings s(v;) and

s(vj).
In [13] the Hamming matrix H(G) = (hij)nxn of a graph G was introduced by

hij:Hd(S(Vi),S(Vj», ih,j=1,...,n. (1)

To distinguish spectra of different graph matrices, the eigenvalues of A(G) and H(G) will
be called A-eigenvalues and H-eigenvalues, respectively; their multisets are the A-spectrum
and the H-spectrum of G. The Hamming energy of G (or H-energy) is defined as the sum
of absolute values of the H-eigenvalues.

Since H(G) is symmetric, all H-eigenvalues are real. We order themas A; > A, > -+ >
A, and write Spec(H(G)) for the multiset of these eigenvalues. For repeated eigenvalues
we use the shorthand A% to indicate that A has multiplicity k.

A useful tool for computing H(G) is a result from [10], which will be employed several
times in what follows.

Theorem 2.2. [10] Let u and v be vertices of a graph G. Then

du)+d(v) =2, ifur~v,
Hg(G)(s(u),s(v)) = ¢ d(u) +d(v), ifudv,
0, ifu=v.

Its trace satisfies tr(H(G)) = Y| A = Y1 hi = 0. Furthermore, all properties that hold
for Hermitian or non-negative matrices also apply to H(G).

Having in mind Theorem 2.2 we conclude that all off-diagonal entries of H(G) are
strictly positive except in the graphs K, and nK;. Consequently, H(G) is a nonnegative
irreducible matrix for every graph other than K, and nK;.

In what follows, we present fundamental properties of irreducible matrices that will be
utilized in the subsequent analysis.

Theorem 2.3. []] Let M be an irreducible symmetric matrix with non-negative entries.
Then the largest eigenvalue A of M is simple, with a corresponding eigenvector whose
entries are all positive (known as the Perron vector). Moreover, |A| < A; for all eigenvalues

Aof M.

Theorem 2.4. [1] Let A be a real symmetric matrix with eigenvalues Ay > Ay > --- > A,
m

Given a partition {1,2,...,n} = AjUA U---UA,, with |A;| =n; >0, ¥ n; =n, consider
i=1

the corresponding blocking A = (A;j) such that A;; is an n; x n;j block. Let eij be the sum of
the entries in A;;j and set Q = (e,- | / n,-) (so e;j /n; is the average row sum in A; ). Then the
spectrum of Q is contained in the segment [A,, A1].

Theorem 2.5. [1] Let A be any non-negative symmetric matrix partitioned into blocks as
in Theorem 2.4. Let the blocks A;;j have constant row sums q;; and set Q = (q;;). Then the
spectrum of Q is contained in the spectrum of A (taking into account the multiplicities of
the eigenvalues). Furthermore, the largest eigenvalue (index) of Q is equal to the largest
eigenvalue of A.
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Remark 2.6. The matrix Q defined in Theorem 2.4 is called the quotient matrix of A. In
the case of constant row sums of A;;j for each pair i and j, Q is called an equitable quotient
matrix of A, and the corresponding partition of the matrix A into blocks A;; is called an
equitable partition.

3 Main Results

In this section, we concentrate on two notable classes of graphs, namely the sunlet graphs
S, and the n-barbell graphs. For each of these families, we exploit the symmetry of their
structure to introduce a suitable equitable partition of the vertex set, which yields a low-
dimensional quotient matrix B. The eigenvalues of B are contained in the H-spectrum of
the Hamming matrix H(G), and the remaining H-eigenvalues can then be determined from
the block structure. In this way, we obtain closed expressions for the H-spectrum and, in
particular, for the Hamming energy of the sunlet and n-barbell graphs.

3.1 The H-spectrum of the sunlet graph S,

The sunlet graph S, is obtained by taking a simple n-gon, that is, a cycle with vertices
vi,...,Vy, and attaching to each vertex v; a new pendant vertex u;. In this way, we obtain
a graph with 2n vertices: the “inner” cycle, whose vertices all have degree 3 (two neigh-
bours on the cycle and one pendant neighbour), and the “outer” set of n leaves of degree 1.
Because of this structure, the graph is often called a sunlet or n—sun in the literature, with
the inner cycle playing the role of the “sun” and the pendants corresponding to its “rays”.
This symmetric, circular organization is well suited for spectral analysis: the adjacency ma-
trix and the corresponding Hamming matrix admit a natural 2-block structure (cycle versus
pendants), so that their spectra can be described by combining the quotient matrix of this
equitable partition with the Fourier diagonalization of the cycle.
Figure 1 shows a sunlet graph with 2n vertices.

Fig. 1. Sunlet S, graph with 2n vertices.

In the next theorem we determine the H-spectrum of the sunlet graph S, and derive an
explicit formula for its H-energy.
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Theorem 3.1. Let S, be the sunlet graph on 2n vertices obtained from the cycle C, by
attaching one pendant vertex to each vertex of C,. Then the H-spectrum of S, is

Spec(H(S,)) = { 4n—642v/5w ~8n+5 |
u{u,f : k:l,z,...,n—l},

where foreachk=1,...,n—1,

2km 2km 2km
,u,f = —4—200sj:\/4cos2+8003+8.
n n n

Furthermore, the H-energy of S, is

HE(S,) =4V/5n> —8n+5+8n— 12.

Proof. Label the vertices on the cycle C, of S, by vi,va,...,v,, and by uy,...,u, the re-
maining vertices, so that u; is pendant at v;. Thus, the natural equitable partition of V (S,)
is

Cr=A{vi,...,m}, Cy=A{uy,...,up}.

Every vertex v; € C; has degree 3, and every vertex u; € C, has degree 1. By Theorem
2.2, the entries of the Hamming matrix H(S,) follow directly from these degrees:

* two adjacent cycle vertices contribute d(v;) +d(v;) —2 =4,

* the remaining n — 3 cycle vertices contribute d(v;) +d(v;) =6,
* u; contributes d(v;) +d(u;) —2 =2,

* each u; (j # i) contributes d(v;) +d(u;) = 4,

* each pair u;,u; (i # j) contributes d(u;) +d(u;) = 2.

With respect to the ordering (vy,...,v,,uy,...,u,), the matrix H(S,) therefore has the

block form
Hy1 Hpp
H(Sn) = s

Hy; Hpp

where
Hiy=6(J,—1,)—2A(C,),  Hn=2(J,—1,), Hp=H =4J,—2I,
Since the partition {C,C, } is equitable, the corresponding quotient matrix is

_[24t(=3)-6 (n-1)-4+2

(n—1)-442 (n—1)-2 4dn—2 2n-2

B [6n—10 4n—2]
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The eigenvalues of B satisfy det(B— Al,) = 0, yielding

Ao =4n—6+2+/5n2 —8n+5.

By Theorem 2.5, these two eigenvalues belong to the spectrum of H(S,), and the index of
H(S,) equals Ay = 4n—6+25n*> —8n+5.

For n > 3 it is easy to check that A; > 0 and 4, < 0.

To obtain the remaining 2n — 2 eigenvalues, we consider eigenvectors whose coordi-
nates in each n-vertex part sum to zero (i.e., they are orthogonal to 1 in both parts). For
any such vector x we have J,x = (17x)1 = 0, hence every term containing J, vanishes.
Therefore, on this set of vectors the matrix H(S,) acts as

P —6l, —2A(C,) —2I,
—21, —2I,|°

Recall that the adjacency matrix of C, is diagonalised by the Fourier vectors

x(k):(17(1)1(7(1)2]{7”-)0)(”71)1{)]’7 (D:ezm/ny k=0,1,....,n—1,

and ok
T
A(C)x0 =2 x® | 4 =2c0s ==,
n
For k > 1 the vectors x¥) are orthogonal to 1, so J.x®) = 0. Hence, foreachk=1,...,n—1
we may look for eigenvectors of H of the form

ax®)
Bx®) |’

which leads to a 2 x 2 eigenvalue problem

2 Sl

Therefore, for each k = 1,...,n — 1, the remaining eigenvalues are the roots of
—6—2A — -2
det KTH =0,
-2 —2—-u
that is,

W= —4— A £\ JAZ+ 4N+ 8

2kz ' \which gives the stated form

n

with A, = 2cos

2k 2k 2k
,u,f = —4—2cos—n + \/40052 il —I—fﬁcos—7r +8.
n n n
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This yields all 2n eigenvalues of H(S),).
To compute the H-energy, first note that for A; € [—2,2] we have

puE<0,  k=1,....n—1,
and for even n one of them is 0 (when k = n/2 and A4 = —2). Moreover
e+ =—8—2A.
Since both eigenvalues are non—positive,
i T | = =+ ) = 842

Hence the contribution of these 2n — 2 eigenvalues to HE(S,) is

n—1 n—1 n—1

Y (i 1+l ) = Y (8+2Mk) =8(n— 1)+2k;xk.

k=1 k=1
Since 1 1
n— n— 2k
Z’?Lk:2z:cos—7rzo7
k=0 k=0 n
we obtain
n—1
Z A’k - _)'0 = _27
k=1
and therefore .
e
Y (i 1+l ) = 8(n—1) +2(~2) = 8n - 12.
k=1

Finally, since A; > 0 and A, <0,

M|+ A =4 — A =450 —8n+5.

Thus
n—1
HE(S,) = (M) +1A2]) + Y (I |+ 1 1) =4V 502 —8n+5+8n— 12,
k=1
which completes the proof. O

3.2 The H-spectrum of the n-barbell graph BB,

A class of graphs for which the full spectrum of the Hamming matrix, and thus the Ham-
ming energy, can be determined is the class of n-barbell graphs. These graphs are con-
structed by connecting two complete graphs K,, with a single edge. In this way, we obtain a
graph in which two vertices have degrees greater by one than that of the other vertices.

Note that the 3-barbell graph is isomorphic to the kayak paddle graph KP(3,3,1). For
illustration purposes, a 5-barbell graph is shown in Figure 2.

By applying the equitable partition technique, we can determine the H-spectrum as well
as the H-energy of the n-barbell graph BB,,.
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Fig. 2. A representation of the 5-barbell graph

Theorem 3.2. The H-spectrum of the n-barbell graph BB, is given by
Spec(H(BB,)) = {/11 A, —4(n—1),-2(n— 2)[2"*31} ,

where the set {A1,A,} is the spectrum of the equitable quotient matrix B corresponding to
the Hamming matrix H(BB,,).

Theorem 3.3. Let BB, be the n-barbell graph obtained by joining two copies of K,, with a
single edge. Let vi and v, be the two vertices incident with the bridging edge, and consider
the equitable partition

Ci={vi,n2}, C=V(BB,)\Ci.

The corresponding (equitable) quotient matrix of the Hamming matrix H(BB,) is

5 2n—2 4(n—1)>2
C4(n—1) 2(n—12+2(n—-2)%|"

Let A1, A, be the eigenvalues of B. Then the H-spectrum of BB, is
Spec(H(BB,)) = {kl,lz, —4(n—1), (=2(n— 2))[2"73}}.

Proof. Let V(BB,) denote the vertex set of the graph BB,,. Since exactly two vertices have
degree greater than all others, we collect them into the first partition class C;. The remaining
vertices all share the same degree and thus form the second partition class C;.

Without loss of generality, label the vertices so that the first complete subgraph K, has
vertex set {v,vs3,...,v,+1} and the second complete subgraph K,, has vertex set {va, v, 2,
..+, Van }, with the unique bridging edge being {v,v,}. Then, v| and v, are the only vertices
of degree n in BB,. Accordingly, we define the partition classes

Cy ={vi,m}, C, =V (BB,)\C;.
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Based on the definition of the Hamming matrix of a graph, we can explicitly construct
the matrix H (BB, ), which takes the form

0 2n—2 2n—3 2n—3 -+ 2n—3 2n—1 2n—1 --- 2n—1]
2n—2 0 2n—1 2n—-1 -+ 2n—-1 2n-3 2n-3 --- 2n-3
2n—3 2n—1 0 2n—4 --- 2n—4 2n—-2 2n—-2 --- 2n-2
2n—3 2n—1 2n—4 0 v 2n—4 2n-2 2n-—-2 --- 2n-2

H(BB"): 2n—3 2n—1 2n—4 2n—4 --. 0 2n—2 2n—2 --- 2n-2
2n—1 2n—-3 2n—-2 2n—-2 --- 2n-2 0 2n—4 --- 2n—4
2n—1 2n—3 2n—2 2n—2 --- 2n—2 2n—4 0 -v 2n—4
12n—1 2n—-3 2n—-2 2n—-2 .- 2n—-2 2n—4 2n—-4 ... 0 |

and can be expressed as a block matrix

Hyy Hpp
H =H(BB,) = [Hzl sz] ’

where Hj is the 2 x 2 block corresponding to the two highest-degree vertices from the class
Ci = {vi,v2}. The block Hj, is a 2 x (2n — 2) matrix representing the connections between
the vertices {vy, v, } and all the remaining vertices. Accordingly, Hy; = HITZ. Finally, Hy; is
the (2n—2) x (2n —2) block corresponding to the vertices from the class C.

The quotient matrix B = (b;;)2x» of this equitable partition has the following elements:
by =2n—2,b;y =4(n—1)%, by =4n—4,and by, =2(n—1)>+2(n—2)2, so we have

2(n—1)—A 4(n—1)?

det(B—),I): 4(7’1—1) 2(”—1)24-2(”—2)2—2'

=0,

from where we determine A; and A,

A =2n% —5n+4+\/4n* — 12n3 +25n% — 360+ 20.

By Theorem 2.5, the obtained eigenvalues A; and A, belong to the spectrum of H(BB,,),
and the index (i.e., the largest eigenvalue) of H(BB,) is equal to A;. We will show that
H(BB,) also has the eigenvalue —2(n — 2) with multiplicity 2n — 3 and the eigenvalue
—4(n — 1) with multiplicity 1. To prove this, we will construct a set of 2n — 2 linearly
independent eigenvectors corresponding to these eigenvalues.

Let us consider the space R?" and observe the standard basis S = {ej,es,...,e2,} of
R?". We construct the vectors ygl), yl(.z) fori=1,...,n—1, and y§3) for j=1,...,n—2,in
the following way.

Set

(1)
Vi =e—ertepaten 3t tey—e3—eqs - —eny.
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Next, let
2
)’E ) = el —ey—e3+exmti—i
wherei=1,...,n—1, and
)’5?) = —e3tena,

where j=1,...,n—2.
Setwgl) = (yﬁl))T,wl@ = ( 52))T fori=1,...,n—1, andw?) = (y§.3))T forj=1,...,n—2.
The vectors w(l) w(z) w(z) w(3) w(3) w(3) are linearly ind d d satisf’

LW eow, o wy e w, y independent and satisfy the
relations

H(BB,) - w\" = —4(n—1)-w",
H(BB,) -w? =—2(n—2)-w®, i=12,...n-1,

and

H(BB,,)-WP = —2(n—2)-w§-3), j=12,...,n—2.

Thus, the spectrum of H(BB,) is given by
Spec(H(BB,)) = { 24,22, ~4(n — 1), (~2(n—2)) >}

O]

Now that we have determined the spectrum of H(BB,), we can easily compute the
Hamming energy of the graph BB,,.

Corollary 3.4. The Hamming energy of the n-barbell graph BB, is given by
HE(BB,) = |M|+|A2| +4(n—1)+2(n—2)(2n—3),

where A and A, are the eigenvalues of the equitable quotient matrix B corresponding to
the matrix H(BB,,).

4 Conclusions

In this paper we determined the Hamming spectra and Hamming energies of two notable
graph families: sunlet graphs and n-barbell graphs. By exploiting the symmetry of these
graphs and using equitable vertex partitions, we derived closed—form expressions for the
eigenvalues of the Hamming matrix H(G) and, in particular, for the corresponding Ham-
ming energies, thus adding new examples to the list of graphs with explicitly known H-
spectra.

Further research may focus on extending these techniques to other structured graph
classes and to various graph products, as well as on clarifying how the Hamming energy of
a composite graph (for instance, a product or corona) relates to the Hamming energies of
its factor graphs.
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