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Abstract. Pneumothorax is a lung condition characterized by the presence of 

air between chest wall and lungs. In order to diagnose location and size of 

pneumothorax, chest X-ray is a commonly used imaging technique. U-Net con-

volutional neural network models with different backbones are compared in or-

der to assess their capability to automatically and correctly segment signs of 

pneumothorax from chest X-rays. Five different pretrained backbones have 

been chosen: VGG19, ResNet34, ResNet50, DenseNet121 and Inceptionv3. 

Two different approaches for pneumothorax segmentation have also been test-

ed: one methodology used X-ray images of the whole chest area for training, 

while the second one split the original images into patches and used them for 

the training process. Both methodologies performed at a similar level, with the 

best results achieved by U-Net model with DenseNet121 backbone for segmen-

tation of X-ray of the whole chest. This model achieved a Jaccard index and 

Dice score of 76.92% and 78.81%, respectively. These results indicate that the 

tested models are capable of extracting fine-grained features from X-ray images 

of whole chest and that patch-based segmentation does not provide additional 

benefits.  

Keywords: chest X-ray, convolutional neural networks, pneumothorax segmen-

tation. 

1 Introduction 

Pneumothorax is a lung condition characterized by the presence of air in the pleural 

cavity (area between chest wall and lungs) [1]. The existence of air in this area inter-

feres with the negative pressure that normally prevents the lungs from collapsing, 

which can lead to a partial or complete collapse of the lung that can potentially be 

fatal. Depending on their cause, pneomothoraces can be classified as [2]:  
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• Primary spontaneous pneumothorax – This pneumothorax occurs suddenly in 

healthy individuals with no traces of underlying lung disease present. 

• Secondary spontaneous pneumothorax – This pneumothorax occurs due to the 

present underlying lung disease, such as chronic obstructive pulmonary disease 

(COPD), lung infections (e.g. tuberculosis), interstitial lung disease, etc.  

• Traumatic pneumothorax – This pneumothorax occurs as a result of physical trau-

ma to the chest and lungs. Traumas can come from various sources, ranging from 

blunt force traumas (e.g., car crashes) to penetration injuries (e.g., stab wounds or 

gunshot wounds). 

• Iatrogenic pneumothorax – This pneumothorax occurs as a direct result of certain 

medical procedures, such as central vein cannulation, needle biopsy, pleural tap, 

etc.  

Although the exact number of patients affected by pneumothorax is unknown, the 

incidence of primary spontaneous pneumothorax is reported to be 18-28/100,000 

cases per year for men and 1.2-6/100,000 for women [3]. The dangers and subsequent 

treatments of pneumothorax are directly correlated to its size. The Thoracic Society 

recommends classifying the size of a pneumothorax based on the visible space be-

tween the edge of the lung and the chest wall, thus having two categories [4]:  

• small pneumothorax (less than 2 cm present between lungs and chest wall) 

• large pneumothorax (more than 2 cm present between lungs and chest wall)  

 

Small pneumothorax areas are usually healed without treatment, as the excess air will 

be absorbed over time. As the size of pneumothorax area increases, the treatment 

methods become more invasive, where using procedures such as needle aspiration, 

chest drain and even surgery becomes common.  

 Even though it is possible to diagnose pneumothorax using only physical examina-

tion and patient’s medical history, medical imaging is almost always used for a defini-

tive diagnosis and determination of size and severity of a pneumothorax. Due to its 

relatively low cost, ease of use and wide availability, chest X-ray is primarily used 

medical imaging modality. On chest X-rays, there are a couple of signs that may indi-

cate presence of pneumothorax: visible pleural line, absence of lung markings periph-

eral to pleural line and presence of radiolucent area. However, in the case of a small 

pneumothorax these sings may be hard to detect, resulting in doctor’s failure to notice 

presence of pneumothorax. 

 In order to reduce a workload and assist doctors in interpretation of medical data, 

many Computer-Aided Diagnosis (CAD) systems have been developed. In the case of 

pneumothorax diagnosis, having a system that automatically and precisely finds visu-

al sings of pneumothorax on X-rays, could significantly lessen the burden on medical 

experts and assist them in clinical practice. In the assessment of pneumothorax 

through medical imaging, it is not enough to simply identify the existence of air with-

in the pleural space. Medical experts need to know the pneumothorax's position and 

size to evaluate the severity of the condition and provide appropriate treatment for the 

patient. The task of annotating pneumothorax in X-ray images is categorized as a 
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binary segmentation problem, with the primary goal being the detection and delinea-

tion of the region-of-interest (ROI).  

 Development and use of Convolutional Neural Networks (CNNs), a subset of deep 

learning techniques, have led to considerable progress in the field of medical imaging, 

especially for the task of image segmentation. Deep learning methods are capable of 

automatically extracting complex features at various scales without manual interven-

tion. For the task of image segmentation, CNN models with U-Net architecture 

achieve excellent results and are often use in analysis of biomedical data.   

 The goal of this research is to compare U-Net models with different pretrained 

backbones and assess their performance for the task of pneumothorax segmentation 

from chest X-ray images. Two different methodologies are used to train models: one 

uses X-rays of the whole chest area for training, while the second splits the X-ray into 

small patches for model training. The idea of using patches for pneumothorax seg-

mentation was inspired by the results achieved in similar tasks in medical field [5, 6]. 

We argue that performing segmentation using smaller patches would result in better 

segmentation results, especially for detection of small pneumothoraces that can be 

difficult to detect due to their size and variation in positioning. The results of the 

patch segmentation would then be stitched together to reconstruct a segmentation 

mask that displays the entire chest area. 

1.1 Related works 

Segmentation of pneumothorax from chest X-ray images using deep learning ap-

proach has been a popular research topic, with numerous proposed solutions emerg-

ing. Most of these deep learning solutions use CNNs, especially the pretrained kind. 

 Malhtora et al. [7] proposed Mask Regional Convolutional Network (Mask RCNN) 

with pretrained ResNet101 backbone. Their model generates bounding boxes as well 

as segmentation masks for every instance of an object present in the given image.  

Wang et al. [8] created methodology consisting of two stages: firstly, presence of 

pneumothorax is detected in the image and in second phase, ensemble of four U-Net 

like models (with pretrained SEResnext50, SE-Resnext101, EfficientNet-B3, and 

EfficientNetB5 backbones) and one Deeplabv3+ model is used for segmentation. By 

doing classification of X-rays into healthy and pneumothorax categories, authors 

avoided any errors that could occur if a segmentation model incorrectly identified 

pneumothorax in a healthy patient's X-ray.  

Usage of ensemble methods seem to be popular idea, as Abedalla et al. [9] use en-

semble of pretrained ResNet50, DenseNet169, SE-ResNeXt50 and EfficientNet-B4 

U-Net models.  

2 Materials and Methods 

In this section, methodology for development and comparison of different CNN mod-

els is described. Five different pretrained models have been trained on both X-rays of 
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the whole chest area and extracted patches, resulting in total of ten different models. 

Figure 1 shows the proposed methodology workflow. 

 

 

Fig. 1. Proposed methodology workflow 

2.1 Dataset description 

Chest X-ray images that were used for development and evaluation of segmentation 

models are a part of public SIIM-ACR pneumothorax dataset. This dataset was used 

in a Kaggle challenge hosted by The Society for Imaging Informatics in Medicine 

(SIIM) and the American College of Radiology (ACR) [10]. The dataset consists of 

12,047 chest X-rays with corresponding annotated masks, among which 2,669 images 

have pneumothorax present, and the other 9,378 images are of healthy lungs. Figure 2 

shows some examples of X-ray images with corresponding annotated masks, where 

white sections represent pneumothorax instances and totally black masks represent 

healthy individuals.   

 

 

Fig. 2. Examples of dataset’s image pairs: a) Original chest X-ray image; b) Annotated pneu-

mothorax 
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2.2 Data preprocessing and augmentation 

Looking at the SIIM-ACR dataset’s metadata it is evident that samples are highly 

imbalanced, with only 22.15% of images belonging to the pneumothorax class. Hav-

ing class imbalance in the training dataset is significant problem that often causes 

biased training and poor generalization. In order to address this issue, undersampling 

of the majority class was utilized: all of the samples containing pneumothorax were 

used, while 2,669 X-rays of healthy patients were randomly selected.  

Original images have dimensions of 1024 × 1024 pixels. Due to the memory re-

strictions and computational efficiency, images have been halved to a size of 512 × 

512 pixels. In order to improve contrast of the image, which would make radiolucent 

area of pneumothorax more prominent, Contrast Limited Adaptive Histogram Equali-

zation (CLAHE) filter was used.  

In order to improve diversity of training data, combination of following image 

transformations has been used to artificially expand the dataset: random rotation by 0-

20°, random change of brightens by ±0-15%, random zoom by ±0-10% and horizontal 

flip. 

Final step in data preprocessing is normalization of pixel values for both images 

and masks. Usual pixel values range from 0 to 255 and normalization brings all imag-

es to a consistent scale between 0 and 1. 

The preparation of the dataset for image segmentation of whole chest area encom-

passes all the outlined steps. Subsequently, this dataset was then split into two sub-

sets, with 80% of samples were used as training dataset and the remaining 20% serve 

as the test dataset. However, for patch-based methodology original images had to be 

split into smaller patches. Patch size of 128 × 128 pixels was selected, as this size 

allows capturing of fine-grained features while still being able to capture largest ob-

jects without losing too much context. 

2.3 Methods 

Convolutional neural networks are considered state-of-the-art for tasks in computer 

vision, such as image classification and segmentation, object detection, etc. A typical 

CNN architecture consists of sequential blocks composed of different layers, with 

each block designed to transform an input volume into an increasingly abstracted 

output. At the core of CNN architecture is a convolutional layer which is capable of 

extracting hidden features of different scale, where early convolutional layers in early 

blocks learn low-level features (e.g. colors, brightness, etc.) and deeper ones learn 

complex patterns. A significant advantage of CNNs over traditional fully connected 

networks is their efficiency in processing visual data. This efficiency is partially 

achieved through the use of pooling layers, which reduce the spatial dimensions of 

feature maps. By doing so, pooling layers decrease the number of parameters and 

computational load of network, which not only enhances efficiency but also helps 

mitigate overfitting. 

All of the models created in this research follow structure of a U-Net convolutional 

neural network. U-Net represent a huge milestone in development of CNNs for seg-
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mentation and it still remains one of the most commonly used deep learning architec-

tures for a variety of segmentation tasks. U-Net is an architecture developed specifi-

cally for biomedical image segmentation by Ronneberger and his team [11]. U-Net 

comprises of two parts, encoder and decoder, which form U-shaped layout that the 

architecture is named after. The encoder, or contracting path, is standard CNN con-

sisting of blocks of sequential convolutions and max pooling layers. Encoder is tasked 

with extraction of relevant features from images while reducing size of input images 

with pooling operations. During the feature extraction, original size of images and 

position of pixels is lost, which is why there is a need for a decoder. Decoder, or ex-

panding path, using up-convolutions and skip connections combines the encoder’s 

extracted features with spatial information to create a segmentation mask. Skip con-

nections are crucial to the U-Net architecture as they propagate high-resolution infor-

mation from earlier encoder layers to later blocks in decoder.  

Inspired by popularity and success of U-Net, numerous modified versions of U-Net 

structure that improve its performance have been proposed. In order to improve fea-

ture extraction capabilities of U-Net encoder, state-of-the-art backbones are used as a 

replacement for standard CNN consisting of blocks of sequential convolutions and 

max pooling layers. These improved backbones, such as ResNet, DenseNet, etc., can 

make U-Net architecture more suitable for extraction of features specific to certain 

problems. For the task of pneumothorax segmentation, VGG19, ResNet34, ResNet50, 

DenseNet121 and Inceptionv3 backbones have been tested for both segmentation of 

X-rays of whole chest area and segmentation of patch images.  

VGG architecture was developed by Simonyan et al. [12], representing an im-

portant step in development of CNN models, advocating for increase in networks’ 

depth and replacement of large convolutional filters with many smaller 3 × 3 filters. 

These ideas have become staple and have been used in development of many future 

models. VGG has several variations, most notably VGG16 and VGG19 that contain 

16 and 19 layers, respectively.  

He et al. [13] created Residual Network (ResNet) that introduces residual blocks to 

CNN structures. Residual blocks utilize skip connection to bypass one or more layers, 

resolving vanishing gradient by facilitating the flow of gradients during backpropaga-

tion. Consequently, they enable the successful training of much deeper neural network 

models, such as those with 34, 50, 101, and even 152 layers, without performance 

degradation often encountered in conventional deep CNNs.  

Traditional CNNs pass the output of one layer directly into the next layer, but de-

velopers of DenseNet had different approach and created a model whose every layer 

is connected to every other subsequent layer [14]. This densely connected architecture 

allows the network to reuse features throughout the depth of the network, which can 

lead to improved efficiency and feature propagation.  

Most of the aforementioned models aimed to increase performance by going deep-

er, adding more layers to their networks. However, the Inceptionv3 architecture intro-

duced the novel concept of also expanding the network width [15]. Instead of using 

convolutional layers with only filters of the same size, the Inceptionv3 architecture 

incorporates Inception modules that apply several convolutional filters with different 
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sizes (1 × 1, 3 × 3, 5 × 5, etc.) in parallel. This allows capture of features of different 

scale simultaneously.  

All of the selected U-Net backbones have been pretrained on the ImageNet dataset. 

The goal of the transfer learning procedure is to utilize knowledge gained while solv-

ing one problem and apply it to a different problem that is related. The pretrained 

model provides initial values for the training parameters and obviates the need for 

training from scratch. 

In order to compare selected models as fairly as possible, same training hyperpa-

rameters have been used for all of them. The models were trained for 75 epochs with 

a batch size of 8 using Adam optimizer with a learning rate of 0.001. To mitigate the 

effects of the imbalanced dataset, which has a large number of background pixels, a 

custom weighted loss function that combines categorical focal loss with dice loss was 

utilized. 

The proposed models were developed using Python programming language and 

Tensorflow library. Model training was conducted on a workstation equipped with a 

NVIDIA GeForce GTX 1660 GPU, an AMD Ryzen 7 2700X CPU and 16 GB of 

RAM. 

3 Results and discussion  

Evaluation of segmentation models involves use of various quantitative metrics that 

measure the quality of model’s prediction. For the task of image segmentation most 

commonly used metrics are Intersection-over-Union (IoU) and Dice similarity coeffi-

cient (DSC). IoU, or Jaccard Index, measures ratio between the intersection and the 

union of the predicted and ground-truths segments. IoU is calculated as: 

IoU =  
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
  (1) 

, where X represent resulting segmentation mask and Y is annotated ground-truth. 

DSC is similar to IoU, as it also measures the overlap between two samples. DSC is 

calculated as: 

𝐷𝑆𝐶 =
2 ∗ |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
(2) 

The results of segmentation on the test set, for all of the created models are shown in 

Table 1. 

Table 1. Evaluation of trained models using IoU and DSC metrics 

U-Net backbones Segmentation of X-rays of the 

whole chest  

Patch-based segmentation 

IoU [%] DSC [%] IoU [%] DSC [%] 

VGG16 70.33 72.41 71.02 72.96 

ResNet34 73.54 75.36 72.23 73.47 
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ResNet50 74.28 76.21 72.45 74.12 

DenseNet121 76.92 78.81 75.73 77.24 

Inceptionv3 74.92 77.12 75.26 77.89 

 

Evaluation results from Table 1 show that models perform at similar level, with 

DenseNet121 performing best for both segmentation of X-rays of whole chest area 

and segmentation of patches. Results also indicate that using smaller patches of chest 

X-rays does not provide significant improvement in pneumothorax segmentation. 

Figure 3 shows the results achieved by U-Net model with DenseNet121 backbone for 

both whole image and patch-based segmentation. 

 

 

Fig. 3. Segmentation result of a U-Net model with DenseNet121 backbone: a) original image, 

b) annotated ground-truth; c) whole image segmentation results; d) patch-based segmentation 

results 

4 Conclusions 

This paper compared performance of U-Net models with different backbones for the 

task of pneumothorax segmentation. Five different backbones have been tested: 

VGG19, ResNet34, ResNet50, DenseNet121 and Inceptionv3. The task of pneumo-

thorax segmentation was approached in two different manners: one methodology used 

X-ray images of the whole chest area for training, and the second one split the origi-

nal images into patches and used them for the training process.  
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DenseNet121 backbone had best performance for both approaches, as evident by 

IoU and DSC scores. However, results comparing the two methodologies seem to be 

similar for all of the tested models. This indicates that splitting images into smaller 

patches, segmenting them, and then stitching them back together to reconstruct the 

mask of the whole chest area, does not provide any benefits over doing segmentation 

on the X-ray of the whole chest area.  

In future research, chest X-ray images are going to be subjected to additional step 

in data preprocessing. Idea is to use additional CNN that is going to segment lungs 

from the surrounding tissue and background. These images that contain just the lung 

area would be used as input for training an DenseNet121-based U-Net model for 

pneumothorax segmentation, thus putting focus only on that area during training pro-

cedure. 
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