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Abstract
Three eigenvalue-based topological molecular descriptors are compared using several datasets of alkanes. Two of them 
are well-known and frequently employed in various QSPR/QSAR investigations, and third-one is a newly derived whose 
predictive potential is yet to be proven. The relations among them are found and discussed. Structural parameters that 
govern these relations are identified and the corresponding formulas based on multiple linear regression have been 
obtained. It has been shown that all three investigated indices are encoding almost the same structural information of a 
molecule. They differ only by the extent of the sensitivity on a structural branching of a molecule and on the number of 
non-bonding molecular orbitals.  
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1. Introduction
Molecular descriptors are the fundamental tools in 

QSPR/QSAR modeling, which are frequently employed in 
diverse fields of chemistry.1–3 Among them, topological in-
dices are the usual choice, because of their low computa-
tional complexity and fairly simple identification of struc-
ture–property relationships.4–7 There are hundreds of 
topological descriptors.2 A natural way for their classifica-
tion is by the origin of parameters that are used in their 
definitions. Thus, one differentiates degree–, distance–, and 
eigenvalue–based topological molecular descriptors, al-
though there is a couple of them that cannot be strictly des-
ignated as members of any of the above-mentioned classes. 

Interest for the eigenvalue-based topological molec-
ular descriptors had been aroused after the explanation of 
the physical meaning of eigenvalues in HMO theory.8 This 
happened in the seventies of the last century. Probably the 
first eigenvalue-based topological descriptor that had been 
introduced is the graph energy. This index is defined using 
the eigenvalues of an “ordinary” adjacency matrix in the 
following way:

(1)

where λi is the i-th eigenvalue of a graph G.

The graph energy is tightly connected to the total 
π-electron energy of alternate conjugated molecules. It is a 
popular research topic both in chemically, and in mathe-
matically oriented investigations. Several books and nu-
merous papers are devoted to this particular topological 
invariant.9 Nowadays, there are numerous eigenvalue–
based topological indices, but just a couple of them are 
based on the eigenvalues that come from the adjacency 
matrix. These indices have been used as molds for defining 
almost all other topological invariants belonging to this 
class. Thus, beside graph energy, one could find indices 
like Laplacian energy, distance energy, Randić energy, etc. 
(e.g. see10–12). 

Next to graph energy, the second most investigated 
topological molecular descriptor based on eigenvalues of 
an adjacency matrix is Estrada index. It was designed to 
model the folding in some biomolecules.13 Estrada index is 
defined as follows:

(2)

where λi is the i-th eigenvalue of a graph G .
Its undeniable success led to a vigorous research of 

this quantity (see14–16 and references cited therein). This 
invoked the introduction of many other Estrada-like in-
variants.10,17–19 
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Recently, another topological invariant based on “or-
dinary” eigenvalues has been introduced.20 This descriptor 
is named resolvent energy after the resolvent matrix which 
eigenvalues are used in its definition.

(3)

where  is the i-th eigenvalue of the resolvent matrix of 
the adjacency matrix of a graph.

Despite its juvenility, this quantity attracted much 
attention, which led to a couple of its descendants. A 
question that arises here is, whether there are some rela-
tionships among these topological invariants. Since the 
beginnings of the Estrada index, a connection between it 
and the energy of a graph has been investigating. Many 
inequalities, connecting these two descriptors, have 
been derived. However, the correlation between these 
two topological molecular descriptors seems to be never 
investigated. Also, the connections between the resol-
vent energy and the other two indices have not been 
tested yet. 

This paper is devoted to the relationships among the 
recently introduced resolvent energy and other two eigen-
value–based topological descriptors. These relationships 
will shed a light onto relation between graph energy and 
the Estrada index as well.

2. Results
The results are separated into three parts. In the first 

subsection, the relation between graph energy and the re-
solvent energy of a graph will be elaborated. The second 
subsection is devoted to the relation between the Estrada 
index and the resolvent energy of a graph, and the last one 
is reserved for the relation between graph energy and the 
Estrada index. All relations are investigated in the case of 
alkanes.

Figure 1. The relation between the resolvent energy of graph (ER) and the graph energy (E) in the case of 75 decanes.

2. 1. Graph Energy Versus Resolvent Energy
The resolvent energy of a graph has emerged in 2016 

as a modification of the resolvent Estrada index, which 
was introduced few years before.17 Several papers have ap-
peared dealing with the mathematical properties of this 
quantity.21–29

Due to similar definitions of the resolvent energy (3) 
and the graph energy (1), the question about their relation 
naturally occurs. Fig. 1 shows the relation between the re-
solvent energy and the graph energy.

It is obvious from the Fig. 1 that the values of the 
graph energy are clustered into three distinct groups. Also, 
the values of the resolvent energy of graphs lies onto sever-
al nearly parallel lines.

We determined, by direct checking, that the values of 
the energy of acyclic connected graphs are classified into 
three distinct groups by the number of zeros (n0(T)) in 
their spectra (number of non-bonding orbitals in a mole-
cule). On the other hand, the values of resolvent energy are 
separated onto nearly parallel lines by the values of the first 
Zagreb index (Zg1(T)) (a rough measure of a structural 
branching in a molecule). The alkanes that are lying on the 
same line have the same Zg1(T). Therefore, the correlation 
between the graph energy and the resolvent energy of a 
graph should involve these two parameters as well.

(4)

We made an in-house Python program for testing 
multiple linear relation shown in (4) using scikit-learn 
module.30 Results are given in the Fig. 2 and Table 1.

The data presented in the Table 1, as well as the ex-
ample shown in Fig. 2, demonstrate the remarkably good 
correlation between the values of the resolvent energy 
and the values obtained by the model given in (4). The 
first Zagreb index and the number of zeros in the spectra 
almost completely explain the dependence between the 
energy of graph and the resolvent energy in the case of 
trees.
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2. 2. Estrada Index Versus Resolvent Energy
An illustrative example of correlation between the 

Estrada index and the resolvent energy of a graph is shown 
in Fig. 3.

Although the correlation in this example is quite 
well, it is evident that the points in Fig. 3 are clustered into 
several nearly parallel lines. It was empirically determined 

Table 1. Coefficients A, B, C, and D, in (4), computed to achieve the best correlation coeffi-
cient for chemical trees from 6 to 20 vertices. Last two columns contain obtained correlation 
coefficients and the average relative errors for all data sets used.

n	 A	 B	 C	 D	 R	 ARE

6	 -2.21E-05	 3.19E-04	 -2.13E-05	 1.044	 1.00000	 8.43E-08
7	 6.90E-05	 1.47E-04	 2.11E-05	 1.033	 0.99999	 1.15E-06
8	 2.80E-05	 7.24E-05	 7.48E-06	 1.026	 0.99996	 1.29E-06
9	 1.55E-05	 3.91E-05	 4.56E-06	 1.021	 0.99998	 6.39E-07
10	 7.46E-06	 2.25E-05	 2.05E-06	 1.018	 0.99997	 4.12E-07
11	 4.01E-06	 1.37E-05	 1.15E-06	 1.015	 0.99998	 2.29E-07
12	 2.12E-06	 8.74E-06	 5.71E-07	 1.013	 0.99998	 1.42E-07
13	 1.25E-06	 5.79E-06	 3.48E-07	 1.011	 0.99998	 8.71E-08
14	 7.29E-07	 3.96E-06	 1.94E-07	 1.009	 0.99999	 5.62E-08
15	 4.61E-07	 2.78E-06	 1.25E-07	 1.008	 0.99999	 3.63E-08
16	 2.89E-07	 2.00E-06	 7.65E-08	 1.007	 0.99999	 2.45E-08
17	 1.92E-07	 1.47E-06	 5.11E-08	 1.006	 0.99999	 1.67E-08
18	 1.28E-07	 1.10E-06	 3.35E-08	 1.006	 0.99999	 1.17E-08
19	 8.83E-08	 8.36E-07	 2.32E-08	 1.005	 1.00000	 8.35E-09
20	 6.14E-08	 6.45E-07	 1.60E-08	 1.005	 1.00000	 6.07E-09

Figure 3. Correlation between the Estrada index and the resolvent energy of graph for all chemical trees with 10 vertices. 

Figure 2. The correlation between the ER-values of chemical trees with 10 vertices and the values of ER calculated using eq. (4).
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Since the k-th spectral moment of a graph is equal to 
the number of self-returning walks of the length k,31 the 
relations between spectral moments for k = 0, 2, and 4 and 
some other, easily divisible graph invariants, are derived 
years ago (e.g. see32):

(10)

where n, and Zg1(T) are the number of vertices and the 
first Zagreb index of a tree T.

Incorporating equations shown in (10) into (9), the 
formula, relating the resolvent energy of a graph, Estrada 
index and the first Zagreb index, is obtained:

(11)

In order to get the fitting parameter α that appears in 
(11), we made an in-house computer program. This pro-
gram is written in Python and the α values are obtained for 
all chemical trees from 6 to 20 vertices. The results are 
shown in Table 2. The correlation coefficients are so high, 
and they are equal to 1 rounded to 7 decimals. 

Table 2. The values of the fitting parameter α from formula (11) for 
which the best correlation coefficients are obtained.

n	 α	 n	 α

6	 0.0169	 13	 0.00013
7	 0.00631	 14	 8.20E-05
8	 0.00271	 15	 5.40E-05
9	 0.00129	 16	 3.60E-05
10	 0.00066	 17	 2.60E-05
11	 0.00037	 18	 1.80E-05
12	 0.00021	 19	 1.30E-05
		  20	 9.00E-06

that the first Zagreb index is a parameter which governs 
this classification. Namely, the chemical trees belonging to 
a cluster have the same first Zagreb index. The relevance of 
this parameter for the correlation between the resolvent 
energy of a graph and the Estrada index is mathematically 
corroborated bellow. In order to do this, some well-known 
facts from spectral graph theory need to be outlined. 
The k-th spectral moment of a graph G is defined in the 
following manner:31

(5)

where k is an integer greater than or equal to 0, and λi is the 
i-th eigenvalue of a graph G. The Estrada index and resol-
vent energy can be expressed in terms of the spectral mo-
ments using Taylor series (e.g.15,20):

(6)

(7)

Then, using formulas (6) and (7) the following equal-
ity can be established:

(8)

The odd k-th spectral moments are equal to 0 in the 
case of bipartite graphs (the chemical trees are bipartite). 
Using (8), the ER(T) can be approximated in terms of 
EE(T) and a few of the first spectral moments:

(9)

where α is a fitting parameter.

Figure 4. The relation between the fitting parameter α and the number of vertices in chemical trees.
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The relation between the α and the number of vertices 
is given in the Fig. 4. Although this relation is rather com-
plex, the value of α is completely determined by the n. Such 
finding suggests that the parameter, which solely influences 
the relation between the resolvent energy and Estrada index 
of isomeric chemical trees, is the first Zagreb index.

2. 3. Energy of Graph Versus Estrada Index
An introduction of the Estrada index also initiated 

the investigations of its connection with the energy of a 
graph. There are several papers presenting various bounds 
for the Estrada index in terms of the energy of a graph.14–16

However, the relation between these two indices is 
complex and has never been investigated thoroughly. Fig. 
5 shows an illustrative example of the relation between 
the Estrada index and the energy of a graph. The approx-
imate relations shown in (4) and (11) suggest that the 

Table 3. The coefficients A, B, C, and D, the correlation coefficients and the average relative errors for the 
model given in (12).

n	 A	 B	 C	 D	 R	 ARE

6	 –215.6	 22.85	 –1.384	 2224.4	 0.99995	 0.07%
7	 12.08	 –1.388	 –0.314	 –135.9	 0.99936	 0.23%
8	 7.78	 –0.933	 –0.31	 –96.5	 0.99671	 0.47%
9	 7.48	 –0.903	 –0.318	 –104.3	 0.99746	 0.36%
10	 6.26	 –0.771	 –0.307	 –94.9	 0.99563	 0.45%
11	 5.72	 –0.713	 –0.322	 –94.3	 0.99543	 0.40%
12	 5.53	 –0.695	 –0.309	 –99.1	 0.99427	 0.42%
13	 5.21	 –0.659	 –0.319	 –100.1	 0.99423	 0.41%
14	 5.11	 –0.65	 –0.31	 –105.6	 0.99339	 0.41%
15	 4.93	 –0.63	 –0.315	 –108.5	 0.99337	 0.39%
16	 4.86	 –0.623	 –0.31	 –114	 0.99278	 0.39%
17	 4.74	 –0.609	 –0.312	 –117.6	 0.99270	 0.38%
18	 4.69	 –0.604	 –0.309	 –122.9	 0.99229	 0.37%
19	 4.6	 –0.595	 –0.31	 –127	 0.99219	 0.36%
20	 4.56	 –0.59	 –0.309	 –132.2	 0.99189	 0.36%

Figure 5. The relation between the Estrada index and the energy of a graph in the case of decanes.

first Zagreb index and the number of zeros in the spectra 
of a graph are the parameters who largely influence the 
relationship between the Estrada index and the graph en-
ergy in the case of trees. Thence, we conjectured that the 
energy of a graph could be modeled by the following for-
mula: 

(12)

We tested the conjecture given in (12) using an in-
house built Python program and the results are summa-
rized in the Table 3 and the Fig. 6. 

The statistics given in the Table 3 indicate that the 
model (12) explains more than 98% of the data variations. 
ARE-values are also considerably small. However, it is evi-
dent from Figs. 5 and 6 that beside the first Zagreb index 
and the number of zeros in the spectra of a graph, some 
other parameter(s) has an influence on this relation.
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3. Conclusion
The approximate relations among three eigenval-

ue-based topological indices whose definitions are based 
on the eigenvalues of the adjacency matrix are presented. 
It is shown that the first Zagreb index, as a measure of 
structural branching in a molecule, and the number of 
non-bonding orbitals, are the parameters that significantly 
influence these relations. In the (4) and (11) these graph 
invariants almost completely explain the relations between 
the ER(T) and E(T), and ER(T) and EE(T). The formulas 
(4) and (11) suggest that the relation between the E(T) and 
EE(T) can be modeled in terms of the first Zagreb index 
and the number of zeros in a graph. This model (12) has 
been tested and it is shown that it explains more than 98% 
of the data variation in the case of alkanes. However, for 
the complete description of a relation between the graph 
energy and the Estrada index, some other parameter(s), 
beside n0(T) and Zg1(T), needs to be involved.
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Povzetek
Tri topološke molekularne deskriptorje smo primerjali s podatkovnimi bazami alkanov. Dva od teh deskriptorjev sta do-
bro znana in pogosto uporabljena v različnih QSPR/QSAR preiskavah, tretji pa je na novo izpeljan in je treba njegove na-
povedovalne možnosti še dokazati. Našli smo povezave med temi deskriptorji in o njih razpravljali. Z uporabo večkratne 
linearne regresije smo opredelili strukturne parametre in ustrezne enačbe, ki določajo te povezave. Pokazali smo, da vsi 
trije preiskovani indeksi kodirajo skoraj iste strukturne informacije o molekuli. Razlikujejo se le po obsegu občutljivosti 
na strukturno razvejanje molekule in po številu neveznih molekulskih orbital.
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