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Sjögren’s Syndrome From Salivary Gland

Ultrasonography Images
Arso M. Vukicevic , Vera Milic, Alen Zabotti, Alojzija Hocevar , Orazio De Lucia , Georgios Filippou,

Alejandro F. Frangi , Athanasios Tzioufas, Salvatore De Vita, and Nenad Filipovic

Abstract—Salivary gland ultrasonography (SGUS) has
shown good potential in the diagnosis of primary Sjögren’s
syndrome (pSS). However, a series of international stud-
ies have reported needs for improvements of the existing
pSS scoring procedures in terms of inter/intra observer re-
liability before being established as standardized diagnos-
tic tools. The present study aims to solve this problem by
employing radiomics features and artificial intelligence (AI)
algorithms to make the pSS scoring more objective and
faster compared to human expert scoring. The assessment
of AI algorithms was performed on a two-centric cohort,
which included 600 SGUS images (150 patients) annotated
using the original SGUS scoring system proposed in 1992
for pSS. For each image, we extracted 907 histogram-based
and descriptive statistics features from segmented salivary
glands. Optimal feature subsets were found using the ge-
netic algorithm based wrapper approach. Among the con-
sidered algorithms (seven classifiers and five regressors),
the best preforming was the multilayer perceptron (MLP)
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classifier (κ = 0.7). The MLP over-performed average score
achieved by the clinicians (κ = 0.67) by the considerable
margin, whereas its reliability was on the level of human
intra-observer variability (κ = 0.71). The presented findings
indicate that the continuously increasing HarmonicSS co-
hort will enable further advancements in AI-based pSS scor-
ing methods by SGUS. In turn, this may establish SGUS as
an effective noninvasive pSS diagnostic tool, with the final
goal to supplement current diagnostic tests.

Index Terms—Sjögren’s syndrome, salivary glands, ultra-
sonography, radiomics.

I. INTRODUCTION

PRIMARY Sjögren’s Syndrome (pSS) is a chronic autoim-
mune disease, whose manifesting symptoms are oral and

ocular dryness, fatigue, arthralgia and arthritis. The annual in-
cidence of pSS has been estimated at a range from 200 to 3000
per 100.000 people, with highly unbalanced gender ratio (∼10
females per 1 male) [1]. Standardization of the pSS classifi-
cation has been the subject of debate for decades. Chrono-
logically, four standardized guides are: European Classifica-
tion (PEC) criteria [2], American European Consensus Group
(AECG 2002) classification criteria [3] the American College
of Rheumatology (ACR 2012) criteria [4] and the more recent
ACR-European League Against Rheumatism (EULAR) 2016
criteria [5]. Briefly, these guides are based on the combination
of examined clinical symptoms, results of autoantibody tests
and salivary gland (SG) biopsy [6]. All these criteria do not
incorporate new insights in pSS enabled by noninvasive sali-
vary gland ultrasonography (SGUS) [7]. According to clinical
reports, failing to include any imaging modalities (as mentioned
in the standardized guides) has been reported as an obstacle in
the practice – as patients frequently complain at invasive tests
and biopsies, especially during follow-up studies or when pre-
sented with negative findings [8].

Up until now, various SGUS-based pSS scoring approaches
have been introduced and showed satisfactory results in com-
parison to both ACR 2012 and AECG 2002 [9]. The proposed
approaches are based on the visual observation of parotid and
submandibular SGs’ characteristics from SGUS. These scores
are further subtracted and compared to the cut-off threshold
to determine the final pSS score [10]–[15]. In order to inves-
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TABLE I
CHARACTERISTICS OF CLINICAL DATA USED IN THIS STUDY

N indicates a number of subjects; n indicates a number of positive findings.
∗Tests were not performed on all N subjects. Percentage was computed with respect to the number of examined subjects: n / number of examined subjects (%).

tigate human-dependency, international experts have recently
participated in the consensus meetings with the aim to evaluate
reliability of SGUS echo structural parameters [16]. Consider-
ing the obtained results of inter/intra observer reliability, it is
concluded that there is still no gold standard for pSS diagno-
sis based on the observation of echo structural abnormalities in
SGUS images.

In order to resolve these obstacles, leading SS experts (35
partners from 13 countries) have recently started the Harmon-
icSS (http://harmonicss.eu) initiative. The aim of the joint Eu-
ropean research initiative is to envelop independently reported
cohorts and metacentric data with the end goal to ease further
progress in the diagnosis and treatment of pSS. As recently sug-
gested, one of desirable advances in SGUS is the development
of dedicated computerized tools that could reduce screening
time and dependency on human experts [17]. To the best of our
knowledge, there is still no available solution with such abil-
ity on the market, nor reported in the scientific literature. By
using the growing HarmonicSS cohort, the aim of the present
study was to propose a novel radiomics-based approach for the
assessment of pSS in SGUS images.

II. MATERIALS

After obtaining the institutional review board approvals, we
retrospectively reviewed medical records of 150 patients from
two clinical centers in Europe: Belgrade (Serbia) and Udine
(Italy). US examinations assumed routine acquisition of parotid
and submandibular glands longitudinal scans. Since four im-
ages were acquired for each patient, the cohort included 600
SGUS images. Belgrade clinical center contributed with 112
patients (448 images) examined with GE LogiqE9 device with a
linear high-frequency transducer (6–15 MHz), while the center
from Udine provided 38 patients (152 images) examined with
the ESAOTE MyLabClassC US machine with a linear high fre-
quency probe (6–18 MHz).

All subjects underwent a diagnostic work-up for pSS accord-
ing to the AECG [3]. The evaluation included the following:

1) questionnaire with six questions to assess ocular and oral
symptoms, 2) evidence of dry eye (Rose-Bengal), 3) presence
of anti-SS-A/SS-B antibodies, 4) sialoscintography for the ev-
idence of salivary dysfunction and 5) biopsy of minor salivary
glands. Characteristics of patients involved in this study are
shown in Table I.

In this study, pSS scores of SGUS images were defined using
the original scoring system proposed by De Vita et al. [14]. This
easy-to-apply score was chosen because adequate discriminant
analyses were employed to select the items to build the score it-
self, and these items were subsequently confirmed to be of value.
Since the scoring is expert-based approach, ground truth values
were defined by using the Delphi method. The scoring assumed
grading images on the 0–3 scale regarding SGs’ echo structural
characteristics, as proposed in Luciano et al. [14]. SGUS im-
ages were randomized and assessed twice by five independent
clinicians, whose expertise varied between experienced to lead-
ing rheumatologists in the field. After the definite scores were
obtained by the experts’ consensus, the resulting class distribu-
tion in the database was 30%, 13%, 39% and 18%, respectively
(class distribution of images used for the development of train
and test sets are given in Table I).

A. Reliability of pSS Clinical Assessment in
SGUS Images

Intra-observer and inter-observer reliability were assessed us-
ing the kappa coefficient. The intra-observer agreement was
measured using the Cohen’s weighted kappa, showing the sub-
stantial agreement: κ = 0.71 ± 0.11 (κmin = 0.58 and κmax =
0.88). The overall inter-observer agreement (before the expert
consensus) was measured using the Scott/Fleiss’ kappa (κ =
0.61).

In order to compare the performances of proposed radiomics-
based algorithms with clinicians, the performance indicators
given in this paragraph were calculated with respect to scores
adapted through the expert consensus. The mean Pearson’s cor-
relation of the five observers with ground truth was R2 = 0.690
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Fig. 1. Overview of the feature extraction procedure. From a segmented SG region, radiomics features were extracted by using: Gaussian filter,
image gradients, Sobel operator, Gabor filter, Local Binnary Patter and Gray Level Coocurence Matrix. The raw feature vector F consisted of a total
907 features, which were obtained by varying parameters of the considered feature extractors.

± 0.137 (R2
min = 0.461 and R2

max = 0.837). The percentage
agreement was 70.1 ± 10.3% (within the range 55.6 – 82.1%).
The agreement of observers with ground truth was measured
using the weighted Cohen’s kappa κ = 0.66 ± 0.14 (κmin =
0.44 and κmax = 0.83).

III. METHODS

Characteristics that are specific to the assessment of pSS from
SGUS images are: a) high variance of SGs in appearance, shape
and size, and b) low relevance of SGs’ surrounding tissues for the
diagnosis. Considering the cohort size, and these requirements,
we propose a novel radiomics-based procedure as a suitable ap-
proach for solving the given problem. The procedure’s workflow
is sketched in Fig. 1 and Fig. 2, while its composing steps are
described in the rest of this section.

A. Features Extraction

Semi-automatic segmentation of SGs was performed using
the Snake algorithm (Fig. 1(a)) [18]. The presence of artifacts
and pepper noise were reduced by using the Wiener and Me-
dian filters, respectively (Fig. 1(b)). The extraction of radiomics
features from the segmented SGUS image was performed using
a series of algorithms (Fig 1(c-j)). Invariance of the proposed
procedure to both size and shape of the segmented SGs was
ensured by computing: a) Histogram-based features f1−9 (after
expressing the bin counts in percentage, following Fig. 1(i));
and b) Descriptive statistics features f10−19 that account for pix-
els inside the segmented SG region (Fig. 1(j)). The considered
feature-extractors were:

1) Multi-Resolution Image Gaussian Pyramid: The Gaussian
filter (GF) is a 2D convolutional smoothing operator, whose
kernel was generated using the Gaussian function (Fig. 1(c)):

FGaussian(x, y) =
1

2πσe
e−

x 2 + y 2

2 σ 2 ∗ I (1)
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Fig. 2. Procedure for the development of predictive models and selection of optimal features subset using Genetic algorithm-based wrapper.

where FGaussian is the filtered image, ∗ is the convolution op-
erator, I is the image, whereas x and y are pixels coordinates in
the local Gaussian filter space. By varying the σ parameter in
the range ∼0:2:16, we obtained eight new filtered images. From
each of them we extracted 17 histogram-based features listed in
Fig. 1(i) – which represent the feature vector f1−136 in Fig. 1(k).

2) Image Gradients and Sobel Operator: Each image was
convolved with two gradient operators with the 6 × 6 kernel
(Fig. 1(d)); one detecting horizontal gradients (f137−153) and
the other detecting vertical gradients (f154−170). Additionally,
we processed each image using the Sobel operator (Fig. 1(e))
with the 3 × 3 kernel (f171−187 in Fig. 1(k)).

3) Multi-Resolution Gabor Representation: The Gabor filter
represents a two-dimensional sinusoidal wave (with predefined
orientation and wavelength), whose amplitude is multiplied with
the Gaussian function [19]:

FGabor(x, y, λ, θ, ψ, σ, γ) = exp
(
−x

′2 + y2y′2

2σ2

)

×
(
i

(
2π
x′

λ
+ ψ

))
(2)

where λ is the length of the wave, θ is the wave orientation
(so that x′ = x cos θ + y sin θ and y′ = −x sin θ + ycosθ), ψ
is the phase shift, σ is standard deviation of the Gaussian
function and γ is the factor that control elasticity of the fil-
ter. We created a bank of 16 Gabor filters (Fig. 1(f)) gen-
erated by varying the orientation {0, π/4, π/2, 3π/4} and
frequency {0.12, 0.16, 0.24, 0.32} while Gaussian stan-

dard deviation had values σx = {1, 2, 2, 1} and σy =
{1, 2, 4, 2}. The extracted set of features is marked as f188−459
in Fig. 1(k).

4) Local Binary Pattern (LBP): The LBP features were com-
puted following the steps in the literature [20]. Briefly, for each
pixel LBP compares its value to N pixels along a surrounding
circle with a diameter R. If the centre pixel’s value is greater
than the circle neighbour’s value, LPB writes 0, otherwise it
writes 1. This gives an N-digit binary number, which is finally
converted to decimal for convenience, as sketched in Fig. 1(g).
In the present study, we generated the feature set f460−731 in
Fig. 1(k) by varying N = 8:8:32 and R = 4:4:16.

5) Gray-Level Co-Occurrence Matrix (GLCM): The GLCM
is a statistical method used for characterization of a texture.
GLCM calculates how often pairs of pixels with specific values
and in a specified spatial relationships occur in an image. It cre-
ates a GLCM matrix (Fig. 1(h)), and then extracts 22 statistical
features from the matrix (Fig. 1(j)) [21]. In the present study,
we set the number of levels to 10 and offsets to [0 5; −5 5; −5
0; −5 −5; 0 1; −1 1; −1 0; −1−1], resulting in the feature set
f732−907 in Fig. 1(k).

B. Data Stratification

SGUS images were stratified on the training-learning and in-
dependent test sets, to more rigorously assess the generalization
ability of the proposed procedure. Both data sets were computed
only once and saved, so that they could be loaded on-demand
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during the development and evaluation of the considered pre-
dictive models.

1) Development of Balanced Independent Test Set: Since
we deal with the development of multiclass predictor using the
imbalanced cohort, the size of the independent test-set was de-
termined with the size of the most under-sampled class. In this
way, we ensured that the sufficient amount of balanced and real-
word samples of each class are available during both learning
stage and subsequent independent testing. We created the bal-
anced test-set by randomly sampling 25 images (approximately
30% of the least presented class – grade 1) from each grading
category (Fig. 2(a)). The remaining data was further used as the
training-set.

2) Development of Balanced K-Folds for the Cross-
Validation: The training was performed using the k-fold cross-
validation. Accordingly, the training set was divided into k =
6 folds, ensuring that each fold consisted of the same number
of samples with equal distribution of classes (Fig. 2(b)). Since
the training set was unbalanced, we applied the ADASYN algo-
rithm that sharpens boundaries between classes by generating
synthetic samples in minority classes (Fig. 2(c)) [22]. There-
fore, the ADASYN improves learning by: 1) reducing the bias
introduced by the class imbalance, and 2) adaptively shifting the
classification decision boundary toward the difficult-challenging
examples [11].

C. Selection of Optimal Features Subset

Since each feature extractor depends on several (hyper) pa-
rameters, there is a risk of omitting to use relevant (combination
of) features if feature extractors’ parameters are not set correctly.
This problem was solved by varying the extractors’ parameters
(Section III-A) and using a robust supervised wrapper feature
selector to subsequently find an optimal feature subset for a
particular predictive model. The workflow of the proposed pro-
cedure is given in Fig. 2(d), whereas its key steps are explained
in the following paragraphs.

1) Genetic Algorithm-Based Wrapper: Genetic algorithm
(GA) is the iterative method for solving optimization problems
[23]. The process starts from an initial guess of parameters
(called population) subjected for the optimization. At each iter-
ation (called generation), the GA selects some portion of best
individuals from the current population and uses them as parents
to produce the candidates (called children) for the next genera-
tion (crossover and mutation). Over successive generations, this
process leads to the evolution of populations of individuals that
are better adapted to their environment than the individuals that
they originated from (similar to natural adaptation).

In the present study, we employed the GA to select optimal
features subset by considering the feature selection as the in-
teger optimization problem within the bounds 0 and 1. In each
call of the GA objective function, the predictive model was
cross-validated using the previously created k-folds. Parame-
ters of the objective function represented features selector (i.e.,
F2 chromosome in Fig. 2(d)), so that the parameters with value 1
indicated features that should be selected while parameters with
value 0 indicated features to be neglected during the training.

The value of the GA objective-function was the kappa-statistics
for classification and the Pearson’s correlation for the regres-
sion predictive models. In this study, population size was set to
600, number of generations was set to 500, while the rest of GA
hyper parameters had default values defined within the Matlab
gaoptimset function (see the Matlab online documentation).

2) Considered Predictive Models: The pSS scoring could be
considered as both classification (the score is the ordinal value:
0, 1, 2 or 3) and regression (the score is any real number on
the interval 0–3) problem. In order to find which one is the
most efficient approach for the pSS scoring, we evaluated 7
classifiers and 5 regressors [24]: Decision Table (DT), J48 tree,
K-nearest neighbors (KNN), Linear Regression (LinR), Logistic
regression (LogR), Multilayer perceptron (MLP), Naive Bayes
NET (NBNET ), Naive Bayes (NB) and Random forest (RF).
The parameter settings for each of the predictive models were
set iteratively, while the MLP was configured following the
Evolutionary assembling approach [25].

IV. RESULTS

The implementation of the proposed procedure was per-
formed using the Matlab R2010 (MathWorks, Natick, MA) and
Java wrapper for the Weka v. 3.8 library (University of Waikato)
[13]. The computational time needed to find optimal features and
develop predictive models varied among algorithms. In worst
case scenarios, it took up to several hours on the Dell Pow-
erEdge server (204 processors, 800 GB RAM, 4.5 TB SSD).
After the learning process had been completed, execution of the
developed algorithms for scoring newly supplied SGUS images
was done almost in real-time.

Performances of the assessed algorithms are given in Ta-
ble II. Calculated efficiency indicators were: Pearson’s corre-
lation (R2), Mean absolute error (MAE), Root mean squared
error (RMSE) - for regression-based algorithms; and: Accuracy
(ACC, %), Area under the receiver operating characteristic curve
(AUC), kappa-statistics (κ), MAE and RMSE – calculated for
classification-based algorithms.

After the identification of the top ranked algorithms, we fur-
ther analyzed their sensitivity on errors during the SG segmen-
tation (the only user dependent step). For each image in the test
set, we automatically created six intra-observers’ variability sce-
narios by: scaling up the segmented contours 20%, scaling down
segmented contours 20%, as well as translating segmented con-
tours in four directions for [20 20], [−20 20], [20−20] and [−20
−20] pixels. The obtained results of the sensitivity analysis are
given in Table III.

Histogram of the most frequently used features used for the
development of considered predictive models is shown in Fig. 3,
while sample results obtained by the top-ranked predictive mod-
els are shown in Fig. 4.

A. Configuration of the Top-Performing MLP Classifier

The development of the MLP may be intuitively described as
scheduling of its hyper parameters (type of activation functions
in layers, learning rate, learning momentum, number of neu-
rons per layer, training algorithm, number of learning epochs)
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TABLE II
PERFORMANCES OF THE CONSIDERED PREDICTIVE MODELS OBTAINED DURING THE CROSS-VALIDATION AND EVALUATION ON THE INDEPENDENT TEST SET

R2-Pearson’s correlation, MAE-Mean absolute error, RMSE-Root mean squared error, ACC-Accuracy (%), κ -Kappa statistics.
Values of the performances’ indicators are given as: train / test, AUC–Area under the receiver operating characteristic curve.

TABLE III
SENSITIVITY ANALYSIS OF THE TOP RANKING PREDICTIVE MODELS ON ERRORS DURING THE SG SEGMENTATION. WE CONSIDERED THREE SCENARIOS:

1-OVERESTIMATED SG (SCALE UP 20%); 2-UNDERESTIMATED SG (SCALE DOWN 20%); AND 3- SEGMENTED SG CONTOUR IS TRANSLATED FOR [20 20],
[−20 20], [20 −20] AND [−20 −20] PIXELS

MAE-Mean absolute error, RMSE-Root mean squared error, ACC-Accuracy (%), κ-Kappa statistics.

Fig. 3. Histogram of features selected for the development of 12 con-
sidered predictive models (5 regressors and 7 classifiers).

with the aim to maximize the classification performances. In
order to set these parameters automatically and correctly, we
employed the recently proposed Evolutionary assembling ap-
proach [25]. The obtained MLP configuration assumed: 41 neu-
rons in the hidden layer, activation functions in both layers
were tansig (hyperbolic tangent sigmoid), training algorithm
was set to the trainscg (scaled conjugate gradient backpropaga-
tion), learning momentum was set to 0.83 while the maximum
number of epochs for training was set to 921. The GA-based
wrapper selected the following list of features as optimal subset

for the development of MLP: f29 , f101 , f180 , f249 , f256 , f257 , f278 ,
f380 , f474 , f480 , f535 , f628 , f641 , f680 , f722 , f755 , f804 , f816 , f830 , f841
and f895 (histogram of features selected for the development of
12 considered predictive models are shown in Fig. 3). Robust-
ness of the proposed procedure comes from the fact that hyper
parameters of both feature extractors and MLP classifier are set
automatically. Thus, we emphasize that it could be applied for
solving a wide range of problems in computer aided diagnosis.

V. DISCUSSION

A. Performances of Top-Ranked Algorithms

Depending on the type of 12 considered algorithms, number
of features selected by the GA wrapper varied from 23 up to 187.
Histogram in Fig. 3 indicates that there were no key radiomics
features. Instead, the challenge was to find an optimal feature
subset that maximizes performance of a particular predictor.
Each of the developed predictive models was evaluated twice,
with the cross-validation and on the independent test-set, in or-
der to more rigorously assess the generalization performances.
Results from Table II indicate that RF, KNN and MLP were
top-ranked algorithms in both classification and regression cat-
egories. In the following sections, classification and regression
approaches for pSS scoring will be discussed separately in order
to highlight their benefits.
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Fig. 4. Samples of SGUS images and scores (probabilities) obtained by top-ranked classifiers (MLPC , RFC ) and regressors (ANNR , RFR ).

1) Benefits From Using Classification-Based Algorithms:
The obtained results show that classification algorithms
produce a lower mean absolute error and root mean squared
error, which is important during the definite pSS classification
(when clinicians consider scorings of four SGUS images ac-
quired from a single patient). In such situations, procedures
that are able to accurately grade 3 out of 4 images (over 75%
accuracy) represent a considerable contribution to the current
practice [2]. In our study, RF, KNN and MLP reached above
66% accuracy (guarantee that at least 2 of 4 images will be
graded correctly). However, only the MLP classifier surpassed
the threshold of 75% accuracy, which we recommend as the
most reliable for the pSS diagnosis using the SGUS scoring
system developed by De Vita et al. for pSS (14). In terms of the
kappa-statistics, which is commonly used in pSS related stud-
ies, the MLP showed substantial agreement (κ = 0.7) with the
ground truth defined via the expert consensus.

2) Benefits From Using Regression-Based Algorithms: One
of the most challenging issues related to the screening of pSS
from SGUS is the follow-up of patients, when clinicians have to
estimate the disease progress by inspecting two or more SGUS
images. Although using scores in the interval 0–3 is more ap-
propriate for the follow-up (compared to the ordinal scale), it
is difficult for clinicians to objectively perform such accurate
estimation. In such situation, regression algorithms may appear

as useful tools for assisting clinicians. In the present study, the
RF and MLP regressors performed the best in terms of both
Pearson’s correlation (R2 = 0.83) and RMSE (Table II) with
respect to the ground truth defined via the expert consensus.

B. Sensitivity to Errors in SGUS Segmentation

Considering RF and MLP as top ranked algorithms, we first
used the Stuart-Maxwell’s test to prove that predictions of two
multi-class classifier are statistically significant (χ2 = 9.6 and p
= 0.022 values for the significance level of α = 0.05). Further-
more, we analyzed RF and MLP classifiers sensitivity to errors
that may occur during the SG segmentation (the only user de-
pendent step). The obtained results in Table III showed that the
proposed predictive models are robust on the SG underestima-
tion (case 2). However, case 1 and case 3 types of inaccurate
SG segmentation decreased accuracy of predictive models for
4-8%. Although larger segmentation errors are uncommon for
the trained clinicians, the recommendation is to prefer underes-
timating SG when a user is presented with noisy SGUS images.
In summary, we recommend the MLP as the most reliable pre-
dictive model for the assessment of De Vita scores from SGUS
images.
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C. Contribution to the State of the Art

1) Computerized Analysis of SGUS and Assessment of pSS:
After literature review, we report that the computerized medical
image analysis of SG and pSS remain underestimated problems.
Instead, the most of related work is focused on analyzing pSS
biopsy images or other diseases present in SGs. Chernomordik
et al. proposed a fluorescence scanning imaging system that
performs a noninvasive optical biopsy of the Sjögren syndrome
(based on the 2D CCD imaging of the lower lip), with the end-
goal to replace the traditionally used histological biopsy [26].
Regarding the SGUS-based studies, Chikui et al. suggested us-
ing the fractal analyses to characterize SG tumors [27]. The same
author afterwards reported that average size of the particles, area
ratio of the particles within the region and Hurst-ori were use-
ful predictors for detecting abnormal sialographic stages [28].
Siebers et al. performed multi-feature tissue characterization for
differentiating malignant and benign parotid gland lesions using
maximum likelihood supervised classifier [29]. Murakami et al.
applied 2D wavelet analysis to SGUS images for the diagnosis
of SS [30]. A couple of studies investigated the possibility of
using the elastography techniques for diagnosing pSS in SGUS.
Dejaco et al. used real-time sonoelastography of SGs for the di-
agnosis and assessment of glandular damage in pSS [31]. Zhang
et al. assessed SG stiffness in pSS via acoustic radiation force
impulse imaging [32].

Therefore, we found that currently there is a lack of methods
for automated analysis and scoring of pSS in SGUS. This may
be justified with a few facts: 1) studies that introduced scoring
systems were mono-disciplinary (relied mostly on clinicians’
experience in image analysis) [10]–[15]; and 2) the nature (rar-
ity) of pSS makes it difficult for a single institution to collect
a larger cohort appropriate for the training of robust AI algo-
rithms. To the best of our knowledge and insight into the topic,
the present study is the first one that proposes the procedure for
computer-aided diagnosis and scoring of pSS from SGUS.

2) Performances of AI With Respect to Trained Clinicians:
By comparing the average performances of clinicians (average
intra-observer agreement was κ = 0.71 and average agreement
with ground truth was κ = 0.67) with the performances ob-
tained with the proposed classifier, it may be found that the
MLP classifier over-performed (κ = 0.7) clinicians by the con-
siderable margin while its reliability is on the level of humans’
intra-observer variability. Therefore, we confirm the hypothe-
sis that the proposed AI-based procedure represents a potential
improvement of healthcare standards present in most clinics
worldwide [33]. Also, it is worth emphasizing that it still cannot
compete with the most-skilled clinicians who are the leading
scientists in the field (κmax = 0.83 and intra-observer κmax =
0.88). Regarding the regression-based assessment, the MLP (R2

= 0.83) over-performed clinicians (R2 = 0.69) by a large mar-
gin and it is on the level of leading experts (R2

max = 0.837).
In addition, while the score by De Vita was proposed as ordinal
values, our findings may be a starting point towards developing
a continuous scale that is more appropriate for the follow-up
assessment of pSS and for the detection of changes.

3) Reliability of SGUS Scoring Systems: Incorporation of
SGUS scoring systems into standardized diagnosing guides has
been prolonged due to their dependency on experts. As a solution
to this problem, the score by De Vita et al. was proposed as an
easy and practical measure [14]. Our findings support this claim
since the average intra observer reliability was quite good κ =
0.71, while the most experienced clinicians reached excellent
results in terms of both intra κmax = 0.88 and inter reliability
κmax = 0.83. Therefore, we report that the obstacle for wide
acceptance of SGUS in pSS screening may be related to the
lack of highly skilled sonographers rather than to the need for
more suitable scoring systems. The present study confirmed this
hypothesis and showed that the problem of clinicians intra/inter
observer variability could be solved by employing AI-based
algorithms. Particularly, AI algorithms could be trained from
data annotated by highly skilled experts and afterwards they
could be used to assist and ease the training of less experienced
clinicians.

D. Future Work on This Topic

Further development and improvements of dedicated com-
puterized software tools for the pSS assessment from SGUS
may significantly advance the way of treating pSS by reducing
the invasiveness, screening time and dependency on experts.
We highlight the strong potential of applying such technology
for assisting and training of novice clinicians, whose perfecting
could improve and equalize the healthcare quality worldwide
[33]. Although, at the current stage, we have achieved perfor-
mance on the edge with trained clinicians [11], we refer to this
study as the first milestone of the wider HarmonicSS initiative.
Considering the size of the cohort at the moment, we have as-
sessed the radiomics-based algorithms to prove our hypothesis.
In the future work, we aim to automate both SG segmentation
and pSS scoring by employing other AI methods that benefit
from the ongoing cohort growth, like Deep learning methods
[34].

VI. CONCLUSION

Although humans are efficient in high-level cognitive tasks,
our limitation in performing lower-level vision tasks such as
calculation of textures’ statistics or differentiating shades of
colors are well studied and depend on many factors (i.e., age-
ing, genetics, fatigue, environment, diseases and so on) [35].
As an alternative to using descriptive and linguistic nominal at-
tributes to characterize pSS in SGUS images, the present study
aimed to assess various radimomics-based AI algorithms for
pSS scoring from SGUS using the score proposed by De Vita
in pSS [14]. We found that the MLP classifier (κ = 0.7) over-
performed average score achieved by the clinicians (κ = 0.67)
by the considerable margin, while its reliability is on the level
of humans’ intra-observer variability (κ= 0.71). We emphasize
that the proposed procedures still cannot compete with the lead-
ing scientists in the field (κmax = 0.83 and intra-observer κmax
= 0.88). With further increase in the HarmonicSS cohort and
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improvements, validation and democratization of the AI able to
compete leading clinicians in the pSS scoring, SGUS could be
established as a reliable assessment procedure supplementing
or replacing currently used invasive diagnostic tests.
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