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Abstract. We study the model of close-packed dimers on planar lattices belonging

to the family of modified rectangular (MR) fractals, whose members are enumerated

by an integer p ≥ 2, as well as on the non-planar 4-simplex fractal lattice. By

applying an exact recurrence enumeration method, we determine the asymptotic forms

for numbers of dimer coverings, and numerically calculate entropies per dimer in the

thermodynamic limit, for a sequence of MR lattices with 2 ≤ p ≤ 8 and for 4-simplex

fractal. We find that the entropy per dimer on MR fractals is increasing function of

the scaling parameter p, and for every considered p it is smaller than the entropy per

dimer of the same model on 4-simplex lattice. Obtained results are discussed and

compared with the results obtained previously on some translationally invariant and

fractal lattices.
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1. Introduction

A close-packed dimer model is a classical example of a lattice statistical mechanical

model that can be solved exactly on regular planar lattices. It has emerged as a simplified

version of the so called monomer-dimer model, that was introduced in 1937 by Fowler

and Rushbroke [1] in their study of the liquid mixtures. Exact solution of the close-

packed dimer model on the square lattice was given in the 60-ies by Kasteleyn [2, 3],

and independently by Temperly and Fisher [4, 5] and Fisher [6]. More recent solution

on arbitrary planar bipartite graphs has been given by Kenyon et al [7]. Although

introduced as a simple model for adsorption of diatomic molecules on crystal surfaces,

connections with other models in physics and chemistry have been established since

then. It has been shown that the close-packed dimer model is equivalent to the two

dimensional Ising model [8], and correspondence with many quantum theoretical field

theory models has been recognized [9–13]. In graph theory the model is also referred

to as perfect matchings and is closely related with other combinatorial objects such as

domino tillings [14] and spaning trees [15, 16].

Besides the square lattice, the close-packed dimer model has also been studied on

other translationally invariant lattices [17–19], on some graphs without translational

symmetry, such as self-similar graphs [20, 21], and particularly on the Sierpinski gasket

lattice and its generalizations [22].

In this paper we analyze close-packed dimer model on the subset of planar fractal

lattices that belong to the family of the modified rectangular (MR) lattice introduced

by Dhar [23]. We also consider the model on 4-simplex lattice which is a fractal

lattice embedded in three dimensional space and whose graph is consequently non-

planar. Fractal lattices are constructed iteratively, which makes them suitable for exact

recursive treatment if the ramification number is low. Recursive enumerative method on

these lattices can provide exact solutions for the close-packed dimer model, in addition

to solutions obtained on translationally invariant planar lattices, which proved to be

analytically tractable in that case. However, there are no exact solutions of the close-

packed dimer model on three dimensional translationally invariant lattices, and result

obtained on 4-simplex fractal lattice in this paper, together with the results on other

fractal lattices embedded in three dimensional space [22, 24], can give valuable insights

into the problem essence.

The paper is organized as follows. In section 2 we shortly describe the closed-

packed dimer model and fractal lattices relevant for this paper. In section 3 we develop

recursive method for the enumeration of all dimer configurations on MR family for

scaling parameter 2 ≤ p ≤ 8 and analyze the model to obtain the entropy. In the same

section, we also apply the method on 4-simplex lattice. Discussion of the results and

comparison with other lattices are given in section 4.
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Figure 1. (a) Generator of order r = 5 for MR lattice with p = 2. Red dashed

rectangles highlight generators of order r = 2, r = 3, and r = 4 obtained in the

subsequent stages of construction. (b) Generator of order r = 3 for p = 3 MR fractal,

with smaller sub-generator (of order r = 2) highlighted by red dashed rectangle. In

both cases generator of order r = 1 (initiator) is a unit square.

2. The model and lattices

We assume that dimer is a diatomic molecule, i.e. two monomer units bonded chemically.

On a lattice it covers two adjacent lattice points. In close-packed dimer model each

lattice site is occupied exactly once by a monomer, and each monomer is connected

by a lattice bond with an adjacent monomer into a dimer. Neglecting any other

interactions besides hard-core repulsion, partition function of this model is simply the

total number of dimer configurations, whose logarithm determines the entropy. Lattices

under consideration are MR family of fractals and 4-simplex lattice. Fractals from MR

family are labeled with the scaling parameter p (an integer, 2 ≤ p ≤ ∞). In iterative

constructive procedure, structure obtained in the construction step r is called r-th order

generator and denoted by Gr. For each particular p, at the first step of construction

(r = 1) one has a graph consisting of four points forming a unit square. Then, p unit

squares are joined into the rectangle to obtain the generator of the second order. In the

next step, p rectangles are joined into the square, and the process should be repeated

infinitely many times to obtain fractal lattice. In figure 1(a) generator of order r = 5 for

p = 2 MR lattice is shown, while in figure 1(b) generator of order r = 3 for p = 3 member

of MR family is shown. Generator of order r for each fractal contains Nr = 4p r−1 lattice

sites (it is also the number of monomers - twice the number of dimers, because of close-

packing) and Nbr = 3

2
Nr − 2 = 6

p
p r − 2 lattice bonds (edges). Fractal dimension is

df = ln p2

ln p
= 2 for each fractal from the family.

Initiator of 4-simplex lattice graph is a complete graph of four points. To obtain

second order generator, four initiators are joined into two times larger structure, as

shown in figure 2, and the process should be repeated ad infinitum to obtain graph of
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r=1
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Figure 2. First two steps of the iterative construction of 4-simplex lattice. Fractal

lattice is obtained in the limit r → ∞.

4-simplex lattice. The number of lattice points in the r-th order generator is Nr = 4r,

whereas the number of lattice bonds is Nbr =
4

2
Nr − 2 = 2 · 4r − 2. Fractal dimension of

the lattice is df = ln 4

ln 2
= 2.

It should be emphasized that for all considered lattices the number of lattice points

in generators of any order is even, which is a necessary condition for a lattice to have

close-packed dimer covering.

3. Recursive enumerative method for dimer coverings on fractal lattices

In this section we will develop the method for recursive enumeration of dimer

configurations on aforementioned fractal lattices. Firstly, we establish the exact set

of recurrent equations on MR lattices with 2 ≤ p ≤ 8 and analyze equations in order to

determine the asymptotic form for the numbers of dimer coverings. Also, we numerically

find the corresponding entropies per dimer in the thermodynamic limit. Although for

some lattice models it was possible to find exact set of recurrence equations on the

whole MR family [25], in this case we were not able to do so for the reason that would

be explained in the appendix A. Secondly, we apply the same method on 4-simplex

lattice and determine the entropy.

3.1. Dimer coverings on MR fractals

One close-packed dimer configuration on the 5-th order generator of p = 2 MR lattice

is shown in figure 3. In order to develop recurrence equation for the number of dimer

coverings on MR lattice, we focus on the corner monomers of smaller generators, that is

G4, G3, G2, and G1, as sub-generators of G5 depicted in figure 3. One can notice that

the corner monomers of generators of any order form dimers either by the monomers

on the same generator or the neighboring ones. We designate the corner monomers as

black if their partner is on the same generator, and white if it is on the neighboring

one. All generators have four corner monomers and, due to the parity, the only possible

combinations are to have all four black, two black and two white, and all four white.

Configurations with two black and two white along the diagonals are not possible on

MR lattices of any p. According to the pairing of the corner monomers, for MR lattices
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Figure 3. One close-packed dimer configuration on generator G5 of p = 2 MR lattice.

Dimer configurations on some sub-generators (rectangles or squares) are enclosed into

blue dashed rectangles (squares), outlined on the sides and labeled as f , g, h or k,

depending on the type of the configuration.

of arbitrary p, we introduce four types of configurations on generators of any order r,

namely f , g, h and k with the following meaning:

• f - denotes each dimer configuration in which all four corner monomers are black.

They form dimers with the ’internal’ monomers, i.e. monomers on the same

generator,

• g - denotes each dimer configuration in which two corner monomers are black and

belong to the different sub-generators of order (r− 1). These two black corner

monomers form dimers with the monomers on the same Gr, while the other two

white corner monomers form dimers with the monomers on the two neighboring

Gr,

• h - denotes each dimer configuration in which two corner monomers are black and

belong to the same sub-generator of order (r−1). As in type g, these two black

corner monomers form dimers with the monomers on the same Gr, while the other

two white corner monomers form dimers with the monomers on the two neighboring

Gr,

• k - denotes each dimer configuration in which all four corner monomers are white.

They form dimers with the ’external’ monomers, i.e. monomers on the neighboring

generators.
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Figure 4. All types of dimer configurations on arbitrary generator Gr+1 of p = 2 MR

fractal, denoted as f , g, h and k, and their composing configurations on generators

Gr, from which recurrence equations (3.1) stem.

In figure 3, all four types of configurations are enframed and schematically represented

on the sides. In this schematic representation only corner monomers are shown with

the internal structure of generators omitted, except that the two consecutive sub-

generators are indicated by the dashed lines in order to easily distinguish between g

and h configurations.

The numbers of configurations of each type on the r-th order generator are

designated as fr, gr, hr and kr. The total number of dimer configurations on Gr is

given by fr, and can be determined through the system of recurrence equations that

involve all four configurations. The closed system of the recurrence equations for p = 2

is given as

fr+1 = f 2

r + g2r ,

gr+1 = h2

r ,

hr+1 = frgr + grkr ,

kr+1 = g2r + k2
r , (3.1)

and can be inferred on the basis of figure 4, where we illustrate how each configuration

on the (r + 1)-th order generator can be composed from the configurations on the two

constituent r-th order generators. Similarly, with the help of figure 5, one can formulate

recurrence equations for p = 3 as

fr+1 = f 3

r + 2frg
2

r + g2rkr ,

gr+1 = h3

r ,

hr+1 = f 2

r gr + frgrkr + g3r + grk
2

r ,

kr+1 = frg
2

r + 2g2rkr + k3

r . (3.2)

Recurrence equations on fractals with 4 ≤ p ≤ 8 are given in appendix A. The initial

conditions of these equations are the numbers of configurations on the unit square, and,

for each p they are given by: f1 = 2 (both two possible), g1 = 1 (only one of the
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Figure 5. Configurations f , g, h, and k on generator Gr+1 of p = 3 member of MR

fractals and their composing parts on generators Gr.

Table 1. The numbers of closed-packed dimers on the first five generators for MR

fractals labeled by p = 2 and p = 3.

r = 1 r = 2 r = 3 r = 4 r = 5

p = 2 2 5 26 757 575450

p = 3 2 13 2228 12266667328 1845787045627790291334622871552

two possible), h1 = 1 (only one of the two possible) and k1 = 1 (the only possible).

By computer iteration of recursion relations (3.1), and similarly (3.2), starting with

the initial conditions, it is possible to obtain exact numbers of dimer configurations

on generators of arbitrary order. These numbers grow very fast with the order r of

generator, and for illustration, in table 1 we give the numbers of close-packed dimer

configurations on generators of order from r = 1 to r = 5 for MR fractals with p = 2 and

p = 3. Since the systems of difference equations given by (3.1) and (3.2) are not solvable

exactly, it is not possible to find exact expressions for fr as functions of r. Therefore, we

analyze relations numerically and find asymptotic solutions. To make numerical analysis

more tractable, we introduce new, rescaled variables defined as xr = gr/fr, yr = hr/fr
and zr = kr/fr, whose recurrence equations can be obtained from their definitions and

the equations (3.1) and (3.2). New equations are

fr+1 = f 2

r

(

1 + x2

r

)

,

xr+1 =
y2r

1 + x2
r

,
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Table 2. Entropies per dimer sd of close-packed dimer model on MR fractals with

2 ≤ p ≤ 8. The last digits are rounded off.

p 2 3 4 5

sd 0.414750739 0.430188671 0.441389262 0.449006803

p 6 7 8 -

sd 0.454290896 0.458114819 0.460997823 -

yr+1 =
xr (1 + zr)

1 + x2
r

,

yr+1 =
x2
r + z2r
1 + x2

r

, (3.3)

for p = 2, and

fr+1 = f 3

r

(

1 + 2x2

r + x2

rzr
)

,

xr+1 =
y3r

1 + 2x2
r + x2

rzr
,

yr+1 =
xr (1 + zr + x2

r + z2r )

1 + 2x2
r + x2

rzr
,

yr+1 =
x2
r + 2x2

rzr + z3r
1 + 2x2

r + x2
rzr

, (3.4)

for p = 3. Initial values of new variables are x1 = y1 = z1 =
1

2
.

For arbitrary p, the recurrence equation for the number fr of close-packed dimers

as a function of rescaled variables can be written as

fr+1 = f p
r

(

1 +
∑

i

aix
αi

i zβi

i

)

, (3.5)

where the coefficients ai and the exponents αi and βi depend on p. First equation in

systems (3.3) and (3.4) are indeed of the given form. Iterating sequences x, y and z, we

find that for all considered 2 ≤ p ≤ 8, elements xr, yr and zr tend to zero very quickly

with each iteration step r, implying that the equation (3.5) for r ≫ 1 has the form

fr+1 ∼ f p
r . (3.6)

This further implies that fr asymptotically grows exponentially with p r i.e. fr ∼

[const]p
r

. Since the number of monomers in Gr is given by the Nr = 4

p
p r it follows

that fr exponentially grows with the number of monomers

fr ∼ ωNr , (3.7)

for r ≫ 1. Growth constant ω is defined through the relation lnω = limNr→∞

ln fr
Nr

. To

determine growth constant, we take logarithm of the equation (3.5) and divide obtained

equation with Nr+1 = 4p r, after which we obtain

ln fr+1

Nr+1

=
ln fr
Nr

+
1

4p r
ln

(

1 +
∑

i

aix
αi

i zβi

i

)

. (3.8)
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Figure 6. Entropies per dimer of the close-packed dimer model on MR lattices with

2 ≤ p ≤ 8 as functions of 1/p.

This equation recursively defines sequence of numbers with the elements given by

sr = ln fr
Nr

, so that sm = limr→∞ sr = lnω holds. For each p, the sequence converges

very fast, so that for example for p = 3, after only nine iterations more than twenty

significant figures can be achieved, and for higher p convergence is even faster. By

numerical iteration, value of sm is determined for each 2 ≤ p ≤ 8. Limiting values sm
are actually the entropies per monomer in the thermodynamic limit, as can be seen from

the definition of the entropy through the number of dimer configurations S = kB ln fr
and equation (3.7). Setting kB = 1, it follows that limNr→∞ S/Nr = lnω = sm. The

number of dimers is just half of the number of monomers Nr, so that the entropy

per dimer sd is twice the entropy per monomer. In table 2 we present entropies per

dimer in the thermodynamic limit, calculated numerically from the numbers of dimer

configurations on MR fractals with 2 ≤ p ≤ 8. Entropies sd as functions of 1/p are also

presented graphically in figure 6.

3.2. Dimer coverings on 4-simplex lattice

Recursive enumeration of dimer configurations on 4-simplex lattice can be done in a

similar manner as on MR lattices. In figure 7 one close-packed dimer configuration on

the third order generator of 4-simplex lattice is presented. Again, corner monomers

can be all four black - corresponding to f configuration, two black and two white -

corresponding to g configuration and all four white - corresponding to h configuration.

All four corner vertices of 4-simplex lattice are permutationally equivalent, so it is
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f

g
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h

Figure 7. Close-packed dimer configuration on the generator G3 of 4-simplex lattice.

Possible types of configurations on sub-generators are enframed and schematically

shown on the sides.

irrelevant which two monomers are black (white). Four constitutive sub-generators of

G3 in figure 7 are enframed, with the configurations classified according to the type they

belong to, and schematically represented on the sides. Also, one configuration of type

h on G1 is enframed, and schematically represented on the side. Recurrence equations

for all three configurations, as illustrated in figure 8, are given as

fr+1 = f 4

r + 4frg
3

r + 3g4r ,

gr+1 = f 2

r g
2

r + 2frg
3

r + g2rh
2

r + 2g3rhr + 2g4r ,

hr+1 = h4
r + 4g3rhr + 3g4r , (3.9)

with the initial conditions f1 = 3 (all three possible), g1 = 1 (one of six possible)

and h1 = 1 (the only possible). Analysis of recurrence equations (3.9) proceeds in a

similar way as on MR lattices, and we find that the number of all close-packed dimer

configurations grows with the number of monomers as

fr ∼ ωNr , (3.10)

with the entropy per dimer sd = 2 lnω = 0.571832556.

4. Discussion and conclusions

We have studied the close-packed dimer model on two types of fractal lattices, namely,

lattices from MR family with the scaling parameter 2 ≤ p ≤ 8 embedded in two

dimensional space, and 4-simplex lattice embedded in three dimensional space. The

asymptotic forms for the number of dimer configurations on these lattices have been
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Figure 8. Configurations f , g and h on generator Gr+1 of 4-simplex lattice and

their composing parts on generators Gr, which determine corresponding terms in

equations (3.9). Multiplication by the factors 4 or 2 are due to the symmetrically

related configurations.

determined. It is found that, on all considered fractals, the asymptotic form for number

of dimer configurations is a pure exponential function of the number of monomers. In

addition, microcanonical entropies per dimer in the thermodynamic limit are determined

numerically. On MR lattices, entropy is an increasing function of fractal parameter p, as

can be seen in table 2. This deserves some insight into the geometry of the lattices. All

lattices from this family are constructed iteratively through succession of generators, and

all have the same fractal dimension. The ramification number of each lattice is two, and

for all latices coordination number of each vertex is three (vertex degree), except for the

corner vertices of the largest generator. But, the number of bonds and their distribution

are different, and lattices with higher value of p at each construction stage have larger

number of bonds (caused by the larger number of vertices), so the configurational space

is larger. In figure 6 entropies are shown as functions of inverse scaling parameter p,

and an obvious question arises: is this sequence convergent when p → ∞, and if so,

what is the limit? We expect that there is a finite limiting value, and suppose that it

is smaller than the value of entropy ssq = 0.583121808 obtained on the square lattice

in [2]. This conclusion is justified by the fact that all MR lattices resemble to the square

lattice since they can be obtained from it by deleting some bonds. Consequently, MR

lattices have smaller number of bonds than the square lattice of equal size.

On the other hand, entropy obtained on 4-simplex lattice is ssim = 0.571832556,

and compared with the values in table 2, we see that it is larger than any value on MR

fractals considered. Coordination number of 4-simplex lattice is four and thus greater

than for MR lattices, but for MR fractals with p ≥ 5 at r-th construction stage there

are more bonds than on 4-simplex lattice at the same stage. However, MR lattices

are highly anisotropic and their connectedness does not allow some configurations (in

subsection 3.1 configurations with two black and two white along the square (rectangle)
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diagonals were forbidden), resulting in smaller entropy. Value ssim obtained here, should

also be compared with the value of entropy of the same model studied on the Sierpinski

gasket (SG) embedded in three dimensional space [22], which is s3dSG = 0.857927798,

thus much larger than ssim. These two lattices both have tetrahedral structure, but

vertices of the neighboring tetrahedra are glued on 3d SG, so that the coordination

number of this lattice is six. Furthermore, entropy per dimer is larger on square lattice

than on 4-simplex lattice, although they both have the same coordination number.

To conclude, we can confirm that besides the coordination number, which is the

most relevant lattice parameter that determines the number of close-packed dimer

configurations, other lattice parameters and geometric constraints are important too.

In favor of latter is the finding that on translationally invariant lattices the boundary

effects play an important role. For example, on square lattice the entropy is the same

for both open and periodic boundary conditions [2, 6], whereas on hexagonal lattice it

strongly depends on the boundary [17, 26]. Extensions of the studies to account for

cylindrical boundary conditions have also been done [27,28]. Similar problem has been

encountered on other ’close-packed’ models, namely Hamiltonian walk problem, where

entropic exponent γ depended on the boundary conditions [29]. With respect to all

these unresolved questions, we can say that additional studies should be conducted in

order to specify all relevant parameters on fractal lattices as well as on translationally

invariant ones, taking into account all metric properties of lattices.

Finally, we would like to mention that the dimer model considered here could be

supplemented with the interaction weights and studied on fractal lattices. Interacting

dimer model is extensive and physically more interesting, but also more difficult to

approach.
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Appendix A.

In this appendix we give recurrence equations for the determination of the number

of dimer coverings on MR fractals with 4 ≤ p ≤ 8. We explicitly state the

recurrence equations only for the variables f and h, since the recurrence relation for

the configuration g is simply gr+1 = hp
r for each p, and for k it could be obtained from

the recurrence equation for f with the substitution k ↔ f on both sides of equation.

p = 4 :

fr+1 = f 4

r + 3f 2

r g
2

r + 2frg
2

rkr + g4r + g2rk
2

r ,

hr+1 = f 3
r gr + f 2

r grkr + 2frg
3
r + frgrk

2
r + 2g3rkr + grk

3
r . (A.1)
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p = 5 :

fr+1 = f 5
r + 4f 3

r g
2
r + 3f 2

r g
2
rkr + 3frg

4
r + 2frg

2
rk

2
r + 2g4rkr + g2rk

3
r ,

hr+1 = f 4

r gr + f 3

r grkr + 3f 2

r g
3

r + f 2

r grk
2

r + 4frg
3

rkr + g5r + frgrk
3

r + 3g3rk
2

r + grk
4

r . (A.2)

p = 6 :

fr+1 = f 6

r + 5f 4

r g
2

r + 4f 3

r g
2

rkr + 6f 2

r g
4

r + 3f 2

r g
2

rk
2

r + 6frg
4

rkr + g6r + 2frg
2

rk
3

r + 3g4rk
2

r

+ g2rk
4

r ,

hr+1 = f 5

r gr + f 4

r grkr + 4f 3

r g
3

r + f 3

r grk
2

r + 6f 2

r g
3

rkr + 3frg
5

r + f 2

r grk
3

r + 6frg
3

rk
2

r

+ 3g5rkr + frgrk
4
r + 4g3rk

3
r + grk

5
r . (A.3)

p = 7 :

fr+1 = f 7
r + 6f 5

r g
2
r + 5f 4

r g
2
rkr + 10f 3

r g
4
r + 4f 3

r g
2
rk

2
r + 12f 2

r g
4
rkr + 4frg

6
r + 3f 2

r g
2
rk

3
r

+ 9frg
4

rk
2

r + 3g6rkr + 2frg
2

rk
4

r + 4g4rk
3

r + g2rk
5

r ,

hr+1 = f 6

r gr + f 5

r grkr + 5f 4

r g
3

r + f 4

r grk
2

r + 8f 3

r g
3

rkr + 6f 2

r g
5

r + f 3

r grk
3

r + 9f 2

r g
3

rk
2

r

+ 9frg
5

rkr + f 2

r grk
4

r + 8frg
3

rk
3

r + g7r + 6g5rk
2

r + frgrk
5

r + 5g3rk
4

r + grk
6

r . (A.4)

p = 8 :

fr+1 = f 8

r + 7f 6

r g
2

r + 6f 5

r g
2

rkr + 15f 4

r g
4

r + 5f 4

r g
2

rk
2

r + 20f 3

r g
4

rkr + 10f 2

r g
6

r + 4f 3

r g
2

rk
3

r

+ 18f 2

r g
4

rk
2

r + 12frg
6

rkr + g8r + 3f 2

r g
2

rk
4

r + 12frg
4

rk
3

r + 6g6rk
2

r + 2frg
2

rk
5

r

+ 5g4rk
4

r + g2rk
6

r ,
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r . (A.5)

As one can see from equations (A.1)-(A.5) the number of terms and their coefficients

increase rapidly with p. Analyzing the model on MR lattices with arbitrary p, we could

formally write down recurrence equation for f in the following form

fr+1 = f p
r +

p−1
∑

i=1

ni
∑

j=0

cijf
αijgβijkγpij , (A.6)

where the upper limit of the second sum, the coefficients, and the exponents, all depend

on p. The first term is obvious, and represents the only one possible way to obtain f

configuration onGr+1 composed from f configurations on eachGr, and this configuration
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Figure A1. First few terms and their coefficients in recurrence equation (A.6) for

the total number of dimers fr on MR lattice of large, arbitrary p.

is shown in the first row of figure A1. The double sum in equation (A.6) is nontrivial.

The first sum represents terms that correspond to situations in which one, two, three

and so on ’empty’ rectangles, with all four corner monomers white, can be chosen out

of (p − 1) such rectangles, and, the second sum distinguishes whether these rectangles

are consecutive or not. There are (p− 1) ways to choose one ’empty’ rectangle, so that

coefficient c10 of that term in the sum is (p− 1), (second row in figure A1). Then, two

consecutive rectangles can be chosen in (p − 2) ways, which gives c20 = p − 2. Two

non-consecutive rectangles can be chosen in c21 = 1

2
(p − 2)(p − 3) ways (third row in

figure A1). Three rectangles can all be consecutive, one separated and two consecutive

and all three non-consecutive. Thus, the upper limit of the second sum ni is the number

of ways in which a positive integer can be represented as the sum, which in combinatorics

is known as partition. There is no simple formulae for the partition function of a positive

integer, but it is known that asymptotically it grows exponentially with the square root

of its argument. Therefore, the number of terms increases very fast, and even if we

succeeded to enumerate and sort the terms in recurrence equations, they would be too

cumbersome to analyze. At this point, we would like to notice that other methods might

be more efficient in handling the problem on the whole family of fractals, especially in

the large p limit.
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