

Article

Some Results on (s - q)-Graphic Contraction Mappings in b-Metric-Like Spaces

Manuel De la Sen ^{1,*}, Nebojša Nikolić ², Tatjana Došenović ³, Mirjana Pavlović ⁴ and Stojan Radenović ⁵

- ¹ Institute of Research and Development of Porocesses, University of the Basque, 48080 Bilbao, Spain
- Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia; nebojsa.nikolic@fon.bg.ac.rs
- ³ Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; tatjanad@tf.uns.ac.rs
- Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujeva, Serbia; mpavlovic@kg.ac.rs
- ⁵ Faculty of Mechanical Enginering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia; radens@beotel.rs or sradenovic@mas.bg.ac.rs
- * Correspondence: manuel.delasen@ehu.eus

Received: 15 November 2019; Accepted: 2 December 2019; Published: 4 December 2019

Abstract: In this paper we consider (s - q)-graphic contraction mapping in b-metric like spaces. By using our new approach for the proof that a Picard sequence is Cauchy in the context of b-metric-like space, our results generalize, improve and complement several approaches in the existing literature. Moreover, some examples are presented here to illustrate the usability of the obtained theoretical results.

Keywords: b-metric space; b-metric-like space; general contractive mappings; graphic contraction mappings

JEL Classification: 47H10; 54H25

1. Introduction and Preliminaries

First, we present some definitions and basic notions of partial-metric, metric-like, *b*-metric, partial *b*-metric and *b*-metric-like spaces as the generalizations of standard metric spaces. After that, we give a process diagram, where arrows stand for generalization relationships.

Definition 1. [1] Let X be a nonempty set. A mapping $p_{pm}: X \times X \to [0, +\infty)$ is said to be a p-metric if the following conditions hold for all $x, y, z \in X$:

```
 \begin{array}{ll} \left(p_{pm}1\right) & x = y \text{ if and only if } p_{pm}\left(x,x\right) = p_{pm}\left(x,y\right) = p_{pm}\left(y,y\right); \\ \left(p_{pm}2\right) & p_{pm}\left(x,x\right) \leq p_{pm}\left(x,y\right); \\ \left(p_{pm}3\right) & p_{pm}\left(x,y\right) = p_{pm}\left(y,x\right); \\ \left(p_{pm}4\right) & p_{pm}\left(x,y\right) \leq p_{pm}\left(x,z\right) + p_{pm}\left(z,y\right) - p_{pm}\left(z,z\right). \end{array}
```

Then, the pair (X, p_{vm}) is called a partial metric space.

Definition 2. [2] Let X be a nonempty set. A mapping $b_{ml}: X \times X \to [0, +\infty)$ is said to be metric-like if the following conditions hold for all $x, y, z \in X$:

$$(b_l 1)$$
 $b_{ml}(x,y) = 0$ implies $x = y$;
 $(b_l 2)$ $b_{ml}(x,y) = b_{ml}(y,x)$;

Mathematics **2019**, 7, 1190 2 of 10

 $(b_{l}3)$ $b_{ml}(x,z) \leq b_{ml}(x,y) + b_{ml}(y,z)$. In this case, the pair (X,b_{ml}) is called a metric-like space.

Definition 3. [3,4] Let X be a nonempty set and $s \ge 1$ a given real number. A mapping $b: X \times X \to [0, +\infty)$ is called a b-metric on the set X if the following conditions hold for all $x, y, z \in X$:

- (b1) b(x,y) = 0 if and only if x = y;
- (b2) b(x,y) = b(y,x);
- (b3) $b(x,z) \le s[b(x,y) + b(y,z)].$

In this case, the pair (X, b) *is called a b-metric space (with coefficient s* \geq 1).

Definition 4. [5,6] Let X be a nonempty set and $s \ge 1$. A mapping $b_{pb}: X \times X \to [0, +\infty)$ is called a partial b-metric on the set X if the following conditions hold for all $x, y, z \in X$:

Then, the pair (X, b_{pb}) is called a partial b-metric space.

Definition 5. [7] Let X be a nonempty set and $s \ge 1$. A mapping $b_{bl}: X \times X \to [0, +\infty)$ is called b-metric-like on the set X if the following conditions hold for all $x, y, z \in X$:

- $(b_{bl}1)$ $b_{bl}(x,y) = 0$ implies x = y;
- $(b_{bl}2)$ $b_{bl}(x,y) = b_{bl}(y,x);$
- $(b_{bl}3)$ $b_{bl}(x,z) \leq s [b_{bl}(x,y) + b_{bl}(y,z)].$

In this case, the pair (X, b_{bl}) *is called a b-metric-like space with coefficient* $s \ge 1$.

Now, we give the process diagram of the classes of generalized metric spaces that were introduced earlier:

For more details on other generalized metric spaces see [8–14].

The next proposition helps us to construct some more examples of *b*-metric (respectively partial *b*-metric, *b*-metric-like) spaces.

Proposition 1. Let (X,d) (resp. (X,p_{pm}) , (X,b_{ml})) be a metric (resp. partial metric, metric-like) space and $D(x,y) = (d(x,y))^k$ (resp. $P_{pm}(x,y) = (p_{pm}(x,y))^k$, $B_{ml}(x,y) = (b_{ml}(x,y))^k$), where k > 1 is a real number. Then D (resp. P_{pm} , B_{pm}) is b-metric (resp. partial b-metric, b-metric-like) with coefficient $s = 2^{k-1}$.

Proof. The proof follows from the fact that

$$u^k + v^k \le (u+v)^k \le (a+b)^k \le 2^{k-1} (a^k + b^k)$$
,

for all nonnegative real numbers a, b, u, v with $u + v \le a + b$. \square

It is clear that each metric-like space, i.e., each partial b-metric space, is a b-metric-like space, while the converse is not true. For more such examples and details see [1,2,5–7,15–27]. Moreover, for various metrics in the context of the complex domain see [28,29].

Mathematics 2019, 7, 1190 3 of 10

The definitions of convergent and Cauchy sequences are formally the same in partial metric, metric-like, partial b-metric and b-metric like spaces. Therefore, we give only the definition of convergence and Cauchyness of the sequences in b-metric-like space. Moreover, these two notions are formally the same in metric and b-metric spaces.

Definition 6. [7] Let $\{x_n\}$ be a sequence in a b-metric-like space (X, b_{bl}) with coefficient s.

- (i) The sequence $\{x_n\}$ is said to be convergent to x if $\lim_{n\to\infty} b_{bl}(x_n, x) = b_{bl}(x, x)$;
- (ii) The sequence $\{x_n\}$ is said to be b_{bl} -Cauchy in (X,b_{bl}) if $\lim_{n,m\to\infty}b_{bl}(x_n,x_m)$ exists and is finite;
- (iii) One says that a b-metric-like space (X, b_{bl}) is b_{bl} -complete if for every b_{bl} -Cauchy sequence $\{x_n\}$ in X there exists an $x \in X$, such that $\lim_{n,m\to\infty} b_{bl}(x_n,x_m) = b_{bl}(x,x) = \lim_{n\to\infty} b_{bl}(x_n,x)$.

Remark 1. In a b-metric-like space the limit of a sequence need not be unique and a convergent sequence need not be a b_{bl} -Cauchy sequence (see Example 7 in [18]). However, if the sequence $\{x_n\}$ is b_{bl} -Cauchy with $\lim_{n,m\to\infty} b_{bl}(x_n,x_m)=0$ in the b_{bl} -complete b-metric-like space (X,b_{bl}) with coefficient $s\geq 1$, then the limit of such a sequence is unique. Indeed, in such a case if $x_n\to x$ ($b_{bl}(x_n,x)\to b_{bl}(x,x)$) as $n\to\infty$ we get that $b_{bl}(x,x)=0$. Now, if $x_n\to x$ and $x_n\to y$ where $x\neq y$, we obtain that:

$$\frac{1}{s}b_{bl}(x,y) \le b_{bl}(x,x_n) + b_{bl}(x_n,y) \to b_{bl}(x,x) + b_{bl}(y,y) = 0 + 0 = 0.$$
(1)

From $(b_{bl}1)$ it follows that x = y, which is a contradiction. The same is true as well for partial metric, metric like and partial b-metric spaces.

The next definition and the corresponding proposition are important in the context of fixed point theory.

Definition 7. [30] The self-mappings $f, g: X \to X$ are weakly compatible if f(g(x)) = g(f(x)), whenever f(x) = g(x).

Proposition 2. [30] Let T and S be weakly compatible self-maps of a nonempty set X. If they have a unique point of coincidence w = f(u) = g(u), then w is the unique common fixed point of f and g.

In this paper we shall use the following result to prove that certain Picard sequences are Cauchy. The proof is completely identical with the corresponding in [31] (see also [25]).

Lemma 1. Let $\{x_n\}$ be a sequence in a b-metric-like space (X, b_{hl}) with coefficient $s \ge 1$ such that

$$b_{bl}\left(x_{n}, x_{n+1}\right) \le \lambda b_{bl}\left(x_{n-1}, x_{n}\right) \tag{2}$$

for some λ , $0 \le \lambda < \frac{1}{s}$, and each n = 1, 2,Then $\{x_n\}$ is a b_{bl} -Cauchy sequence in (X, b_{bl}) such that $\lim_{n,m\to\infty} b_{bl}(x_n, x_m) = 0$.

Remark 2. It is worth noting that the previous lemma holds in the context of b-metric-like spaces for each $\lambda \in [0,1)$. For more details see [6,32].

2. Main Results

In line with Jachymski [33], let (X, b_{bl}) be a b-metric-like space and \mathcal{D} denote the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., $E(G) \supseteq \mathcal{D}$. We also assume that G has

Mathematics **2019**, 7, 1190 4 of 10

no parallel edges, so we can identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph by assigning the distance between its vertices to each edge (see [33]).

By G^{-1} we denote the conversion of a graph G, i.e., the graph obtained from G by reversing the direction of edges. Thus, we have

$$E(G^{-1}) = \{(x,y) \in X \times X : (y,x) \in E(G)\}.$$
 (3)

The letter \widetilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \widetilde{G} as a directed graph for which the set of its edges is symmetric under the convention

$$E\left(\widetilde{G}\right) = E\left(G\right) \cup E\left(G^{-1}\right). \tag{4}$$

If x and y are vertices in a graph G, then a path in G from x to y of length N ($N \in \mathbb{N}$) is a sequence $\{x_i\}_{i=0}^N$ of N+1 vertices such that $x_0=x, x_N=y$ and $(x_{i-1},x_i)\in E(G)$ for i=1,...,N. A graph G is connected if there is a path between any two vertices. G is weakly connected if \widetilde{G} is connected.

Recently, some results have appeared providing sufficient conditions for a self mapping of X to be a Picard operator when (X,d) is endowed with a graph. The first result in this direction was given by Jachymski [33]. Moreover, see [34–36].

Definition 8. [33] We say that a mapping $f: X \to X$ is a Banach G-contraction or simply a G-contraction if f preserves edges of G, i.e.,

for all
$$x, y \in X : (x, y) \in E(G)$$
 implies $(f(x), f(y)) \in E(G)$ (5)

and f decreases the weights of edges of G as for all $x, y \in X$, there exists $\lambda \in (0,1)$, such that

$$(x,y) \in E(G)$$
 implies $d(f(x), f(y)) \le \lambda d(x,y)$. (6)

Definition 9. [37] A mapping $g: X \to X$ is called orbitally continuous, if given $x \in X$ and any sequence $\{k_n\}$ of positive integers,

$$g^{k_n}(x) \to y \text{ as } n \to \infty \text{ implies } g\left(g^{k_n}(x)\right) \to g(y) \text{ as } n \to \infty.$$
 (7)

Definition 10. [33] A mapping $g: X \to X$ is called G-continuous, if for any given $x \in X$ and any sequence $\{x_n\}_{n\in\mathbb{N}} \subset X$ with the properties that for all $n\in\mathbb{N}$ the pair $(x_n,x_{n+1})\in E(G)$ and that $x_n\to x$ as $n\to\infty$ it follows that $g(x_n)\to g(x)$.

Definition 11. [33] A mapping $g: X \to X$ is called orbitally G-continuous, if given $x, y \in X$ and any sequence $\{k_n\}$ of positive integers for all $n \in \mathbb{N}$,

$$g^{k_n}x \to y \text{ and } \left(g^{k_n}(x), g^{k_n+1}(x)\right) \in E(G) \text{ implies } g\left(g^{k_n}(x)\right) \to g(y) \text{ as } n \to \infty.$$
 (8)

In this section, we consider self-mappings $f,g:X\to X$ with $f(X)\subset g(X)$. Let $x_0\in X$ be an arbitrary point, then there exists $x_1\in X$ such that $z_0=f(x_0)=g(x_1)$. By repeating this step we can build a sequence $\{z_n\}$ such that $z_n=f(x_n)=g(x_{n+1})$ and the following property:

The property $G_{f,g(x_n)}$. If $\{g(x_n)\}_{n\in\mathbb{N}}$ is a sequence in X such that $(g(x_n),g(x_{n+1}))\in E(G)$ for all $n\geq 1$ and $g(x_n)\to x$, then there is a subsequence $\{g(x_{n_i})\}_{i\in\mathbb{N}}$ of $\{g(x_n)\}_{n\in\mathbb{N}}$ such that $(g(x_{n_i}),x)\in E(G)$ for all $i\geq 1$. Note that the property $G_{f,g(x_n)}$ depends only on the pair of mappings f and g, and does not depend on the sequence $\{x_n\}$. Here, we use notation G_{gf} in the following

Mathematics **2019**, 7, 1190 5 of 10

sense: $x \in X$ belongs to G_{gf} if and only if there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ in X such that $x_0 = x$, $f(x_{n-1}) = g(x_n)$ for $n \in \mathbb{N}$, and $(g(x_n), g(x_m)) \in E(G)$ for all $m, n \in \mathbb{N}$.

Now, we present the first result of this section.

Theorem 1. (Hardy-Rogers) Let $f, g: X \to X$ be self-mappings defined on a b-metric-like space (X, b_{bl}) (with coefficient $s \ge 1$) endowed with a graph G, and which satisfy

$$s^{q}b_{bl}(f(x), f(y)) \leq c_{1}b_{bl}(g(x), g(y)) + c_{2}b_{bl}(g(x), f(x)) + c_{3}b_{bl}(g(y), f(y)) + c_{4}b_{bl}(g(x), f(y)) + c_{5}b_{bl}(g(y), f(x)),$$

$$(9)$$

for all $x, y \in X$ with $(g(x), g(y)) \in E(G)$ where $q \ge 2, c_i \ge 0, i = 1, ..., 5$ and either

$$c_1 + c_2 + c_3 + 2c_4 + 2c_5 < \frac{1}{s} \tag{10}$$

or

$$c_1 + 2c_2 + 2c_3 + c_4 + c_5 < \frac{1}{s}. (11)$$

Suppose that $f(X) \subset g(X)$ *and at least one of* f(X), g(X) *is* b_{bl} -complete subspace of (X, b_{bl}) . Then:

- (i) If the pair (f,g) has property $G_{f,g}(x_n)$ and $G_{gf} \neq \emptyset$, then f and g have a point of coincidence in X.
- (ii) If x and y in X are points of coincidence of f and g such that $(x,y) \in E(G)$, then x = y. Hence, points of coincidence of f and g are unique in X. Moreover, if the pair (f,g) is weakly compatible, then f and g have a unique common fixed point in X.

Proof. (i) Assume that $G_{gf} \neq \emptyset$, there exists $x_0 \in G_{gf}$. Since $f(X) \subset g(X)$, there exists $x_1 \in X$ such that $f(x_0) = g(x_1)$, again we can find $x_2 \in X$ such that $f(x_1) = g(x_2)$. Repeating this step, we can build a sequence $z_n = f(x_n) = g(x_{n+1})$ such that $(z_n, z_m) \in E(G)$. If $z_k = z_{k+1}$ for some $k \in \mathbb{N}$, then $f(x_{k+1}) = g(x_{k+1})$ is a point of coincidence of f and g. Therefore, let $z_n \neq z_{n+1}$ for all $g \in \mathbb{N}$. By Condition (9), we can get that

$$b_{bl}(z_{n}, z_{n+1}) \leq s^{q}b_{bl}(z_{n}, z_{n+1}) = s^{q}b_{bl}(f(x_{n}), f(x_{n+1}))$$

$$\leq c_{1}b_{bl}(g(x_{n}), g(x_{n+1})) + c_{2}b_{bl}(g(x_{n}), f(x_{n})) + c_{3}b_{bl}(g(x_{n+1}), f(x_{n+1}))$$

$$+c_{4}b_{bl}(g(x_{n}), f(x_{n+1})) + c_{5}b_{bl}(g(x_{n+1}), f(x_{n})).$$

$$(12)$$

Since $z_n = f(x_n) = g(x_{n+1})$ then Condition (12) becomes

$$b_{bl}(z_{n}, z_{n+1}) \leq c_{1}b_{bl}(z_{n-1}, z_{n}) + c_{2}b_{bl}(z_{n-1}, z_{n}) + c_{3}b_{bl}(z_{n}, z_{n+1}) + c_{4}b_{bl}(z_{n-1}, z_{n+1}) + c_{5}b_{bl}(z_{n}, z_{n}) \leq c_{1}b_{bl}(z_{n-1}, z_{n}) + c_{2}b_{bl}(z_{n-1}, z_{n}) + c_{3}b_{bl}(z_{n}, z_{n+1}) + sc_{4}b_{bl}(z_{n-1}, z_{n}) + sc_{4}b_{bl}(z_{n}, z_{n+1}) + 2sc_{5}b_{bl}(z_{n-1}, z_{n}),$$

$$(13)$$

or equivalently:

$$b_{bl}\left(z_{n}, z_{n+1}\right) \le \lambda b_{bl}\left(z_{n-1}, z_{n}\right),\tag{14}$$

where $\lambda = \frac{c_1 + c_2 + sc_4 + 2sc_5}{1 - c_3 - sc_4}$. Since, $c_1 + c_2 + c_3 + sc_4 + 2sc_5 \le sc_1 + sc_2 + sc_3 + 2sc_4 + 2sc_5 < 1$, it follows that $\lambda < 1$. Therefore, by Remark 2 of Lemma 1, the sequence $z_n = f(x_n) = g(x_{n+1})$ is a b_{bl} -Cauchy sequence. The b_{bl} -completeness of f(X) leads to $u \in f(X) \subset g(X)$ such that $z_n \to u = g(v)$ for some $v \in X$. As $z_0 \in G_{gf}$, this implies that $(z_n, z_m) \in E(G)$ for n, m = 1, 2, ... and so $(z_n, z_{n+1}) \in E(G)$.

Mathematics 2019, 7, 1190 6 of 10

By property $G_{f,g(x_n)}$, there is a subsequence $\{z_{n_i}\}_{i\in\mathbb{N}}$ of $\{z_n\}_{n\in\mathbb{N}}$ such that $(z_{n_i},u)\in E(G)$. Applying $(b_{bl}3)$, we get

$$b_{bl}(f(v),g(v)) \leq sb_{bl}(f(v),f(x_{n_{i}})) + sb_{bl}(f(x_{n_{i}}),g(v))$$

$$\leq s^{q}b_{bl}(f(v),f(x_{n_{i}})) + sb_{bl}(f(x_{n_{i}}),g(v))$$

$$\leq c_{1}b_{bl}(g(v),g(x_{n_{i}})) + c_{2}b_{bl}(g(v),f(v)) + c_{3}b_{bl}(g(x_{n_{i}}),f(x_{n_{i}}))$$

$$\leq +c_{4}b_{bl}(g(v),f(x_{n_{i}})) + c_{5}b_{bl}(g(x_{n_{i}}),f(v)) + sb_{bl}(f(x_{n_{i}},g(v)))$$

$$= c_{1}b_{bl}(g(v),z_{n_{i}-1}) + c_{2}b_{bl}(g(v),f(v)) + c_{3}b_{bl}(z_{n_{i}-1},z_{n_{i}})$$

$$+c_{4}b_{bl}(g(v),z_{n_{i}}) + c_{5}b_{bl}(z_{n_{i}-1},f(v)) + sb_{bl}(z_{n_{i}},g(v)). \tag{15}$$

Since $b_{bl}\left(z_{n_{i}-1},f\left(v\right)\right)\leq sb_{bl}\left(z_{n_{i}-1},g\left(v\right)\right)+sb_{bl}\left(g\left(v\right),f\left(v\right)\right)$, Condition (15) becomes

$$(1 - c_{2} - c_{5}s) b_{bl} (f (v), g (v))$$

$$\leq c_{1}b_{bl} (g (v), z_{n_{i}-1}) + c_{3}b_{bl} (z_{n_{i}-1}, z_{n_{i}}) + c_{4}b_{bl} (g (v), z_{n_{i}})$$

$$+c_{5}sb_{bl} (z_{n_{i}-1}, g (v)) + sb_{bl} (z_{n_{i}}, g (v)).$$

$$(16)$$

Taking the limit in Condition (16) as $i \to \infty$ we obtain that $b_{bl}(f(v), g(v)) = 0$, because $c_2 + c_5 s \le c_1 s + c_2 s + c_3 s + 2c_4 s + 2c_5 s < 1$. That is, f(v) = g(v) = u is a point of coincidence for the mappings f and g, i.e., (i) is proved in the case if f(X) is b_{bl} -complete. The proof for the case if g(X) is b_{bl} -complete is similar.

(ii) Assume that x and y are two different points of coincidence of f and g with $(x,y) \in E(G)$. This means that there are different points x_1 and y_1 from X such that: $f(x_1) = g(x_1) = x$ and $f(y_1) = g(y_1) = y$. Now, according to Condition (9) we get

$$sb_{bl}(x,y) \leq s^{q}b_{bl}(x,y) = s^{q}b_{bl}(f(x_{1}),f(y_{1}))$$

$$\leq c_{1}b_{bl}(g(x_{1}),g(y_{1})) + c_{2}b_{bl}(g(x_{1}),f(y_{1})) + c_{3}b_{bl}(g(y_{1}),f(y_{1}))$$

$$+c_{4}b_{bl}(g(x_{1}),f(y_{1})) + c_{5}b_{bl}(g(y_{1}),f(x_{1}))$$

$$= c_{1}b_{bl}(x,y) + c_{2}b_{bl}(x,y) + c_{3}b_{bl}(y,y)$$

$$+c_{4}b_{bl}(x,y) + c_{5}b_{bl}(y,x)$$

$$\leq (c_{1} + c_{2} + 2c_{3}s + c_{4} + c_{5})b_{bl}(y,x)$$

$$\leq (c_{1}s + 2c_{2}s + 2c_{3}s + c_{4}s + c_{5}s)b_{bl}(y,x) < b_{bl}(y,x).$$

$$(17)$$

Hence, if $x \neq y$ we get a contradiction.

If f and g are weakly compatible, then by Proposition 2 f and g have a unique common fixed point. \Box

Example 1. Let $X = [0, +\infty)$ and $f, g : X \to X$ be the mappings such that

$$f(x) = e^x - 1$$
 and $g(x) = e^{4x} - 1$.

Consider b-metric-like space (X, b_{bl}) under the distance $b_{bl}(x, y) = (x + y)^2$ with coefficient s = 2, and the graph G = (V, E) with V = X and $E = \{(x, x) : x \in X\} \cup \{(0, x) : x \in X\}$. Assume that $c_1 = \frac{1}{4}$ and $c_2 = c_3 = c_4 = c_5 = \frac{1}{25}$ for which Inequalities (10) and (11) hold. Note that $(g(x), g(y)) \in E$ if and only if $x = y, x \ge 0$ or x = 0, y > 0 or y = 0, x > 0. For q = 2 let us check whether Condition (9) holds in these cases.

Mathematics **2019**, 7, 1190 7 of 10

Case 1: $x = y, x \ge 0$;

$$c_{1}b_{bl}(g(x),g(x)) + c_{2}b_{bl}(g(x),f(x)) + c_{3}b_{bl}(g(x),f(x)) + c_{4}b_{bl}(g(x),f(x)) + c_{5}b_{bl}(g(x),f(x))$$

$$= c_{1}\left(e^{4x} - 1 + e^{4x} - 1\right)^{2} + \left(c_{2} + c_{3} + c_{4} + c_{5}\right)\left(e^{4x} - 1 + e^{x} - 1\right)^{2}$$

$$= 4c_{1}\left(e^{x} - 1\right)^{2}\left(e^{3x} + e^{2x} + e^{x} + 1\right)^{2} + \left(c_{2} + c_{3} + c_{4} + c_{5}\right)\left(e^{x} - 1\right)^{2}\left(e^{3x} + e^{2x} + e^{x} + 2\right)^{2}$$

$$\geq 4c_{1}\left(e^{x} - 1\right)^{2}4^{2} + \left(c_{2} + c_{3} + c_{4} + c_{5}\right)\left(e^{x} - 1\right)^{2}5^{2} = \left(\frac{1}{4} \cdot 64 + \frac{4}{25} \cdot 25\right)\left(e^{x} - 1\right)^{2}$$

$$\geq 4\left(e^{x} - 1 + e^{x} - 1\right)^{2} = s^{q}b_{bl}(f(x), f(x)).$$

Case 2: x = 0, y > 0 (*similarly for* y = 0, x > 0);

$$c_{1}b_{bl}(g(0),g(y)) + c_{2}b_{bl}(g(0),f(0)) + c_{3}b_{bl}(g(y),f(y)) + c_{4}b_{bl}(g(0),f(y)) + c_{5}b_{bl}(g(y),f(0))$$

$$= c_{1}(e^{4y}-1)^{2} + c_{2}(0+0)^{2} + c_{3}(e^{4y}-1+e^{y}-1)^{2} + c_{4}(e^{y}-1)^{2} + c_{5}(e^{4y}-1)^{2}$$

$$= (c_{1}+c_{5})(e^{y}-1)^{2}(e^{3y}+e^{2y}+e^{y}+1)^{2} + c_{3}(e^{y}-1)^{2}(e^{3y}+e^{2y}+e^{y}+2)^{2} + c_{4}(e^{y}-1)^{2}$$

$$> (c_{1}+c_{5})(e^{y}-1)^{2}4^{2} + c_{3}(e^{y}-1)^{2}5^{2} + c_{4}(e^{y}-1)^{2} = \left(\frac{29}{100} \cdot 16 + \frac{1}{25} \cdot 25 + \frac{1}{25}\right)(e^{y}-1)^{2}$$

$$> 4(e^{y}-1)^{2} = s^{q}b_{bl}(f(0),f(y)).$$

Hence, f and g satisfy Condition (9) for all $x, y \in X$ such that $(g(x), g(y)) \in E$.

Moreover, there is $x_1 = \frac{x_0}{4}$ such that $g(x_1) = f(x_0)$, $x_2 = \frac{x_0}{4^2}$ such that $g(x_2) = f(x_1)$, and so on. In this way, we can built the sequence $x_n = \frac{x_0}{4^n}$, $n \in \mathbb{N}$ such that $g(x_n) = f(x_{n-1})$. For $x_0 \neq 0$ it is clear that $(g(x_n), g(x_m)) \notin E$. For $x_0 = 0$, $x_n = 0$, $n \in \mathbb{N}$ is obtained. Thus, the constant sequence $x_n = 0$ is only convergent sequence such that $(g(x_n), g(x_m)) = (0, 0) \in E$, and for each subsequence $(g(x_{n_i}))_{i \in \mathbb{N}}$ of $(g(x_n))_{n \in \mathbb{N}}$ holds $(g(x_{n_i}), 0) = (0, 0) \in E$. This means that $x_0 \in G_{gf} \neq \emptyset$ and the pair (f, g) possesses the property $G_{f,g(x_n)}$.

It is obvious that $f(X) \subset g(X)$ and g(X) = X is b_{bl} -complete. Since the mappings f and g are weakly compatible at x = 0 (f(0) = g(0) implies g(f(0)) = f(g(0))), all conditions of Theorem 1 are satisfied. So, 0 is the unique common fixed point of mappings f and g in X.

Example 2. Now consider the same b-metric-like space (X, b_{bl}) endowed with the graph G as in Example 1, and the mappings $f, g: X \to X$ such that

$$f(x) = \begin{cases} e^x - 1, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 and $g(x) = \begin{cases} e^{4x} - 1, & x \neq 0 \\ 2, & x = 0 \end{cases}$.

In this case we have $G_{gf} = \emptyset$. Namely, for $x_0 = 0$, $x_n = \frac{1}{4^n} \ln 2$, $n \in \mathbb{N}$ is now obtained, and $(g(x_n), g(x_m)) \notin E$. Hence, the conditions of Theorem 1 are not satisfied. Moreover, we can easily see that the mappings f and g have no coincidence point nor common fixed points.

As corollaries of our Theorem 1, we obtain the next results in the context of b-metric-like spaces endowed with a graph:

Corollary 1. (Jungck) Let $f,g: X \to X$ be self-mappings defined on a b-metric-like space (X,b_{bl}) (with coefficient $s \ge 1$) endowed with a graph G, and satisfy

$$s^{q}b_{bl}\left(f\left(x\right),f\left(y\right)\right) \leq c_{1}b_{bl}\left(g\left(x\right),g\left(y\right)\right) \tag{18}$$

for all $x,y \in X$ with $(g(x),g(y)) \in E(G)$ when $c_1 < \frac{1}{s}$. Suppose that $f(X) \subset g(X)$ and at least one of f(X),g(X) is a b_{bl} -complete subspace of (X,b_{bl}) . Then

- (i) If the property $G_{f,g(x_n)}$ is satisfied and $G_{gf} \neq \emptyset$, then f and g have a point of coincidence in X.
- (ii) If x and y in X are points of coincidence of f and g such that $(x,y) \in E(G)$, then x=y. Hence, points of coincidence of f and g are unique in X. Moreover, if the pair (f,g) is weakly compatible, then f and g have a unique common fixed point in X.

Mathematics **2019**, 7, 1190 8 of 10

Corollary 2. (Kannan) Let $f,g:X\to X$ be self-mappings defined on a b-metric-like space (X,b_{bl}) (with coefficient $s\geq 1$) endowed with a graph G, and satisfy

$$s^{q}b_{bl}(f(x), f(y)) \le c_{2}b_{bl}(g(x), f(x)) + c_{3}b_{bl}(g(y), f(y))$$
(19)

for all $x, y \in X$ with $(g(x), g(y)) \in E(G)$ when

$$c_2 + c_3 < \frac{1}{2s}. (20)$$

Suppose that $f(X) \subset g(X)$ and at least one of f(X), g(X) is a b_{bl} -complete subspace of (X, b_{bl}) . Then (i) If the property $G_{f,g(x_n)}$ is satisfied and $G_{gf} \neq \emptyset$, then f and g have a point of coincidence in X.

(ii) If x and y in X are points of coincidence of f and g such that $(x,y) \in E(G)$, then x=y. Hence, points of coincidence of f and g are unique in X. Moreover, if the pair (f,g) is weakly compatible, then f and g have a unique common fixed point in X.

Corollary 3. (Chatterjea) Let $f, g: X \to X$ be self-mappings defined on a b-metric-like space (X, b_{bl}) (with coefficient $s \ge 1$) endowed with a graph G, and satisfy

$$s^{q}b_{bl}(f(x), f(y)) \le c_{4}b_{bl}(g(x), f(y)) + c_{5}b_{bl}(g(y), f(x)), \tag{21}$$

for all $x, y \in X$ with $(g(x), g(y)) \in E(G)$ when

$$c_4 + c_5 < \frac{1}{2s}. (22)$$

Suppose that $f(X) \subset g(X)$ and at least one of f(X), g(X) is a b_{bl} -complete subspace of (X, b_{bl}) . Then (i) If the property $G_{f,g(x_n)}$ is satisfied and $G_{gf} \neq \emptyset$, then f and g have a point of coincidence in X.

(ii) If x and y in X are points of coincidence of f and g such that $(x,y) \in E(G)$, then x=y. Hence, points of coincidence of f and g are unique in X. Moreover, if the pair (f,g) is weakly compatible, then f and g have a unique common fixed point in X.

Corollary 4. (Reich) Let $f,g:X\to X$ be self-mappings defined on a b-metric-like space (X,b_{bl}) (with coefficient $s\geq 1$) endowed with a graph G, and satisfy

$$s^{q}b_{bl}(f(x), f(y)) \le c_{1}b_{bl}(g(x), g(y)) + c_{2}b_{bl}(g(x), f(x)) + c_{3}b_{bl}(g(y), f(y))$$
(23)

for all $x, y \in X$ with $(g(x), g(y)) \in E(G)$ when

$$c_1 + 2c_2 + 2c_3 < \frac{1}{s} \tag{24}$$

Suppose that $f(X) \subset g(X)$ and at least one of f(X), g(X) is a b_{bl} -complete subspace of (X, b_{bl}) . Then (i) If the property $G_{f,g(x_n)}$ is satisfied and $G_{gf} \neq \emptyset$, then f and g have a point of coincidence in X.

(ii) If x and y in X are points of coincidence of f and g such that $(x,y) \in E(G)$, then x = y. Hence, points of coincidence of f and g are unique in X. Moreover, if the pair (f,g) is weakly compatible, then f and g have a unique common fixed point in X.

Now, we announce our last result in this section in the context of b-metric-like spaces endowed with the graph. The proof is similar enough with the corresponding proof of Theorem 1 and therefore we omit it.

Mathematics 2019, 7, 1190 9 of 10

Theorem 2. (Das-Naik-Ćirić) Let $f,g:X\to X$ be self-mappings defined on a b-metric-like space (X,b_{bl}) (with coefficient $s\geq 1$) endowed with a graph G, and satisfy

$$s^{q}b_{bl}(f(x), f(y)) \leq \lambda \max\{b_{bl}(g(x), g(y)), b_{bl}(g(x), f(x)), b_{bl}(g(y), f(y)), b_{bl}(g(x), f(y)), b_{bl}(g(y), f(x))\}$$
(25)

for all $x, y \in X$ with $(g(x), g(y)) \in E(G)$ when $\lambda \in [0, \frac{1}{s})$. Suppose that $f(X) \subset g(X)$ and at least one of f(X), g(X) is a b_{bl} -complete subspace of (X, b_{bl}) . Then

- (i) If the property $G_{f,g(x_n)}$ is satisfied and $G_{gf} \neq \emptyset$, then f and g have a point of coincidence in X.
- (ii) If x and y in X are points of coincidence of f and g such that $(x,y) \in E(G)$, then x=y. Hence, points of coincidence of f and g are unique in X. Moreover, if the pair (f,g) is weakly compatible, then f and g have a unique common fixed point in X.

Author Contributions: Conceptualization, T.D. and S.R.; Data curation, M.P.; Formal analysis, N.N. and T.D.; Investigation, N.N.; Methodology, M.D.I.S., M.P., N.N. and T.D.; Project administration, M.D.I.S.; Supervision, M.D.I.S. and S.R.

Funding: This research was funded by the Basque Government, grant number IT1207-19; the Serbian Ministry of Science and Technology, grant number OI 174010 and the Ministry of Education and Science and Technological Development of the Republic of Serbia, Grant number -174002 . The APC was funded by the Basque Government through grant IT1207-19.

Acknowledgments: The first author thanks the Basque Government for its support of this work through Grant IT1207-19, the second author is supported by the Serbian Ministry of Science and Technology OI 174010, the third author wish to thank the projects MNTRRS-174009, the fourth author is grateful for the financial support from the Ministry of Education and Science and Technological Development of the Republic of Serbia-174002.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Matthews, S.G. Partial metric topology. In Proceedings of the 8th Summer Conference on General Topology and Applications, Queens College, New York, NY, USA, 18–20 June 1992; Annals of the New York Academy of Sciences: New York, NY, USA, 1994; pp. 183–197.
- 2. Harandi, A.A. Metric-like spaces, partial metric spaces and fixed points. *Fixed Point Theory Appl.* **2012**, 2012, 1–10.
- 3. Bakhtin, I.A. The contraction mapping principle in quasi-metric spaces. Funct. Anal. 1989, 30, 26–37.
- 4. Czerwik, S. Contraction mappings in *b*-metric spaces. *Acta Math. Inform. Univ. Ostrav.* **1993**, *1*, 5–11.
- 5. Shukla, S. Partial *b*-metric spaces and fixed point theorems. *Mediterranean J. Math.* **2014**, *11*, 703–711. [CrossRef]
- 6. Vujaković, J.; Aydi, H.; Radenović, S.; Mukheimer, A. Some remarks and new results in ordered partial *b*-metric spaces. *Mathematics* **2019**, *7*, 334. [CrossRef]
- 7. Alghmandi, M.A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on *b*-metric-like spaces. *J. Inequal. Appl.* **2013**, *402*, 1–25.
- 8. Agarwal, R.P.; Karapinar, E.; O'Regan, D.; Roldan-Lopez-de-Hierro, A.F. *Fixed Point Theory in Metric Type Spaces*; Springer International Publishing: Cham, Switzerland, 2015. [CrossRef]
- 9. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundam. Math.* **1922**, *3*, 133–181. [CrossRef]
- Gaba, Y.U.; Agyingi, C.A.; Leko, D.J. Chatterjea type fixed point in partial b-metric spaces. arXiv 2019, arXiv:1902.03108v1.
- 11. George, R.; Nabwey, H.A.; Ramaswamy, R.; Radenović, S. Some generalized contraction classes and common fixed points in *b*-metric spaces endowed with a graph. *Mathematics* **2019**, *7*, 754. [CrossRef]
- 12. George, R.; Tamrakar, E.; Vujaković, J.; Pathak, H.K.; Velusamy, S. (C, ψ^*, G) class of contractions and fixed points in a metric space endowed with a graph. *Mathematics* **2019**, 7, 482. [CrossRef]
- 13. Kirk, W.A.; Shahzad, N. *Fixed Point Theory in Distance Spaces*; Springer International Publishing: Cham, Switzerland, 2014. [CrossRef]

Mathematics **2019**, 7, 1190

14. Rhoades, B.E. Comparison of Various Definitions of Contractive Mappings. *Trans. Am. Math. Soc.* **1977**, 226, 257–290. [CrossRef]

- 15. Alsulami, H.; Gulyaz, S.; Karapinar, E.; Erha, I.M. An Ulam stability result on quasi-*b*-metric like spaces. *Open Math.* **2016**, *14*, 1–15. [CrossRef]
- 16. Aydi, H.; Felhi, A.; Sahmim, S. On common fixed points for (α, ψ) -contractions and generalized cyclic contractions in *b*-metric-like spaces and consequences. *J. Nonlinear Sci. Appl.* **2016**, *9*, 2492–2510. [CrossRef]
- 17. Aydi, H.; Felhi, A.; Sahmim, S. Common fixed points via implicit contractions on *b*-metric-like spaces. *J. Nonlinear Sci. Appl.* **2017**, *10*, 1524–1537. [CrossRef]
- 18. Hammad, H.A.; De la Sen, M. Generalized contractive mappings and related results in *b*-metric-like spaces with an application. *Symmetry* **2019**, *11*, 667. [CrossRef]
- 19. Hussain, N.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Fixed points of contractive mappings in *b*-metric-like spaces. *Sci. World J.* **2014**, 471827. [CrossRef] [PubMed]
- 20. Mukheimer, A. $\alpha \psi \varphi$ contractive mappings in ordered partial *b*-metric spaces. *J. Nonlinear Sci. Appl.* **2014**, 7, 168–179. [CrossRef]
- 21. Mustafa, Z.; Jaradat, M.M.M.; Jaradat, H.M. Some common fixed point results of graph on *b*-metric space. *J. Nonlinear Sci. Appl.* **2016**, *9*, 4838–4851. [CrossRef]
- 22. Nashine, H.K.; Kadelburg, Z. Existence of solutions of Cantilever Beam Problem via α - β -FG-contractions in b-metric-like spaces. Filomat 2017, 31, 3057–3074. [CrossRef]
- 23. Padhan, S.K.; Jagannadha Rao, G.V.V.; Nashine, H.K.; Agarwal, R.P. Some fixed point results for $(\beta-\psi_1-\psi_2)$ -contractive conditions in ordered *b*-metric-like spaces. *Filomat* **2017**, *31*, 4587–4612. [CrossRef]
- 24. Shukla, S.; Radenović, S.; Rajić, V. Ć. Some common fixed point theorems in 0-*σ*-complete metric-like spaces. *Vietnam J. Math.* **2013**, *41*, 341–352. [CrossRef]
- 25. Singh, S.L.; Czerwik, S.; Krol, K.; Singh, A. Coincidences and fixed points of hybrid contractions. *Tamsui Oxf. J. Math. Sci.* **2008**, 24, 401–416.
- 26. Zoto, K.; Radenović, S.; Ansari, A.H. On some fixed point results for (s, p, α) -contractive mappings in *b*-metric-like spaces and applications to integral equations. *Open Math.* **2018**, *16*, 235–249. [CrossRef]
- 27. Zoto, K.; Rhoades, B.E.; Radenović, S. Some generalizations for $(\alpha \psi, \phi)$ -contractions in *b*-metric-like spaces and an application. *Fixed Point Theory Appl.* **2017**, 26. [CrossRef]
- 28. Todorčević, V. *Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics*; Springer Nature: Cham, Switzerland, 2019. [CrossRef]
- 29. Todorčević, V. Subharmonic behavior and quasiconformal mappings. *Anal. Math. Phys.* **2019**, *9*, 1211–1225. [CrossRef]
- 30. Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces. *J. Math. Anal. Appl.* **2008**, *341*, 416–420. [CrossRef]
- 31. Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric-type spaces. *Fixed Point Theory Appl.* **2010**, 978121. [CrossRef]
- 32. Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in *b*-metric spaces. *Fixed Point Theory* 2019, accepted.
- 33. Jachymski, J. The contraction principle for mappings on a metric space with a graph. *Proc. Am. Math. Soc.* **2008**, *1*, 1359–1373. [CrossRef]
- 34. Beg, I.; But, A.R.; Radojević, S. The contraction principle for set valued mappings on a metric space with a graph. *Comput. Math. Appl.* **2010**, *60*, 1214–1219. [CrossRef]
- 35. Bojor, F. Fixed point of ϕ -contraction in metric spaces endowed with a graph. *Ann. Univ. Craiova Ser. Math. Inform.* **2010**, *37*, 85–92.
- 36. Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with graph. *Nonlinear Anal.* **2012**, 75, 3895–3901. [CrossRef]
- 37. Čirić, Lj. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Belgrade, Serbia, 2003.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).