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Abstract

The photometric light curve of PG 1302–102 shows periodic variability, which makes this object one of the most
plausible supermassive black hole binary candidates. Interestingly, the most recent study of its updated optical light
curve reports a decrease in the significance of periodicity, which may suggest that the binary model is less
favorable. Here we model the PG 1302–102 light curve, spanning almost 20 yr, with a supermassive black hole
binary system in which a perturbation in the accretion disk of a more massive component is present. Our model
reproduces well the observed light curve, with a slight perturbation of a sinusoidal feature, and predicts that a
slightly larger period than previously reported, of about 1899 days, could arise owing to a cold spot in the disk of a
more massive component of a close, unequal-mass ( 0.1m

m
1

2
= ) black hole binary system. The light curve resembles

the pattern of a sinusoid-like shape within a few years, which could be confirmed by future observations. In
addition, using our hybrid method for periodicity detection, we show that the periods in the observed (1972±
254 days) and modeled (1873± 250 days) light curves are within 1σ, which is also consistent with our physical
model prediction and with previous findings. Thus, both the periodic nature and its slight fluctuation of the light
curve of PG 1302–102 are evident from our physical model and confirmed by the hybrid method for periodicity
detection.
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1. Introduction

The hierarchical structure formation model of galaxies
suggests that supermassive black hole binaries (SMBHBs)
should be common in the galactic nuclei (see recent analysis by
Khan et al. 2016; Kelley et al. 2017, and references therein),
yet these systems are extremely difficult to identify at
subparsec separations even in the local universe (D’Orazio &
Loeb 2017). In the era of multimessenger astrophysics, the
importance of SMBHBs at subparsec distances surpasses the
understanding of evolutionary processes. They are recognized
as targets for associating gravitational waves with electro-
magnetic counterparts (Bowen et al. 2018). Such a possibility
is quite likely, because merging black holes could interact with
a circumbinary accretion disk, remnant gas between the black
holes, and a magnetosphere. All these interactions could
contribute to electromagnetic counterparts (see Palenzuela et al.
2010, and references therein).

As such a compact accreting source cannot be resolved
spatially, the presence of any periodic signal should be detected
indirectly from the SMBHB effects (see, e.g., Bon et al. 2012,
2016; Popović 2012; Li et al. 2016) either on the surrounding
accreting gas or on the precessing jet (see Britzen et al. 2018;
Charisi et al. 2018, and references therein). However, these
systems exhibit random fluctuations, whose Fourier spectra
follow a power law with indices larger than zero, so-called red
noise (Press 1978), making periodicity more difficult to detect
(Vaughan 2010).

A particularly appealing recent case is the quasar PG
1302–102 (Graham et al. 2015). By comparison with other
SMBHB candidates, the PG 1302–102 photometric light curve
resembles a rather sinusoidal structure. Still, its light curve is
not strictly periodic (D’Orazio et al. 2015).

Graham et al. (2015) report an evidence of a binary system
with a ∼4 yr rest-frame period based on the analysis of data
from the Catalina Real-Time Transient Survey (CRTS).
Additionally, Jun et al. (2015) and D’Orazio & Haiman
(2017) report periodic variability of PG 1302–102 in the
infrared. Recently, new clues to its variability have emerged.
Namely, it seems that adding recent observations from the
All-Sky Automated Survey for Supernovae (ASAS-SN),
which are analyzed in detail by Liu et al. (2018), shows that
the evidence for periodicity decreases, and that further new
observations would clarify the significance of the SMBHB
model. The first aim of our work is to model the optical light
curve with a perturbation in the disk of the more massive
component in the SMBHB (L. C. Popović & S. Simić 2018, in
preparation), which slightly perturbs the sinusoidal signal, and
to forecast the light-curve variability in the next few years.
The reason for choosing such an approach is that the standard
SMBHB model assumes that an accretion disk surrounds at
least a more massive black hole and that the outcoming
variability and structural changes are determined by dynami-
cal characteristics of the disk, as well as the interaction of the
SMBHB–disk system (Lobanov & Roland 2005). The second
aim is to test our newly proposed hybrid method for
oscillation detection in the light curves of quasars (which
was presented in Kovačević et al. 2018), on both observed
and modeled light curves.
The structure of the paper is as follows. We first introduce

our physical model in Section 2. We then present briefly
the data and hybrid method for periodicity detection in
Section 3. The results are described and discussed in
Section 4. A summary of our findings concludes our paper
in Section 5.
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2. The Model: SMBBHs and Perturbation in the
Emission Disk

There are several approaches to model the emission from an
SMBHB (see Popović 2012, and references therein). Here we
utilize the model described in Simić & Popović (2016). The
model is able to include perturbations in one of the component
disks (or both of them) that result in either an amplification or
an attenuation of the flux of the system. The model can be
briefly described as follows. The adopted geometry of the
SMBHB system assumes two supermassive black holes (with
mass of a less massive component m1 and a more massive
component m2, i.e., m m1 2< and q m

m
1

2
= ) that orbit the

barycenter of the system, in the plane inclined at an angle θ
with respect to the observer. Accretion disks around each black
hole are coplanar with the orbital plane.

Both accretion disks are classical geometrically thin,
optically thick relativistic disks proposed by Shakura &
Sunyaev (1973), which are thermalized due to the friction of
rotating matter and radiate continuum emission in the UV,
optical, and IR bands. The disk effective temperature (Teff)
decreases with the radius R and is given with the following
expression adopted from Lasota (2016):

T
m

R

R

R

R
K 2 10

10
1 , 1

i
eff

5
8 1 4

in in
3
4

= -⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟[ ] · ( )

where mi i, 1,2= is the black hole mass and Rin is the inner radius.
There are several empirical definitions of the radius of an

accretion disk (Krolik & Hawley 2002), and some more for
slim accretion disks (Abramowicz et al. 2010). In our work the
inner radius is defined as R R10in gµ , where Rg is half of the
Schwarzschild radius, because it emphasizes the innermost
place from which the UV/optical/IR luminosity originates.
Moreover, we also consider that the inner radius corresponds to
the innermost stable circular orbit (ISCO).

To estimate the outer radius Rout in units of light-days, we
adopt the relation given by Vicente et al. (2014), which comes
from the microlensing observations of quasars:
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where r 4.50 1.6
0.7= ( ) and mass mi is given in solar masses. The

outer radius of the accretion disks around black holes in a
compact binary system on a circular orbit could be tidally
truncated (see Papaloizou & Pringle 1977; Paczynski & Rudak
1980; Roedig et al. 2014). We also consider this scenario, setting
the outer radius of the disk of the more massive component to
R q a0.27out lc

0.3~ -
‐ and that of the less massive component to

R q a0.27out sc
0.3~‐ , where a is a separation of components,

q m

m
1

2
= is the mass ratio of components, and m m1 2 . The ratio

of outer radii inferred from Equation (2) ( qR

R
0.67out lc

out sc
~‐

‐
) is almost

the same as in the case of the tidally truncated binary system
considered above ( qR

R
0.6out lc

out sc
~‐

‐
). Thus, Equation (2) can be

adopted for calculating the disk dimensions.
The emission from both disks has a blackbody distribution,

and the summarized luminosity L(λ) at wavelength λ from all
parts of the disk with different effective temperatures is given by

L dL T, , 3
S

eff
disc

òl l lµ( ) ( ) ( )

where Sdisc is the area of the considered disk.
Due to the loss of energy, black holes in a binary system

approach each other over time. Consequently, mutual interac-
tion between one disk and the opposite black hole component
arises. This interaction can perturb the disk temperature profile,
causing the luminosity variation. Also, in compact binary
systems (where the distance between black holes is smaller
than 0.1 pc), the radial velocities of components can increase to
the relativistic values. In that case, the effect of relativistic
boosting can have an important influence. Both of those effects
are taken into account in our model. Their detailed description
is given in D’Orazio et al. (2015) and Simić & Popović (2016).
Our model will be described in more detail in L. C. Popović &
S. Simić (2018, in preparation).
With this dynamical model we are able to reproduce light

curves for SMBHB systems with different parameters. As an
example, we present in Figure 1 brightness variation for the
object PG 1302–102. In this case we take the time evolution of
the proposed binary system for four full orbits, for which we
use a grid of 200 computational points, although a higher
number can be considered. We test various models to roughly
fit the observed PG 1302–102 light curve and find that a
model with the parameters m1=108Me, m2=109Me,
R=0.015 pc, θ=45°, e=0, and orbital period P=1899
days can nearly describe the PG 1302–102 light curve in the
first period. The light curves during four orbital periods of each
component are shown in panel (a) and the resulting (total) light
curve in panel (b) of Figure 1. As one can see, there is a phase
shift of local extrema of components, due to the opposing radial
velocities. This indicates that the relativistic boosting plays a
dominant role in such cases and that the mutual interaction is
almost negligible. We also see that the variability of one
component is higher than the total luminosity variation,
especially in the case of a less massive component. The pure
dynamical model cannot explain the part of the PG 1302–102
light curve beyond 5000 days (see Liu et al. 2018); therefore,
we consider that an additional attenuation in the brightness of
the SMBHB should be present.

2.1. Perturbation in an Accretion Disk

One purpose of our model is to simulate the long-term
variability in SMBHBs. The variability can be caused by the
dynamical parameters of the system, as is shown in Figure 1,
but also by the intrinsic variability of one of the components.
As often observed in the light curves of single active galactic
nuclei (AGNs), under long-term monitoring, the flux perturba-
tions are present in the form of outbursts (Shapovalova et al.
2010; Graham et al. 2017), in the form of long-lasting flares
as in the case of binary black hole candidates NGC 4151
(see Figure 2 in Shapovalova et al. 2008) and E1821+643
(Shapovalova et al. 2017), or as remarkably low states or
minimum states characterized by an exceptionally weak
continuum and line fluxes, also seen in the case of binary
black hole candidates NGC 4151 (Shapovalova et al. 2008) and
NGC 5548 (Bentz et al. 2007). The long-term variability of
some objects has been successfully modeled by the variety of
disk perturbations ranging from the precession of an elliptical
disk, or a disk with a spiral arm, to bright spots, highly ionized
fast accretion disk outflows, and rotated, sheared, and decayed
bright spots (see Jovanović et al. 2010; Popović et al. 2012, and
references therein) and cold spots (Kasliwal et al. 2017).
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The perturbations are well localized in the light curve, which
possibly reflects the sharp edges of the emission region, and
usually resemble a Gaussian-like form. If the angular
dimension of the emission region is much smaller than
the viewing angle, a distant observer could not detect the
anisotropy of its radiation. Based on the above reasons, the
perturbations in the light curves have been modeled with
Gaussian, exponential, and various other functional forms (e.g.,
Valtaoja et al. 1999; Kudryavtseva et al. 2011; Angelakis et al.
2015). Kaulakys & Alaburda (2009) and Kelly et al. (2011)
proposed models of light curves based on superpositions of
exponentially decaying perturbations occurring at random
times and with random amplitudes (the latter is also recognized
as Gaussian process regression). Gaussian-like perturbations
could arise from the intrinsic quasar variability, for example,
the convergence of the Poissonian process once applied to the
AGN light curve as reported by Pecháček et al. (2008, 2013)
can be understood in the general statistical sense as
convergence to the Gaussian random process (Fageot et al.
2017). Based on previous discussion, there is some evidence
that the Gaussian-shaped perturbations are seen in AGNs and
even in magnetohydrodynamical simulations, though it is not
the only type that can emerge.

Usually considered perturbation is in the form of an outburst,
which is obtained directly from the magnetohydrodynamic
simulation with a hot spot in the disk (Balbus & Hawley 1991;
Abramowicz et al. 1992; Poutanen & Fabian 1999; Życki
2002; Armitage & Reynolds 2003; Nayakshin et al. 2004;

Dai et al. 2010), as well as with a multicomponent spot
setting (Schnittman et al. 2006; Pecháček et al. 2008, 2013;
Zamaninasab et al. 2010). It is important to note that, as
reported by Valtaoja et al. (1999), the magnetohydrodynamic
models can explain the physics underlying the flare appearance
and its overall shape but cannot provide its exact functional
time dependence as phenomenological models can.
In the case of PG 1302–102, the drop in the brightness is

seen, resembling the form of an inverted Gaussian-like flare
(see Figure 1 in Liu et al. 2018), suggesting the local temporal
decrease of the disk temperature. This feature in the light curve
could be associated with cold spots (Kasliwal et al. 2017) or
even with relatively small, dusty, rapidly moving clouds
partially covering the continuum and broad-line region of a
quasar (Gaskell & Harrington 2018). Cold spots could be
intuitively understood as relatively confined subluminous
regions like sunspots (Gould & Miralda-Escudé 1997). The
cold clumps could form naturally as a result of thermal
instability in the hot gas (Yuan 2003) or condensation of the
hot flow (Różańska & Czerny 2000; Liu et al. 2007; Meyer
et al. 2007; Mayer & Pringle 2007; Meyer-Hofmeister et al.
2009; Liu et al. 2011).
Thus, the Gaussian profile is taken in our model for

simplicity, and we assumed that the appearance of a cold spot
causes the flux attenuation in the light curve of PG 1302–102.
Moreover, if we consider asymmetrical perturbation, i.e.,
Poissonian, it would affect the shape of the modeled inverted
hump in the light curve, by producing an asymmetry on the

Figure 1. Modeled light curve of the SMBHB system during four orbital periods (see text): (a) individual light curves (L1, L2) of the corresponding accretion disks of
components m1 (dotted) and m2 (dashed); (b) modeled light curve of the total luminosity (L1+L2) emitted from the SMBHB. The luminosity is given in relative units
on the y-axis, and time is given on the x-axis in days.

3

The Astrophysical Journal, 871:32 (11pp), 2019 January 20 Kovačević et al.



descending slope as two stacked peaks. However, such a
feature is not supported by the observed data of PG 1302–102.
The reason for this might be found in differences between
gradients of Poissonian slopes and those in the observed
inverted hump. Namely, a Poissonian descending slope is much
slower than the corresponding slope in the observed hump in
PG 1302–102. However, a Gaussian perturbation is symmetric
with much faster descending slope, which is in better
agreement with the data, and supports our assumption to use
Gaussian perturbation.

2.2. Gaussian-like Disk Perturbation—Model

Following the discussion in the previous section, in our
phenomenological model we include the conceptual Gaussian-
like perturbation. To model the Gaussian-like perturbation in
one component, we propose the temperature perturbation of the
disk in a more massive black hole (as is shown in Figure 2, top
panels). It is proposed that the whole body of the disk is
perturbed, where the perturbation reaches an absolute extre-
mum value of approximately 1.7%. Applied perturbation
changes in time the disk temperature profile (T R t,eff

pert ( ))
according to the following expression:

T R t T R T R T t, , 4eff
pert

eff eff d= +( ) ( ) ( ) · ( ) ( )

T t P
t t

P
exp , 5int

pert
2

dur
2

d = -
-⎡

⎣⎢
⎤
⎦⎥( ) ·

( )
( )

where Teff(R) is the unperturbed disk temperature profile. Note
that a multiplication in the time domain is equivalent to a
convolution in the frequency domain. The Gaussian kernel is
the physical equivalent of the mathematical point. It is not
strictly local, like the mathematical point, but semilocal. Over
its lifetime, the perturbation produces a coherent temperature
perturbation sampled by a window function T td ( ). The sign of

the intensity of the temperature perturbation, Pint, determines
whether it is a magnification (positive sign) or an attenuation
(negative sign). Our numerical tests confirmed that an inverted
Gaussian-like temperature perturbation results in the inverted
Gaussian-like shape of the luminosity curve. The perturbation
is applied on the disk temperature profile of the more massive
component and then superposed with emission from the less
massive black hole. As we can see in Equation (5), the
perturbation decreases temperature at instant tpert, for amount
Pint and duration Pdur (Figure 2).
The parameters of the perturbation are found when

comparing the modeled and observed data, using the condition
of minimization of statistical parameters, which defines the
goodness of the fit. Here we intentionally model the Gaussian-
like perturbation using three free parameters (instead of two) in
order to allow more flexibility in the fitting procedure.
In Figure 2, for example, two hypothetical perturbations are

present: first that occurs 1800 days after the beginning of the
monitoring, with an extremum intensity of Pint=3.5% of
the total disk emission and a duration of 1000 days (panel (a));
the influence on the more massive component light curve
(panel (c)) and the SMBHB light curve (panel (e)) are also
presented. Also, we explore a more realistic perturbation at
around 5300 days after the first observation, lasting for 330
days and with lower intensity Pint=1.7%. Its shape and
the effects are given in Figure 2 (panels (b) and (d)). As can
be seen from the bottom panels, a perturbation in the disk of
one of the SMBHB components can significantly deform the
periodical shape of the total SMBHB light curve (compare
panel (b) of Figure 1 with panels (e) and (f) of Figure 2).
Summarizing, our SMBHB model provides the following

parameters: black hole masses m1, m2, m1�m2, their
separation a, inclination of their orbital plane θ, eccentricity e
(which is the same for both black hole orbits), orbital period P,

Figure 2. Influence of the different perturbations (the shapes are present in panels (a) and (b); see text) on the light curve of the more massive component (see panels (c)
and (d)) and the resulting light curves (shown in panels (e) and (f)).

4

The Astrophysical Journal, 871:32 (11pp), 2019 January 20 Kovačević et al.



time tpert when an extremum occurs in the disk of m2, intensity
Pint, and the duration at half of the perturbation Pdur.

3. Data and Method

In this study we use the photometric light curve of PG
1302–102 collected by the LINEAR, CRTS, and ASAS-SN
surveys that were employed for periodic analysis reported in
Liu et al. (2018). A detailed description of the data sets can be
found in Liu et al. (2018, and references therein) and will not
be repeated here. In order to apply our hybrid method for
periodicity detection, we mitigate possible effects of the gaps
within the light curve, and we thus preprocess the photometric
light curve by modeling with a robust Gaussian process
regression (GP, machine learning) method as reported in
Kovačević et al. (2018). Here we use a GP with a nonstationary
kernel to fit data, which is obtained by the standard procedure
of summation of quasi-periodic and Ornstein–Uhlenbeck (OU)
kernels (Kovačević et al. 2017). The modeled GP light curve is
given in Figure 3.

We use the hybrid method reported in Kovačević et al.
(2018) to determine the periodicity in the PG 1302–102 time
series. The hybrid method, thanks to the combination of two
well-developed techniques in common use, continuous wavelet
transform (CWT) and correlation coefficients, is an easily
applicable procedure to the problem of periodicity. Its key
advantage over other techniques is that it does not require any
assumptions about the stationarity of the data.

The 2D correlation map of periodicities can be calculated in
two ways, using either identical or different data sets for an
input, as is the practice in the generally similar technique of 2D
correlation spectroscopy (Noda 2015). The 2D correlation map
of identical data sets deconvolves and determines correlations
between periodicities in one light curve. In the case of PG
1302–102 we use this approach due to availability of a single
light curve. The 2D correlation map involves evaluation of the
envelope of CWT of the light curve, after which a nonpara-
metric Spearman’s rank correlation for all possible pairs of the

values of the envelope is calculated, generating a 2D matrix of
negative and positive correlations. Note that, due to the
normalization of correlation coefficients, the correlation
coefficient intensity at the main diagonal position is of the
order of 1, thus influencing the prominence of correlation
clusters, which indicates the presence of oscillatory patterns.
The diagonal feature in the case of identical data sets is more
evident, and in the case of different data sets with specific
physical dynamics and/or observational characteristics, the
diagonal can be broken and/or correlation clusters detached.
Moreover, in the case of perfect correlation over all periods, the
topology of the map would resemble a homogeneous cone,
with an apex and an open end in the lower left and the upper
right corner, respectively. Generally, as in the 2D correlation
spectroscopy, the noise in the data causes correlation clusters to
appear broader and smeared.
After applying the hybrid method to the observed light

curve, we perform a consistency check of the result supported
by the nonlinear fitting sinusoid, which has the form of

V A
t

P
Bsin

2
, 6mag

p
j= + +⎜ ⎟⎛

⎝
⎞
⎠ ( )

where A is the amplitude, P is the period, j is the phase, and B
is the offset. The best fit was derived based on the reduced χ2.
Since one of the goals of our analysis is to model the

perturbation of the periodic signal in the light curve of PG
1302–102, it is important to distinguish the meaningful signal
from the noise, whose color is not known a priori. A specific
test for that noise color must be applied, which we describe in
more detail and apply to both observed and GP modeled light
curves in the following subsection.

3.1. Noise Test for the Light Curve

A red-noise process can be interpreted as an autoregressive
process of the first order AR(1), with positive correlation at unit
lag. Pink noise can be modeled by the differencing parameter d

Figure 3. Best fit, with the nonstationary GP mean shown as a solid line with 95% confidence interval between the dashed lines. The observed photometric
observations are given as vertical error bars.
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(=0.5) of the Box–Jenkins autoregressive integrated moving
average (ARIMA) strategy, taking on it continuous values (Box
& Jenkins 1970). Autoregressive fractionally integrated mov-
ing average (ARFIMA) modeling improves the Box–Jenkins
approach by implementing the differencing parameter d to have
noninteger values. This allows ARFIMA to fit any long-range
memory in time series remarkably (Brockwell & Davis 2002).
However, these processes are stationary. If the PG 1302–102
light curve is found to be nonstationary, then it is different
from the mentioned noise processes. If the light curve is
stationary, further statistical procedures must be applied to
verify that the light curve is a noise process. Thus, a stationarity
test is first applied on the given light curve. For this purpose we
used the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
(Kwiatkowski et al. 1992). The test can be applied on time
series with gaps, because simply ignoring gaps or filling them
with interpolated values does not alter asymptotic results
associated with its statistics. In our analysis the KPSS test,
applied to the observed light curve with ignored gaps and to the
GP modeled curve, rejects the stationary null hypothesis in
favor of the nonstationarity alternative at 5% significance level.
As a result of the test, the signal is discerned as a consequence
of the light curve differing from the noise. Furthermore, we add
the white noise to our modeled data in Section 2, since the
autocorrelation functions of each cluster of points in the
observed light curve correspond to the white noise. It is
generated as a random process with a Gaussian distribution,
with the mean value of μ=0 and the absolute value of width
σ, which depends on the units used. In our computation we

normalize flux to 1, so that parameter σ has a value around
0.5%, i.e., σ=0.005.
In order to investigate the effect of perturbations and added

white noise on the modeled light curve, we perform the
following numerical experiment. We apply our hybrid method
to the hypothetical curve with and without the white noise (see
bottom right panel of Figure 2). Our hybrid method gives the
period of 1873± 250 days in both cases, when white noise is
included and excluded. This is in agreement with the period of
1899 days inferred from the model (Section 2). In both cases
we could detect the presence of periodicities. However, the
uncertainty is large owing to the large magnitude of
perturbation.

4. Results and Discussion

Using the proposed model from Section 2, we first inferred
the observed light curve without white noise (see right panels
of Figure 2). Then, the modeled light curve given in Figure 4 is
obtained by adding the white noise to the model. As we can
see, there is a very good agreement between the observations
and model with perturbation for the set of inferred parameters
given in Table 1.
The model with perturbation produces an orbital period of

P=1899 days and circular orbits. Inferred larger mass and
mass ratio are consistent with those obtained in the analysis of
D’Orazio et al. (2015), while the period estimate is slightly
larger for about 10 days than reported in Graham et al. (2015),
but still within the error bars. Setting inner radii of both disks to

Figure 4. Observed (orange points) and modeled light curve (blue points). The dashed black line represents the modeled curve without white noise. Time is given on
the x-axis in days, whereas the flux (note that the observed light curve is previously expressed in magnitudes) in relative units is given on the y-axis.

Table 1
Inferred Parameters of the Model of the SMBHB System with Gaussian Perturbation in the Accretion Disk of the More Massive Component, Defined in Section 2.

m1 m2 a e tpert Pint Pdur P AIC BIC AICnp BICnp AICnc BICnc

(108 Me) (108 Me) (pc) (days) (%) (days) (days)

1 10 0.015 0 5300 1.7 330 1899 −4135 −4125 −3793 −3787 −3028 −3025

Note. Parameters AIC, BIC, AICnp, BICnp, and AICnc, BICnc measure the quality of the perturbed, nonperturbed, and pure noise models, respectively (see text).
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the value of the ISCO does not affect the simulated light curve,
because the regions close to the black holes radiate photons of
much higher energies that do not contribute to the observed
band directly. The assumption that the outer radii of the larger
and the smaller disks are defined by the tidal truncation (see
Section 2) produces negligible variation in the light-curve
amplitude of approximately several percent.

We used Equation (2) to calculate the outer radius of both
accretion disks, whose ratio is around 4, which is very close to
the value of 4.6 in the case of the tidally truncated binary
system, taking into account q=0.1. The difference between
these two ratios reflects a difference in the luminosity of several
percent; additionally, we considered only the perturbation in
the more massive component.

We compute the AIC (Akaike information criterion) and BIC
(Bayesian information criterion) parameters, which define
criteria for model selection and effectiveness (Table 1). In the
computation, our model produces a simulated light curve for
the same time points as given in the observed light curve. Also,
in order to have more realistic values of AIC and BIC
parameters, model points are computed at the same moment
when data points are recorded. Small variations for AIC and
BIC values are possible given the stochastic nature of the
included white noise. Note that AIC and BIC of our models
differ significantly from those obtained by Liu et al. (2018).
This could be due to the different normalization of data, as well
as due to different models. The Liu et al. (2018) model is a
rational function of short-timescale variance and characteristic
timescale (see their Equation(4)). We calculated the log-
likelihood function (L) of the data yn given the parameters θ as
follows:

L r K r K
N

ln
1

2

1

2
ln

2
ln 2 , 7T 1 p= - - -- ∣ ∣ ( )

where r is the residual vector between the mean flux predicted
in a model and the observed flux at each observation time ti.
Here K ij ij

2s d= , δij=1, i=j, and i j0,ijd = ¹ is the

diagonal covariance matrix, where ij
2s is the variance. The fact

that K is diagonal is the result of our earlier evidence that the
the data are uncorrelated. The variances are obtained as second
derivatives of the likelihood function with respect to the model
parameters fitted to the data (i.e., as diagonal elements of the
Fisher information matrix). Note that due to the different
modeling approach, Liu et al. (2018) applied their method only
to the binned light curve, which consisted of 19 and 35
barycentric points for the LINEAR+CRTS and LINEAR
+CRTS+ASAS-SN data sets, respectively, assuming that
these barycentric points are correlated as damped random
walk. The same assumption of correlation between data points
was used in D’Orazio et al. (2015), but the data set consisted of
about 250 points. This implies that the covariance matrices
K k t t,i ij i js d= + ( ) had nondiagonal elements k(ti,tj) arising
from the assumed damped random walk in these studies.

We note that the analyses of D’Orazio et al. (2015) and Liu
et al. (2018) did not use the Fisher information matrix as an
estimate for their covariance matrices. Instead, the former study
used a log-likelihood covariance matrix with added variances
in the photometric measurement on the diagonal, and Liu et al.
(2018) had the Gaussian noise added on the diagonal, which
could explain AIC differences of about 10 in their calculations.

Thus, the major difference between our AIC, BIC and those
found in the recent papers most likely lies in the form of the
covariance matrix constituting the Gaussian likelihood func-
tion, as well as in the number of used data, which affects the
dimension of the matrix and later the process of maximization.
Our approach is distinct from previous ones in that the
complete data set of 1700 points that have a white-noise
characteristic is modeled without binning.
Besides general differences in the covariance matrix, note

that the data of D’Orazio et al. (2015) do not show attenuation,
and that in the Liu et al. (2018) study perturbation was not
included in their model and, due to the binning of the light
curve, the hump in the light curve was covered by 15
barycentric points, which slightly changed the geometry of the
hump. The number of points in the hump is about 873, which is
almost half of all available data, implying that a large portion of
information lies in the hump too. Our model shows a large
difference between the pure noise and perturbed model,
confirming the importance of information confined in the
hump of the PG 1302–102 light curve.
Moreover, the differences between information criteria of the

composite sinusoid noise and the pure noise model were close
to 10 in previous studies. A model with AIC difference strictly
larger than 10 units of the best model, which indicates that the
model is less favorable, will have no support and can be
omitted from further consideration (Burnham & Anderson
2002). However, models with differences up to 10 are usually
considered as not superior to some other models in a set of
considered models. In this case model averaging (combining)
gives a relatively more stabilized inference (Burnham &
Anderson 2002). From this point of view the previous analysis
suggests a model combination.
We can see that our model, as a composite, consists of three

parts, dynamical (sinusoidal), perturbation, and noise, and
demonstrates that the light curve is best described with the
combined model owing to the large AIC (BIC) difference with
respect to the pure noise model, which is in agreement with
findings of previous studies. Thus, for the first time, we
confirmed that it is possible to model a complete data set of PG
1302–102 without any binning and extract valuable informa-
tion for a periodic signal and perturbation.
As for the absolute magnitude of our AIC and BIC, we note

that in the maximum Gaussian log-likelihood solution the
weight vector is identical to the least-squares solution, which
means that the better the independent variables of the model are
at predicting the dependent variable, the more negative the AIC
becomes. In an ideal case it would approach negative infinity.
As for the comparison of models, in the case of two models (as
in our analysis) the statistical rule is to compare only their AIC
values (not absolute value); thus, the model with the lower AIC
would be the preferred one. Here both AIC and BIC are the
smallest for the model with perturbation included. In the case
of more than two models the difference between the ith model
AIC and minimum AIC among all models is used. It is not
possible to use this set of models approach to compare our AIC
with those in the Liu et al. (2018) analysis, due to the different
Gaussian likelihood formulation and the possible different
normalization of data.
Next, we apply our hybrid method to the modeled (Figure 4)

and preprocessed observed light curve (Figure 3), for which we
tested that it is not the noise process (Section 3.1).
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As can be seen in Figure 5, both curves have almost similar
2D correlation maps. The topology of our 2D correlation map
is fragmented, and attached correlation clusters are visible.
There are two important regions of periods, the largest about

4000 days on both maps and smaller clusters at 1873±250
days and 1972±254 days, for the modeled and preprocessed
observed curves, respectively. Their correlation coefficients
are 0.99 with a significance of p<0.00001. The period of

Figure 5. 2D correlation map of all oscillatory patterns within the total observing time range of 100–5500 days, for the preprocessed observed light curve (top) and
modeled light curve (bottom). Both axes represent periods (in days) in the curve. Diagonal correlation clusters mean that oscillations are caused by physical processes
within PG 1302–102. Values of correlation coefficients are given on the color bar. The clusters of high correlation are marked in red with significance p<0.00001.
The dashed line marks the detected period.
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∼4000 days can be neglected since it corresponds to the whole
observing period. It is clear that our method has recovered the
period of the modeled light curve successfully. The noise is
present especially in the hump of the PG 1302–102 light curve,
whose effect is evident on the appearance of the correlation
cluster associated with this period.

Also, the hybrid method indicates that the periodicity of the
observed light curve is very close to the one found in the
modeled one. Interestingly, our hybrid method gives an almost
identical period for the modeled light curve without white
noise.

As a further verification, we fit a sinusoid to the detrended
(mean value is subtracted) observed light curve, which was
selected based on reduced χ2 by being closest to 1. The
obtained best-fitting parameters with their standard deviations
are given in Table 2.

Figure 6 shows the sinusoidal model (see Equation (6) and
Table 2) nicely describing the peaks and troughs of the original
data, with a reduced χ2 value of 1.09.

The SMBHB model applied to the optical curve of PG
1302–102 explains the variability of the optical flux and its
perturbation leading to slight changes in the detected orbital
period of the system. The model recreates physical conditions
in the accretion disk of a more massive black hole, causing
attenuation and the dynamic properties of the system. On the
other hand, the model cannot a priori predict the repetition of
the perturbation, but we can provide some general statistical
estimates following the prescription given in Schnittman
(2005). If we assume that the characteristic lifetime of the
perturbation is about 400 days, which is the duration of the
inverted Gaussian-like perturbation inferred from our model,
then the number of such events that could be expected with a
lifetime between 400 and 450 days over the next 2000 days is
about 1.7. Based on this pure statistical view, there is a chance
of detecting a similar event within the next few years.

In our analysis we consider one time event, because the data
did not show any similar feature up to now. The recurrence of
perturbations is well analyzed by the magnetohydrodynamic
simulations directly producing the hot spots in the accretion
flow and implying that these phenomena could be either
periodic (and destroyed by differential rotation) or aperiodic
(Fukue 2003). Based on this, something similar could be
expected for cold spots. Thus, if the perturbation in the PG
1302–102 light curve is periodic, there is also a possibility that
its next amplitude would appear smaller owing to differential
rotation, which can gradually destroy it.

Moreover, Valtaoja et al. (2000) pointed to a possibility that
at certain intervals the less massive black hole crosses the
accretion disk of the more massive black hole, and the effect of
shadowing the certain parcel of the disk could be expected
(Abramowicz & Fragile 2013). This means that the peak from
such an event should be broader in time, because the passing

takes longer than the crossing. Such a dynamical relation (and
its signal) is likely to be periodic, but with periods of the order
of decades to centuries. Thus, we are likely to detect separate
events and anticipate them as isolated flares (Bogdanović et al.
2008). Moreover, linking the circumbinary disk to the
minidisks and the gas density at the inner edge of the
circumbinary disk, a lump has been observed in the recent
magnetohydrodynamic simulations of binary black hole
systems (MacFadyen & Milosavljević 2008; Shi et al. 2012;
D’Orazio et al. 2013; Farris et al. 2014; Shi & Krolik 2015;
D’Orazio et al. 2016; Tang et al. 2017, 2018). A generic result
of these simulations is a low-density cavity created by the
binary torque, but gas can still leak into the cavity through
nonaxisymmetric streams, implying a lower temperature in
such a region. Recently, Tanaka (2013) proposed that periodic
streams into the cavity may activate more noticeable variability
than previously thought.
However, the first general relativistic magnetohydrodynamic

simulation (Bowen et al. 2018), assuming that the binary
separation is relativistic, revealed an even more dramatic
picture. Namely, the response of the accretion disks around
black holes to the circumbinary disk in the binary system may
introduce distinctive time-dependent features in the binary’s
electromagnetic emission.
Instead of a single perturbation, multiple perturbations can

appear in the disk, which may lead to the superposition of their
individual luminosities onto a complex signal, and a periodicity
analysis is required. However, the structure of the data in the
inverted hump of PG 1302–102 is not favorable for this
scenario, and the periodicity analysis could not disentangle
superimposed signals if any were present.
Perturbations were recorded in the light curves of some well-

studied objects as we mentioned in Section 2.1. The most
comprehensive study to date, specifically focused on a
systematic search for major flares in AGNs, is by Graham
et al. (2017). They presented remarkable results of the CRTS,
identifying 51 events from the sample of more than 900,000
quasars, typically lasting 900 days. The inverted hump of PG
1302–102 is within this time range; however, the physical
explanations suggested by Graham et al. (2017), such as the
single point single lens model, supernovae, or tidal distribution
events, are not applicable in the case of the observed PG
1302–102 inverted hump.
As we have discussed, there is some chance that the cold-

spot event occurs in the future, which could affect the light
curve over a certain range of time. This event could be
superimposed on the main sinusoidal signal of the PG
1302–102 binary candidate, but this main periodic signal could
still be extracted as is shown by our hybrid method.
As we have already mentioned, there are physical possibi-

lities for flaring appearances ranging from density irregularities
within the disk up to dynamical reasons, as it is a companion
black hole producing a shadow at the disk after entering
the disk.
Moreover, companion black hole radiation could be also

important (Pietilä 1998). This object could experience
increased accretion when it crosses the accretion disk, passes
the pericenter, and crosses in front of the jet. All these instances
cause increased flux via a temporary accretion disk and jet
formation in the companion. There is also another scenario
related to the circumbinary disk (which may be a condition for
some binaries to overcome the final parsec barrier), having a

Table 2
Best-fitting Parameters and Their Standard Deviations of the Sinusoid Fitted to

the Detrended Observed Data, Defined by Equation (6) in Section 3.

A P j B red
2c

(days) (rad)

0.123±0.003 1950±150 4.74±0.84 −0.018±0.003 1.09

Note. The parameter red
2c is the reduced χ2 value of the fit.
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large cavity (see Tanaka 2012, and references therein). After
passing through pericenter near one of the SMBHs, the stream
could self-intersect and produce a shock. This material would
circularize into a hot, optically thick annulus and viscously
spread. The gas will begin to accrete in a slim-disk form
(Strubbe & Quataert 2009) before it can cool radiatively,
producing flares in optical, UV, and X-ray domains at the
rhythm of years to centuries. However, there could be a
significant loss of photons if the rays need to pass through
much material such as fast-moving clouds, or being attenuated
by the supermassive black hole silhouette. Sundelius et al.
(1997) showed, in the case of multiple black holes, that the
process underlying the leading perturbation in the vicinity of
the multiple black holes may not have a strictly periodic
character. Bearing this in mind, the signal of such a flare could
have a quasi-periodic nature.

The orbiting hot- or cold-spot model would be a natural
explanation for the observed light curves with flares and
associated changes. However, the long-term light curves are
also well described by a pure red noise, indicating statistical
fluctuations in the accretion flow underlying the observed
variability. As pointed out in Graham et al. (2017), spectro-
scopic and multiwavelength observations could settle the
debate. For example, data from the Large Synoptic Survey
Telescope will allow more precise extraction of periodic signal
from the light curve, which can reveal additional perturbation
more precisely. Even now, a simple test of extracting the
sinusoidal signal model from the present light curve of PG
1302–102 showed that the remainder of series fluctuates
between −0.3 and 0.3 mag after MJD 56500. The shape of this
feature is coherent and resembles the gradient of the inverted
hump seen in the light curve. Other parts of the remainder
fluctuate with magnitudes 10 or more times smaller and are

negligible in comparison to the main fluctuation. Upcoming
large surveys will determine the distribution of physical
characteristics of flares and their periodic variation, which will
also help to test the hot-spot and red-noise models of light
curves on larger samples of objects.

5. Conclusion

We develop one possible physical model that could explain
the variability of the optical flux and a slight perturbation of the
sinusoidal feature of the optical light curve of PG 1302–102
reported in Liu et al. (2018). The dynamical properties of PG
1302–102 are described by the model of the orbital motion in
the SMBHB system and the attenuation due to a cold spot in
the accretion disk around the more massive black hole. The
model recovered an orbital period of 1899 days. Second, the
2D correlation maps of oscillatory patterns in the observed and
modeled light curves are determined with our hybrid method
for periodicity detection. The inferred periods are 1972±
254 days and 1873±250 days in the observed and modeled
light curves, respectively, which are slightly perturbed values
in comparison to Graham et al. (2015) and close to the period
predicted by our physical model. Our model suggests the
perturbation within the disk of the more massive component, in
the form of a cold spot, as an explanation for the perturbed
sinusoidal characteristic of the curve, which also slightly
deformed the detected period. Moreover, our model gives the
light curve a chance of resembling a sinusoidal variability
within a few thousand days. Thus, future monitoring of this
object is important and should bring more light into dynamics
of the object.

Figure 6. Best fit of the sinusoid model to the detrended (mean value is subtracted) observed light curve. Photometric magnitudes are represented by error bars,
whereas the model is shown with the dashed red line. The best-fitting parameters are given in Table 2.
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