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Abstract 

The main goal of this research was to determine the relationship among chemical 

structure, bioactivity and temperature of chamomile during subcritical water extraction in 

isobaric conditions (45 bar) at seven different temperatures (65-210°C). The influence of 

temperature on phenolic profiles was defined by UHPLC-HESI-MS/MS. The overall results 

indicate that the presence of conjugated double bonds, side chains, glucose moiety or ether 

moiety in molecules influence the efficiency of polyphenols’ extraction in subcritical water. In 

terms of antioxidant activity, the extracts were the most active towards ABTS radicals (IC50=7.3-

16.8 µg/mL), whereby temperature of 150°C was optimal. On the other hand, the extracts 

obtained at 115°C showed highest cytotoxicity. Inhibition of α-amylase and α-glucosidase was 

the highest at 65 and 85°C, i.e. 0.51 and 4.13 mmolAE/g, respectively. Activity against 

tyrosinase was the highest at 210°C (17.92 mgKAE/g). The data showed that different non-

phenolic compounds may also participate in bio-activities of the extracts. 

 

 

Keywords: Subcritical water extraction, chamomile, UHPLC-HESI-MS/MS, DNA-based 

sensor, bioactivity. 
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1. INTRODUCTION 

Chamomile (Matricaria chamomillaL., syn: M. recutita) is a medicinal plant mostly used 

in the form of infusions, the consumption of which is estimated to be over a million cups per day 

(Srivastava and Gupta, 2010). Its pleasant, aromatic taste, delicate sedative effect, and a range of 

beneficial health effects are the main reasons for its widespread use. Numerous studies have 

shown that chamomile can be used for various purposes due to its beneficial activities such as: 

anti-inflammatory, antiphlogistic (Srivastava, Shankar and Gupta, 2010), antiallergic (Nemecz, 

1998), antibacterial (Lis-Balchin, Deans, and Eaglesham, 1998), antispasmodic, antiseptic 

(Sahebkar and Emami, 2013), antioxidant (Lee and Shibamoto, 2002) and anti-tumor (Shukla 

and Gupta, 2004). Because of its numerous health benefits and frequent use, the composition of 

chamomile has been studied extensively and many therapeutically-attractive compounds have 

been identified. Among others, chamomile phenolic compounds have been well studied and 

different classes of phenolic compounds were identified in chamomile, such as: phenolic acids 

(chlorogenic, caffeic, vanillic, syringic, anisic, coumaric acid, etc), flavonoids (aglycones and/or 

glycosides form: isorhamnetin, luteolin, quercetin, apigenin, patuletin and some others), 

coumarins (umbelliferone and herniarin) (Atoui, Mansouri, Boskou, and Kefalas, 2005), etc.  

It is believed that polyphenols, namely the subfamily of flavonoids, are the most 

responsible for high antioxidant activity of chamomile (Pinto, 2013). The most common 

extraction approaches for the isolation of phenolic compounds from chamomile include 

conventional extraction techniques using ethanol as a solvent (Pinto, 2013). Lately, non-

conventional extraction approaches, such as microwave or ultrasound extraction, have been 

reported for chamomile extraction (Cvetanović, Švarc-Gajić, Mašković, Savić and Nikolić, 

2015). During the last 20 years, the focus of the research has been put on the non-conventional 

http://www.sciencedirect.com.proxy.kobson.nb.rs:2048/science/article/pii/S2005290113000034
http://www.sciencedirect.com.proxy.kobson.nb.rs:2048/science/article/pii/S2005290113000034
https://www.google.rs/search?q=coumaric+acid&spell=1&sa=X&ved=0ahUKEwiCzMGF2MbSAhWCShQKHXUhC5cQBQgVKAA
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extraction approaches. For instance, water in its subcritical state offers numerous advantages as a 

completely green and economically viable solvent, the selectivity of which can be varied by 

changing temperature and pressure. To the best of our knowledge, only few reports have dealt 

with subcritical water extraction (SWE) of chamomile (Cvetanović et al., 2015; Cvetanović et 

al., 2017). 

SWE offers the possibility to fine tune water polarity by varying operational parameters, 

so slight changes in operational parameters may have significant impact on chemical 

composition of extracts. By changing two principal operational parameters, temperature and 

pressure, dielectric constant of subcritical water can be varied from 13 (in critical point) to 80 

(ambient water). Moreover, pH value of water decreases three orders of magnitude with a 

temperature increase to 250 °C, thus providing more H3O
+
 ions for acid-catalyzed reactions 

(Cvjetko Bubalo, Vidović, Radojčić Redovniković and Jokić, 2015). Carefully balanced, 

moderate hydrolytic potential of superheated water may be exploited when using this solvent for 

the extraction of bound forms of bioactive molecules. Within the last 10 years, this solvent 

attracts attention for the extraction of bioactive compounds such as polyphenols and due to its 

green character it is particularly interesting for obtaining extracts with improved bioactivity. 

High bioactivity of SCW extracts is a complex function of desired but also other co-extracted 

compounds. Moreover, there are indications that different chemical reactions, such as Maillard 

reaction, can occur in this medium (Plaza, Amigo-Benavent, Del Castilo, Ibáñez  and Herrero, 

2010). Such a reaction produces beneficial bioactivities, such as antioxidant, antimicrobial or 

antiproliferative. Thus, high bioactivity of SCW extracts is also influenced by neo-formed 

product. From this point of view, it would be extremely difficult to ascribe certain bioactivity to 

some specific compounds. Although numerous findings have demonstrated correlation between 

http://www.sciencedirect.com/science/article/pii/S0963996910002668
http://www.sciencedirect.com/science/article/pii/S0963996910002668
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polyphenols and bioactivity of plant extracts, the overall activity of the extracts is also a 

consequence of non-phenolic compounds. The occurrence of different reactions in SCW medium 

depends on the extraction conditions, and particularly on the temperature. Different extraction 

conditions cause differences in chemical composition, further reflecting their bioactivities and 

functionalities. 

There is no data on the influence of the extraction parameters on the bioactivity of SWE 

chamomile extracts. Thus, the main goal of this study was to define the influence of temperature, 

as a dominant parameter in SWE, on phenolic profiles and, antioxidant, cytotoxic and enzyme-

inhibitory activity of chamomile extracts. The following analytical procedures were used: UV/V 

spectrometry, DNA-based biosensor and UHPLC-HESI-MS/MS. Possible influence of other co-

extracted non-phenolic compounds on bioactivity of observed extracts was also considered. We 

analyzed the data to obtain full profiles of biological activity. 

2. MATERIALS AND METHODS 

2.1. Chemicals 

The following chemicals and compounds were purchased from Sigma-Aldrich (St. Louis, 

MO, USA): kojic acid, α-amylase solution (ex-porcine pancreas, EC 3.2.1.1), α-glucosidase 

solution (from Saccharomyces cerevisiae, EC 3.2.1.20), L-glutathione, tyrosinase, 3,4-

dihydroxy-L-phenylalanine (L-DOPA), acarbos, deoxyadenylic acid oligonucleotide (dA20, as a 

desalted product), concentrated saline sodium phosphate EDTA (20x SSPE; 0.2 mol/L sodium 

phosphate, 2 mol/L, NaCl, 0.02 mol/L EDTA), phosphate buffer (PBS) pH 7.4, iron (II) sulphate 

heptahydrate, hydrogen peroxide (30 %, w/v), Folin Ciocalteu reagent, 2,2-diphenyl-1-(2,4,6-

trinitrophenyl) hydrazyl (DPPH), butylated hydroxytoluene (BHT), trichloroacetic acid (TCA), 

thiobarbituric acid (TBA), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 

https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwilwfam_4bZAhUQI-wKHa9RBeQQFggwMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FButylated_hydroxytoluene&usg=AOvVaw1kK16Y8jkGxtiUyoYLB5oR
https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiTjbvq_4bZAhWI16QKHf-xDV0QFggkMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTrichloroacetic_acid&usg=AOvVaw2C7Ra0jE8uCwvhyqhIJ777
https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjNifGLgIfZAhVFyaQKHaW8BgAQFggmMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThiobarbituric_acid&usg=AOvVaw2Hg1ZLqroB2VNWRGzSUpIA
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paraffin oil and polyphenolic standards - analytical grade and purity ≥ 99% (apigenin-7-О-

glucoside, apigenin, kaempferol-3-O-glucoside, kaempferol, luteolin-7-O-glucoside, luteolin, 

naringenin-7-O-neohesperidoside, naringenin, quercetin-3-O-rutinoside, quercetin-3-O-

galactoside, catechin, galangin, phloretin, resveratrol, aesculin, ellagic acid, p-hydroxybenzoic 

acid, protocatechuic acid, caffeic acid, sinapic acid, cinnamic acid, 5-O-caffeoylquinic acid, p-

coumaric acid and coniferyl aldehyde). Aluminium chloride hexahydrate, sodium carbonate, 

PNPG (4-N-trophenyl-α-D-glucopyranoside), sodium acetate trihydrate, acetonitrile and acetic 

acid (both of MS grade), methanol (HPLC grade) were purchased from Merck Co (Darmstadt, 

Germany). Potassium ferricyanide and ferric chloride were obtained from Zorka (Šabac, Serbia). 

Ultrapure water (Thermofisher Scientific, Bremen, Germany) was used to prepare standard 

solutions and blanks. Syringe filters (13 mm, PTFE membrane 0.45 μm) were purchased from 

Supelco (Bellefonte, PA, USA). Graphite powder was obtained from Ultracarbon (Dicoex, 

Spain). All other chemicals and reagents were of analytical reagent grade. 

2.2. Plant material 

Plant material was produced by the Institute of Field and Vegetable Crops, Bački 

Petrovac, Serbia. Since phenolic compounds are mainly contained in chamomile ligulate flowers, 

the extractions were done only with this part of Matricria flos. Matricria flos was collected at the 

end of April and dried at 40 °C in a solar dryer until the moisture content reached 12%. 

Chamomile ligulate flowers were then separated from the tubular parts with a sieve. The flowers 

were packed in paper bags and stored in a dark place for future use. 

2.3. Subcritical water extraction  
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Subcritical water extraction was performed using a homemade subcritical water reactor 

as described in Cvetanović (Cvetanović et al., 2017). Dry plant material (10.0 g) was placed in a 

reaction vessel and 300 mL of double distilled water were added. The process of extraction was 

performed within 30 minutes upon reaching the desired temperature at 45 bar in a temperature 

range between 65 to 210 °C. The mass transfer during extraction was potentiated by vibrational 

movements of the platform housing the extraction vessel. After filtration, the obtained extracts 

were evaporated by the use of vacuum evaporator (Devarot, Slovenia) and dried at 40 °C. The 

obtained dry extracts were stored in a dark place at 4°C until analysis. 

2.4. UHPLC–DAD MS/MS analysis of polyphenolic compounds 

Qualitative and quantitative analyses of phenolic compounds in SWE extracts were 

performed using a Dionex Ultimate 3000 UHPLC system equipped with a diode array detector 

(DAD) that was connected to TSQ Quantum Access Max triple-quadrupole mass spectrometer 

(ThermoFisher Scientific, Basel, Switzerland). Separation process was performed at 40°C on a 

Syncronis C18 column (100 × 2.1 mm, 1.7 µm particle size) from ThermoFisher Scientific. The 

mobile phase consisted of water + 0.01% acetic acid (A) and acetonitrile (B), that were used in 

the following gradient elution: 5% B in the first 2.0 minutes, 2.0
nd

–12.0
th

 minutes 5–95% B, 

12.0
th

–13.0
th
 minutes from 95% to 5% B, and 5 % B until the 20

th
 minutes. The flow rate was set 

to 0.3 mL/min and the detection wavelengths to 254 and 280 nm. The injection volume was 5 

μL. 

Stock methanolic solutions of polyphenolics in the concentration of 1000 mg/L were 

prepared. The stock solutions were mixed and diluted with water in order to obtain working 

solutions (concentrations of 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, and 1.00 mg/L). 
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A TSQ Quantum Access Max triple-quadrupole mass spectrometer equipped with heated 

electrospray ionization (HESI) source was used with the vaporizer temperature kept at 250°C, 

and ion source settings as follows: spray voltage 4500 V, sheet gas (N2) pressure 27 AU, ion 

sweep gas pressure 0 AU and auxiliary gas (N2) pressure 7 AU, capillary temperature 275°C, 

skimmer offset 0 V, and capillary offset -35 V. The mass spectrometry data were acquired in the 

negative ionization mode, in m/z range from 100 to 1000. Multiple mass spectrometric scanning 

modes, including full scanning (FS), and product ion scanning (PIS), were conducted for a 

qualitative analysis of the targeted compounds. The collision-induced fragmentation experiments 

were performed using argon as collision gas, while the collision energy varied, depending on the 

compound. The time-selected reaction monitoring (tSRM) experiments for quantitative analysis 

were performed using two MS
2
 fragments for each compound that was previously defined as 

dominant in the PIS experiments (Gašić et al., 2015). Xcalibur software (version 2.2) was used 

for instrument control. Phenolics were identified and quantified according to the corresponding 

spectral characteristics: molecular ion, mass spectra, characteristic fragmentation, and 

characteristic retention time. The limits of detection (LOD) and quantification (LOQ) were 

calculated using standard deviations (SD) of the responses and the slopes of the calibration 

curves (S) according to: LOD = 3(SD/S) and LOQ = 10(SD/S). The values of standard 

deviations and slopes were obtained from the calibration curves created in MS Excel. The total 

amount of each compound was calculated based on the peak areas and was expressed in mg/kg. 

SRM transitions and calibration ranges for each compound, as well as correlation coefficients, 

LOD and LOQ are given in Supplementary Data (Tables S1). 

2.5. Biological activity  

2.5.1. Antioxidant and antiradical activity 
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Dry extracts were dissolved in water to the final concentration of 1 mg/mL. This solution was 

further used for measuring antioxidant and antiradical activities. The activities were measured by 

both spectrophotometrical (inhibition of lipid peroxidation, DPPH
•
, OH

•
 and ABTS

•+
 tests) and 

electrochemical DNA-biosensor analysis. All applied methods rely on different mechanisms, and 

by their simultaneous application, we obtained a comprehensive view of the antioxidant potential 

of the investigated extracts. All tests were performed in triplicate and the results were expressed 

as IC50 (µg/mL). Spectrophotometrical measurements were performed on Yenway 6300 

Spectrophotometer (Barloworld Scientific Ltd, Dunmow, Essex, UK). 

2.5.1.1. Inhibitory activity against lipid peroxidation  

Inhibitory activity against lipid peroxidation was evaluated using the thiocyanate method 

(Misuda, Yasumoto and Iwami, 1966). The applied method actually measures the amount of 

peroxide produced during the initial stages of oxidation, which is the primary product of lipid 

oxidation. Briefly, the obtained extracts were diluted to serial dilutions (20 - 40 μg/mL), and 0.5 

mL of each concentration was added to linoleic acid emulsion (2.5 mL, 40 mM, pH 7.0). The 

linoleic acid emulsion was prepared by mixing 0.2804 g of linoleic acid and 0.2804 g of Tween-

20 in 50 mL of 40 mM phosphate buffer. The mixture was incubated at 37 °C for 72 hours. After 

that, 0.1 mL of the reaction solution was mixed with 4.7 mL of ethanol (75%), 0.1 mL of FeCl2 

(20 mM), and 0.1 mL of ammonium thiocyanate (30%). The mixture was stirred for 3 minutes 

and absorbance was measured at 500 nm. Ascorbic acid, gallic acid, α-tocopherol and BHT were 

used as reference compounds. All tests were performed in triplicate, and the results were 

expressed as IC50 values (the concentration of the test solution for inhibiting 50% oxidation 

inhibition). 

2.5.1.2.  DPPH
•
 radical-scavenging assay  

http://www.sciencedirect.com/science/article/pii/S0308814607011892?via%3Dihub#bib10
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DPPH
•
 radical-scavenging assay was conducted following Espín, Soler-Rivas and Wichers 

method (2000). DPPH is a stable free radical with an unpaired electron that is delocalized over 

the entire molecule. During the assay, its purple color turned yellow, due to pairing of the odd 

electron of the DPPH radical with hydrogen to form the reduced DPPH-H form. The resulting 

discoloration, which is stoichiometric, is proportional to the number of captured electrons. In a 

nutshell, the start solutions of the extracts were mixed with methanol (96%) and 90 µM DPPH to 

give final concentrations of 0.01; 0.02; 0.05; 0.1 and 0.2 mg/mL of dry extract. After incubation 

at a room temperature for 60 minutes, the absorption of the reaction mixture was measured at 

515 nm. 

2.5.1.3. Determination of hydroxyl radical scavenging activity  

Determination of hydroxyl radical scavenging activity was carried out following the method 

described in the literature (Halliwell, Gutteridge and Aruoma, 1987). Inhibition activity of the 

obtained extracts against hydroxyl radicals was determined by measuring the level of oxidation 

of 2-deoxy-D-ribose by 
•
OH with subsequent measurement of the products by their reaction with 

thiobarbituric acid (TBA). The reaction of deoxyribose and 
•
OH has been discussed extensively 

in the literature (Aruoma, 1993.). The extract was mixed with 500 µL of 5.6 mM 2-deoxy-D-

ribose in KH2PO4–NaOH buffer (50 mM, pH 7.4), 200 µL of premixed 100 µM FeCl3 and 104 

mM EDTA (1:1, v/v) solution, 100 µL of 1.0 mM H2O2, and 100 µL of 1.0 mM aqueous 

ascorbic acid. Reaction mixture was incubated at 50 °C for 30 minutes. 1 mL of 2.8% TCA and 1 

mL of 1.0% TBA were then added to each tube. The samples were vortexed and heated in a 

water bath at 50 °C for 30 minutes. The degree of 2-deoxyribose oxidation was estimated from 

the absorbance of the solution at 532 nm.  

2.5.1.4.  ABTS
●+

 radical scavenging activity  

https://www.sciencedirect.com/science/article/pii/S0308814605002840#bib12
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ABTS
●+

 radical scavenging activity was determined following Jiménez-Escrig, Dragsted, 

Daneshvar, Pulido and Saura-Calixto method (2003). In this assay, ABTS is converted into its 

radical cation (ABTS
•+

). The ABTS assay utilizes a free radical which is generated when ABTS 

substrate is oxidized with potassium persulfate. ABTS
•+

 has a blue/green color with maximum 

absorption spectra at 734 nm, in water. The ABTS
•+

, is decolorized when reduced in the presence 

of the test sample. This indicates the extent of relative radical scavenging activity which is 

expressed as a percent of inhibition. In this study, ABTS
•+

 was generated by 7 mM ABTS stock 

solution and 2.45 mM potassium persulfate. The mixture was left in a dark place at room 

temperature for 12–16 hours. The ABTS
●+

solution (stable for 2 days) was diluted with 5 mM 

phosphate-buffered saline (pH 7.4) to the absorbance at 730 nm of 0.70±0.02. Upon addition of 

10 μL of the sample to 4 mL of diluted ABTS
●+

 solution, the absorbance was measured after 30 

minutes. Gallic acid, ascorbic acid and butylated hydroxytoluene (BHT) were used as reference 

antioxidants.  

2.5.1.5.  Electrochemical DNA-based biosensor  

The protective effect of antioxidants at a cellular level could be achieved by monitoring the DNA 

integrity. So, an electrocatalytic voltammetric method was performed to assess total antioxidant 

capacity of SWE chamomile extracts using DNA-modified carbon paste electrodes (CPE). The 

oxidative lesions were generated after immersion of the DNA-CPE in the Fenton mixture. The 

lesions were indirectly quantified after the electrochemical oxidation of the adenines that 

remained unoxidized on the electrode surface (Barroso et al., 2016). The increase of the 

electrocatalytic current in the presence of antioxidants from chamomile was evaluated.  

Stock solutions of deoxyadenylic acid oligonucleotide (dA20, as a desalted product, 1 

g/L), were prepared and stored at 4ºC and diluted with 2x SSPE buffer solution prior to use. Fe
2+

, 
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EDTA and H2O2 (1 µmol/L : 2 µmol/L : 40 µmol/L) were mixed to prepare the Fenton solution 

(generation of hydroxyl radical). All solutions were prepared with ultra-pure water produced 

with a Simplicity 185 system manufactured by Millipore (Molsheim, France). Square wave 

voltammetry (SWV) was performed in an Autolab PSTAT 10 controlled by GPES software, 

version 4.8 (EcoChemie, The Netherlands). A conventional three electrode cell was used, which 

includes a homemade carbon paste electrode (CPE) (3 mm in diameter) as a working electrode, a 

platinum wire counter electrode and an Ag|AgCl|KClsat reference electrode (Barroso et al., 

2016).  

The biosensor experiments were conducted in three steps: DNA immobilization, damage 

of oligonucleotide (dA20) by immersion of the dA20-CPE on the Fenton solution (HO
●
 

generation) in the absence/presence of antioxidants or real samples, and detection and 

measurement of the peak current of dA20 in a PBS solution at pH 7.4. 

DNA immobilization was performed by dry adsorption placing a 4 µL of 100 mg/L of 

dA20 on the CPE surface and evaporating it to dryness under a stream of nitrogen. DNA damage 

was carried out by immersing the DNA-based CPE in a freshly prepared Fenton solution in the 

absence or in the presence of antioxidant standard or chamomile extract in 2x SSPE buffer. After 

a fixed period of 30 seconds of reaction time, the DNA-based CPE was washed with water and 

immediately immersed in PBS (pH 7.4). SWV was then conducted between + 0.7 to + 1.5 V and 

the obtained oxidation peak current of dA20 was used as a detection signal. For the 

electrochemical studies, the maximum signal current obtained was for the dA20 electrochemical 

signal, with no damage or antioxidant effect.  

2.5.2. Cytotoxic activity 
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The influence of the extracts on the growth of malignantly transformed cell lines was 

evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The 

following cell lines were used: RD (cell line derived from human rhabdomyosarcoma), Hep2c 

(cell line derived from human cervix carcinoma - HeLa derivative) and L2OB (cell line derived 

from murine fibroblast). The activity of the chamomile extracts was determined by the method 

described elsewhere (Mosmann, 1983). All experiments were done in triplicate. 

2.5.3. Enzyme-inhibitory activity 

The enzyme inhibitory effects were tested against α-amylase (Caraway-Somogyi 

iodine/potassium iodide (IKI) method), α-glucosidase (PNPG (4-N-trophenyl-α-D-

glucopyranoside) method) and tyrosinase (L-DOPA (3,4-dihydroxy-L-phenylalanine) method by 

using microplate reader. The procedures were explained in previous papers (Orhan, Senol, 

Gulpinar, Sekeroglu, Kartal and Sener, 2012; Zengin, Sarikurkcu, Aktumsek, Ceylan and 

Ceylan, 2014). The inhibitory effects were evaluated and expressed as equivalents of standard 

drugs (acarbose for amylase and glucosidase; kojic acid for tyrosinase). 

2.6. Statistical analysis 

All analyses were performed in triplicate and they were expressed as means ± standard 

deviation (SD). Mean values were considered significantly different at p < 0.05 confidence level, 

after the performance of the ANOVA single/double factor statistical analysis followed by 

Tuckey test. 

3. RESULTS AND DISCUSSION 

3.1. UHPLC-HESI-MS/MS analysis of polyphenolic compounds 
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In SWE the optimal extraction temperature depends on the target compounds. The 

increase of extraction temperature produces a series of effects, including improvement of the 

mass transfer, desorption kinetics and solubility. However, the most important effects of the 

temperature in SWE are related to the weakening of hydrogen bonds, resulting in polarity 

changes. Elevated temperatures may cause degradation of compounds via numerous reaction 

paths (Plaza and Turner, 2015). Thus, a comprehensive study is needed to maximize the yield of 

target components in the final extract. 

In the current study, the relationship among the extraction temperature, the yield of 

phenolic compounds from chamomile and biological activity of extracts was observed. In the 

examined extracts, 24 different polyphenolic compounds (Tables 1 and 2) were identified and 

their solubility in subcritical water was influenced by the temperature which could be related to 

their structures. 

Regarding the flavonoids and their glucosides, the results showed that lower temperatures 

favored the extraction of glycosides (Table 1). This could be explained by the fact that sugar 

moiety increases the polarity of molecules. With heating, the polarity of water decreases and 

subcritical water becomes a moderately polar solvent. Thus, glycoside forms were better 

extracted at lower temperatures. For example, the highest yield of apigenin, luteolin, and 

naringin glucosides was achieved at 85 °C. Their concentration dropped at higher temperatures, 

probably as a consequence of hydrolysis and degradation in subcritical water. Glucosides, except 

the apigenin-7-O-glucoside, were not extracted at the temperatures above 150 °C. In case of 

apigenin-7-O-glucosides, the yields at the temperatures above 150 °C were very low, and 

insignificant differences among them were noticed (p > 0.05). For the extraction of aglycones 

apigenin, luteolin, naringenin and kaempferol, 115°C was determined to be the optimal 
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temperature. Temperatures higher than 130 °C resulted in the decrease of their yields indicating 

their degradation. When aglycones are to be extracted, the use of subcritical water at carefully 

optimized temperature allows convenient simultaneous extraction and hydrolysis. Hydrolysis of 

glycosides in subcritical water did not result in approximately equal sum of aglycones and its 

glycosides. It could be assumed that high hydrolytical potential of subcrit ical water also caused 

hydrolysis of glycosides derivatives. Other apigenin-glycoside derivatives, mainly mono- and 

diacetylated derivatives, were converted to apigenin-7-glucoside. It could be speculated that 

during SWE, a fraction of apigenin-7-O-glucoside was hydrolyzed to apigenin, while other 

derivatives of apigenin-7-glucoside were simultaneously transformed to apigenin-7-O-glucoside. 

In case of aglycones, it was noticed that applying high temperature (210 °C) is 

unjustified, due to the fact that similar yields were obtained at both 65 and 210 °C. For example, 

in case of luteolin, the yield was insignificantly changed (p = 0.058060) with increasing the 

temperature from 65 to 210 °C. 

Quercetin was detected only in its bound forms as quercetin-3-О-galactoside and 

quercetin-3-O-rutinoside. In case of both compounds, temperature rise from 85 to 150 °C 

resulted in significant differences in their yields (p < 0.05). Maximal yields of quercetin bound 

forms were achieved at the temperature of 115 ºС. At this temperature the yield of kaempferol 3-

glucoside peaked, as well. 

Catechin structurally belongs to the group of flavan-3-olswithout a keto-group in position 

4 in C-ring. The structural difference between flavanols and above discussed flavonols, between 

flavones and flavanones also influences the solubility of catechin, which was detected only in 

extract obtained at 130 °C. 

https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwinrdim5drSAhUFaRQKHRTJAjwQFggbMAA&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F68437&usg=AFQjCNEIycQgZ-5sHGC_r4OtkSvgzQeLIg&sig2=UnoOZwTqSzu7KK2a-e0Imw
https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwinrdim5drSAhUFaRQKHRTJAjwQFggbMAA&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F68437&usg=AFQjCNEIycQgZ-5sHGC_r4OtkSvgzQeLIg&sig2=UnoOZwTqSzu7KK2a-e0Imw
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The influence of hydroxyl groups in phenyl ring on solubility in subcritical water could 

be clearly seen in the case of galangin. The compound belongs to the class of flavonols without 

hydroxyl substituent in B-ring. Galangin was extracted only at 210 °C because it has higher 

hydrophobicity than other aglycones. 

Apart from flavonoids, other polyphenolics were detected as well, including various 

phenolic acids, one coumarin and one stilbene derivative. Compounds, belonging to different 

chemical classes, showed different solubility in subcritical water, which could be linked to their 

structure, the presence of double bonds, and different substituents in their structures (Table 2). 

Phloretin, which belongs to the class of dihydrochalcone, was detected only in extracts 

obtained at 210 °C. The conjugation of phenyl ring with keto-group in the molecule affected the 

stability, polarity and solubility in subcritical water. Resveratrol (stilbene class) has conjugated 

system of double bonds and this compound was detected only in extracts obtained at 180 °C and 

210 °C with the higher yield at 210 °C. Significant differences in its yield at 180 and 210 °C 

were noticed (p = 0.00017). For aesculin, a coumarin glucoside, as in the case of other flavonoid 

glucoside, glucose moiety had big influence on solubility in subcritical water; this led to the 

maximal yield at 85 °C. As the temperature is further increased, its yield decreased significantly 

(p < 0.05).  

The influence of temperature was also obvious in the case of phenolic acids (Table 2). 

Ellagic acid contains two condensed benzopyran rings with keto- and hydroxyl-groups oriented 

towards the exterior of the molecule. High potential for hydrogen bond formation suggests that 

this compound is better dissolved in SWE at lower temperature, i.e. in water with higher 

dielectric constant. In accordance with this, the maximum yield of the compound was achieved at 

the temperature of 85 °C. 

https://www.google.rs/search?biw=1366&bih=652&q=coumarin&spell=1&sa=X&ved=0ahUKEwjSu438_trSAhVGOxoKHb0xAlIQBQgTKAA
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Strong influence of polar groups on solubility in SWE was noticeable in the case of р-

hydroxybenzoic and protocatechuic acids. Hydroxyl group in meta position in protecatechuic 

acid contributed to better solubility of this compound in SWE at lower temperature compared to 

р-hydroxybenzoic acid. 

Caffeic acid, 5-О-caffeoylquinic acid, р-coumaric acid, sinapic acid, cinnamic acid and 

coniferyl aldehyde share the same structural unit consisting of 3-phenyl-2-propenoic acid 

(cinnamic acid). The solubility of these compounds in SWE depended on the position, type and 

number of substituents in the molecule. 

Cinnamic acid (3-phenyl-2-propenoic acid) has a system of conjugated double bonds in 

hydrocarbon chain extending to phenyl ring which indicates better solubility at higher 

temperatures. The results confirmed this assumption with the maximum yield of the phenolic 

acid at 210 °C. On the other hand, maximum yields of caffeic acid, 5-О-caffeoylquinic acid, and 

р-coumaric acid, were obtained at 85 °C. Such results might be explained by structural similarity 

of caffeic and р-coumaric acids, whereas 5-О-caffeoylquinic acid represents an ester of caffeic 

and quinic acids. The presence of hydroxyl and carboxyl groups in those molecules led to their 

maximal solubility in SWE at lower temperature. 

On the other hand, the maximum yield of cinnamic acid, sinapic acid, and coniferyl 

aldehyde was achieved at the temperature of 210 °C. Unlike caffeic and р-coumaric acids, 

coniferyl aldehyde and sinapic acid are ethers containing methoxy groups attached to phenyl 

ring, while cinnamic acid does not contain hydroxyl groups linked to aromatic ring. Such 

structural diversity affected solubility in SWE. By substituting polar hydroxyl groups with ether 

groups and carboxyl group with aldehyde group, the solubility of the compounds increased in 



  

18 

 

water at higher temperatures. Generally, in case of phenolic acids, an increase in temperature 

produces significant differences in its yields (p < 0.05). 

The influence of the extraction temperature on the efficiency of the extraction of phenolic 

compounds was in accordance with the existing data, indicating that compounds that are not able 

to form hydrogen bonds, and compounds with double bonds in their structure, are better 

solubilized in water at higher temperatures (Ko, Cheigh, Chung, 2014). Performed research also 

show that the system of conjugated double bonds, polar groups (hydroxyl, carboxyl, etc.) and 

glycoside moieties increase the solubility of compounds in subcritical water at lower 

temperatures (Ko et al., 2014). On the other hand, the substitution of these groups with ether 

moieties or hydrogen atom shifts the maximum solubility to higher extraction temperatures. 

3.2. Antioxidant activity  

In this paper, the relationship between extraction temperature and antioxidant activity of extracts 

was studied by different methods (Table 3) which were based on different mechanisms. 

Therefore, a more thorough insight in the antioxidant potential of extracts was provided. 

Hydroxyl radicals (OH
•
) are among the most reactive free radical species associated with 

tissue damage, degradation of proteins, insoluble lipids, carbohydrates, nucleic acids and other 

important biomolecules (Calderon and Robertfroid, 1988). Because of their negative impact on 

living systems, the capacity of their neutralization by natural molecules is of great importance. 

The capacity of chamomile extracts obtained by SWE to neutralize OH
•
 radicals was determined 

by measuring the degree of oxidation of 2-deoxy-D-ribose by hydroxyl radicals and subsequent 

measurement of the product with thiobarbituric acid. All tested extracts showed high 

neutralization capacity against OH
•
 radicals. The most potent in neutralizing OH

•
 radicals was 

the extract obtained at the temperature of 150 ºC, while the lowest activity was measured for the 



  

19 

 

sample obtained at 65 ºC. A slight increase in antiradical activity with temperature up to 150 °C 

was noticed, although there were no significant differences among the extracts obtained at 

temperatures from 65 to 130 ºC (p > 0.05). Insignificant difference was also noticed between the 

extracts obtained at 150 and 180 °C (p = 0.567869). Activity decreased at the highest 

temperature (IC50 = 41.50 µg/mL) and became similar to the activity of the extracts obtained at 

lower temperatures (65, 85, 115, 130 °C). Insignificant differences among extracts obtained at 

lower temperatures and extracts obtained at 210 °C were noticed (p > 0.05). The activity of all 

extracts was higher than antioxidant activity of standard compounds, ascorbic and gallic acids.  

The temperature of 150 °C showed to be the optimal in the case of ABTS
•+

radicals, as 

well. Generally, the influence of the extraction temperature on the scavenging ability towards 

long-living ABTS
•+

 radical species was similar to the previous case. Extraction temperatures up 

to 150 °C produced extracts with increased activity. This implies that at this temperature the 

extraction of antioxidant compounds was the most efficient. Thermochemical process and 

reactions might have contributed to the overall antioxidant activity. Neo-formed compounds 

could have been produced during the Maillard reaction or caramelization. These reactions are 

particularly favored at the temperatures between 140 °C and 160 °C (Plaza, Amigo-Benavent, 

Del Castilo, Ibáñez and Herrero, 2010). Furthermore, different constituents may appear in SWE 

extracts because of their formation during the hydrothermal conversion or because of 

rearrangement reactions. This can explain the fact that significantly higher activity of extract was 

obtained at 150 °C in comparison to all others (p < 0.05). The ability of extracts to neutralize 

ABTS
•+

 radicals was comparable with BHT, a well-known synthetic antioxidant. 

Slightly different situation was observed in the case of DPPH
•
 radicals where maximum 

antiradical activity was seen in the extract obtained at 210 °C. The obtained inhibitory 

http://www.sciencedirect.com/science/article/pii/S0963996910002668
http://www.sciencedirect.com/science/article/pii/S0963996910002668
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concentrations were in the range from 10 to 45 µg/mL, indicating a strong antiradical potential. 

The extracts obtained at the temperatures below the boiling point showed significantly lower 

activity (p < 0.05). With the temperature increase, the extracts started to be more active towards 

DPPH radicals. However, significant differences among the extracts obtained at the temperature 

above the boiling point were not noticed (p > 0.05). The exceptions were extracts obtained at 115 

and 210 °C, which showed significantly different activities among each other (p = 0.00381). As 

in the previous case, the activity was comparable with BHT (Table 3). 

The peroxidation of unsaturated fatty acids is the main cause of oxidative damage of cell 

membranes, as well as other biological systems, containing lipids (Halliwell and Gutteridge, 

1985). The ability of extracts to inhibit lipid peroxidation was evaluated by the thiocyanate 

assay. SWE extracts demonstrated high activity against inhibition of lipid peroxidation (Table 3). 

The results showed that all tested extracts inhibited the formation of hydroperoxide. The 

analyzed extracts showed different degrees of effectiveness (IC50 = 28.67 - 36.60 µg/mL). 

Increasing the temperature from 65 to 85 °C resulted in extracts which expressed significant 

differences in terms of their ability to inhibit the process of lipid peroxidation (p = 0.038656). 

Also, significant differences were observed with increasing the temperature from 130 to 150 °C 

(p = 0.0000627) and from 150 to 210 °C (p = 0.010463). Temperature of 150 ºC resulted in the 

extract with the highest potential to inhibit lipid peroxidation (IC50 = 28.67 µg/mL). The activity 

of all extracts in inhibiting lipid peroxidation was much higher in comparison to ascorbic and 

gallic acids. 

Antioxidant activity assays indicated strong influence of the extraction temperature. 

However, clear relationship between polyphenolic composition and antioxidant activity could 

not be defined. This implies that other co-extracted compounds of non-phenolic structure 



  

21 

 

contributed to antioxidant activity of the extracts. In addition, antioxidant compounds may be 

formed during the SWE process. Furthermore, synergistic effects between phenolic compounds 

and other co-extracted and neo-formed compounds influence the overall antioxidant and 

antiradical activities. 

The use of electrochemical DNA-based biosensors for the antioxidant activity assessment 

is useful because the principle of measurement is closer to the activity of antioxidants in 

biological systems by simulating the in vivo damage caused by free radicals (Barroso et al., 

2016). Basically, these biosensors are based on the DNA-based materials immobilization onto 

CPE (by adsorptive processes) which is then exposed to radicals and antioxidant compounds. 

Using SWV, the DNA damage (induced by radicals) can be monitored by analyzing the dramatic 

decreases of the electrochemical oxidation currents of the DNA nucleobases when compared 

with the DNA native electroactivity. The effects of antioxidants can be estimated by measuring 

an increase of the electrochemical current attributed to the scavenging activity of the 

antioxidants. In this work, the ability of chamomile SWE extracts to protect DNA was tested. 

The obtained results showed that all extracts expressed protective effects. As shown in Table 3, 

when the DNA-based sensor was used, all extracts presented antioxidant activity from 28 to 218 

µg GAE/mL. The highest antioxidant activity (218 µg GAE/mL) was determined in the extract 

obtained at 210 ºC, which was in accordance with results obtained in DPPH assay. The obtained 

results showed that the temperature rise from 65 to 85 °C led to the extracts which possess 

similar ability to protect DNA molecules, and the differences between these two extracts were 

insignificant (p > 0.05). Further temperature increases led to obtaining the extracts which have 

significantly different ability (p < 0.05). 
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The results show that the temperature has a direct influence on antioxidant activity of 

SWE chamomile extracts. Fine tuning of the temperature during SWE process causes makes 

changes in the ability of chamomile extracts to act as antioxidants. Taking into account overall 

results, it could be concluded that extractions at the temperatures above 150 °C resulted in 

obtaining extracts with improved antioxidant ability in comparison to the extracts obtained at 

lower temperatures. The data could be vital to the food industry. Due to the well-known 

unwanted effects of synthetic antioxidants, there is a huge tendency to use natural antioxidants as 

food additives in foods. Among good antioxidant characteristics, chamomile extracts prepared by 

SWE technique are characterized by their “green” character. Such extracts do not contain residue 

of organic/toxic solvents and there is no need for their further purification. From this point, such 

extracts can be directly used or incorporated in myriad of food products. Furthermore, avoiding 

purification makes this process economically acceptable from the industrial point of view.  

3.3.  Cytotoxic activity 

Cytotoxic activity of the extracts was evaluated against three cell lines and compared 

with standard cytotoxic compound (cis-diamminedichloroplatinum - cis-DDP). Both extracts and 

the standard caused considerable dose-dependent inhibition of the cell growth. Strong influence 

of the extraction temperature on the cytotoxic activity was noticed (Table 4). Based on the 

criterion for cytotoxic activity for plant extracts (IC50< 30 µg/mL) (Itharat, Houghton, Eno-

Amooquaye, Burke, Sampson, Raman, 2004), the extracts obtained at temperatures above 115 

°C may be considered as potent cytotoxic agents. 

For all tested cell lines, extracts obtained at 65 and 85 ºC showed the lowest activity 

against growth inhibition. Further increase in the extraction temperature resulted in better 

activity. Maximum activity was seen in extracts obtained at 115 ºC for all tested cell lines. 
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Measured IC50 values for extracts obtained at this temperature in the case of Hep2c, RD and 

L2OB were 13.44, 16.44 and 30.52 mg/mL, respectively. Further temperature increase led to 

higher IC50 values, but samples still retained their high activity. Generally, it was noticed that 

temperatures below water boiling point did not result in high activity of the extracts. According 

to these findings, temperature of 115 °C is preferable if the aim is to obtain extracts with 

maximum cytotoxic activity. The increase in temperature from 65 to 85 °C resulted in significant 

differences among the extracts (p < 0.05). In case of Hep2C and RD cell lines, insignificant 

differences were noticed among the extracts obtained at 150 and 180 °C, 150 and 210 °C, 180 

and 210 °C (p > 0.05). In the case of L2OB, insignificant differences were observed between the 

extracts obtained at 130 and 150 °C (p = 0.104325), and between the extracts obtained at 150 and 

210 °C (p = 0.962278). 

The highest activity of extract obtained at 115 ºC may be linked with its composition. 

Based on previous findings described in this work, extracts obtained at 115 ºC, had the highest 

concentration of flavonoid aglycones (apigenin, luteolin, naringenin, kaempferol) but also other 

phenolic compounds (quercetin-3-O-galactoside, kaempferol-3-O-glucoside, rutin). Antitumor 

effects of these compounds have been well documented in the literature (Chen et al., 2013; 

Ganeshpurkar and Saluja, 2017; Lee, Han, Yun and Kim, 2015; Sudan and Rupasinghe, 2014), 

thus their presence in extracts probably contributed to cytotoxicity of the extracts. In addition, 

high concentration of other phenols, the specificity of the composition of subcritical water 

extracts and synergism could have been responsible for such high activity of the extracts. This is 

especially important because different unknown processes can occur in subcritical water and 

produce beneficial bioactivities of obtained extracts. It was already reported in the literature that 

chamomile extracts obtained by SWE exhibit higher cytotoxic potential in comparison to 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ganeshpurkar%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28344465
https://www.ncbi.nlm.nih.gov/pubmed/?term=Saluja%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=28344465
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sudan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24692698
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rupasinghe%20HP%5BAuthor%5D&cauthor=true&cauthor_uid=24692698
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chamomile extracts obtained by other modern techniques (Cvetanović et al., 2015). When it 

comes to cytotoxicity of SWE extracts, the results obtained in this study showed higher activity 

in comparison to those in the literature. This confirms the statement that balancing in water 

temperature and thus in its polarity could have multiple influence on extracts. Such results could 

be valuable for fine tuning the extracts composition and their activities.  

3.4. Enzyme-inhibitory activity 

The inhibition of α-amylase and α-glucosidase, the main enzymes in carbohydrates 

metabolism, plays a crucial role in control of blood glucose level and diabetes. The potential of 

chamomile to inhibit these enzymes has already been shown previously (Cvetanović et al., 

2017). However, the influence of the extraction temperature on the activity has not yet been 

discussed. 

The activity of SWE chamomile extracts towards inhibition of α-amylase and α-

glucosidase were expressed as the equivalents of acarbose per gram of dry extract. The analyzed 

extracts were more active against inhibition of α-glucosidase (Lazarova et al., 2015). 

The extract obtained at 85ºC exhibited the highest activity against α-glucosidase (4.13 

mmol AE/g) followed by the extract obtained at the temperature of 65 ºC (3.98 mmol AE/g). 

Temperatures above 85 ºC caused the decrease in activity. However, significant differences 

between these two extracts were not noticed (p = 0.498565). Noticeably lower activity was 

observed for the samples obtained at the temperature above 130 ºC. Insignificant differences 

among the extracts obtained at: 115 and 130 °C (p = 0.228223), 150 and 180 °C (p = 0.017105) 

as well as between 180 and 210 °C (p = 0.986179) were noticed. Among all other extracts, the 

differences in activity were significant (p < 0.05). The highest activity of the extract obtained at 

85 ºC could be a consequence of its specific composition. This extract had the highest content of 
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p-coumaric, 5-О-caffeoylquinic, caffeic, ellagic, protocatechuic acid, followed by aesculin 

(coumarin glycoside), and apigenin-7-O-glucoside, luteolin-7-O-glucoside and naringin 

(naringenin-7-О-neohesperidoside). Research suggest that glycosides are more active molecules 

in the inhibition of α-amylase and α-glucosidase than aglycones (Grussu, Stewart, McDougall, 

2011, Dou et al., 2012). Extraction of these components was more efficient at lower 

temperatures, which might have been related to the better activity of the samples.The activity 

against α-amylase was in the range from 0.39 mmol AE/g to 0.51 mmol AE/g. The highest 

activity was noticed at the lowest extraction temperature, while further temperature increase led 

to the decline in activity with lowest activity seen at 150 °C (Figure 1). The extract obtained at 

the lowest temperature showed significantly higher activity in comparison to the extracts 

obtained at 130 °C (p = 0.046115), 150 °C (p = 0.005776), 180 °C (p = 0.023075) and 210 °C (p 

= 0.046210). The differences in the activity were insignificant for all other extracts (p > 0.05). 

Tyrosinase is the key enzyme in melanin synthesis and has been linked to melanoma and 

different pigmentation disorders. Synthetic tyrosinase inhibitors exhibit side-effects, such as high 

cytotoxicity and dermatitis (Chiari, Vera, Palacios, Carpinella, 2011). The first natural tyrosinase 

inhibitor glabridin was isolated from the roots and seeds of Glycyrrhiza species. The compound 

is 15 times more potent in comparison to kojic acid and also it also possesses higher activity than 

arbutin (Yokota, Nishio, Kubota and Mizoguchi, 1998). In traditional cosmetics, chamomile is 

known as natural skin lightener for its constituents such as endothelin inhibitor. Tyrosinase 

inhibitory activity of chamomile has not been described well in literature. Our previous study 

gave the first information on the ability of SWE chamomile extracts to inhibit tyrosine 

(Cvetanović et al., 2017).  

https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiZv4r4gNvSAhWEiRoKHdf7COYQFggaMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAesculin&usg=AFQjCNEripCQo0lF1heZ6D1XrZZFoRyXOw&sig2=xZp2yAHi0aHPUb_ZIyiFog
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Inhibitory activity of chamomile extracts obtained at different temperatures is illustrated 

in Figure 2 and is expressed as the kojic acid equivalents per gram of dried extract (KAE mg/g). 

The lowest activity was noticed for the extract obtained at 65 ºС (5.37 mg KAE/g). The activity 

of this extract was significantly lower in comparison to all other extracts (p < 0.05). On the other 

hand, extracts obtained at 210 ºС showed significantly higher ability (17.92 mg KAE/g) to 

inhibit tyrosinase (p < 0.05). This could be a consequence of its composition. Unlike the other 

extracts, in the sample obtained at 210 °C galangin, phloretin, and resveratrol were detected. The 

first one – galangin, has been identified as a potent tyrosinase inhibitor (Li, Chen, Huang, Wang, 

Zhang, 2003). It was also proven that phloretin can fade melanin stains, making the skin whiter, 

with proven effects superior to kojic acid and arbutin. Phloretin is used as a new type of 

whitening agent in cosmetics (Zuo et al., 2014). Apart from these two, research suggests that 

resveratrol can be used as an original substrate for tyrosinase and that it has very promising 

cosmetic perspectives (Bernard and Berthon, 2000). Furthermore, high activity towards 

tyrosinase inhibition could be a consequence of the presence of non-flavonoid structures which 

also possess tendency to inhibit the tyrosinase-α (e.g., alkaloids). The plant extracts have very 

complex matrix and the interactions of several bioactive phytochemicals (synergetic or 

antagonistic actions) may be effective on the observed enzyme inhibitory effects. Taking into 

consideration these aspects, the most effective extraction condition is one of the most important 

steps for designing valuable ingredients. With respect to this fact, the presented results could 

open new avenues for developing functional products from chamomile.  

4. CONCLUSION 

The chamomile extracts obtained by subcritical water at different temperatures were 

compared in respect to their chemical profiles and biological activity. Chemical profiles of the 
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tested extracts defined by UHPLC-DAD-HESI-MS/MS analysis showed rich phenolic profiles 

and 24 compounds were identified and quantified. The analysis confirmed the presence of 

different flavonoids, glycosides, phenolic acids, and other compounds of polyphenolic structure. 

Apigenin was the dominant compound and its yield varied from 230.98 to 1501.25 mg/kg 

depending on the extraction temperature. Its maximal concentration was measured in extracts 

obtained at 115 °C. Phenolics with conjugated double bonds and glucose moiety were better 

solubilized by subcritical water at lower temperatures, whereas substitution with H-atoms or 

ether moiety led to better solubility in subcritical water of higher temperatures. Biological 

activity of extracts was highly influenced by the extraction temperature. It was demonstrated that 

the extraction temperature of 150 °C was optimal for obtaining extracts with maximal 

antioxidant activity. The extracts obtained at 115 °C had the highest yield of apigenin and 

demonstrated the highest cytotoxic activity towards three different cell lines. Lower extraction 

temperatures (65-85 °C) produced extracts with higher anti-diabetic activity, in contrast to the 

anti-tyrosinase activity, where higher extraction temperature (210 °C) was recommended for the 

maximum activity. 
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Figure Captions 

Figure 1. The activity of chamomile extracts obtained at different temperatures against α-

glucosidase and α-amylase inhibition; Significant differences among the samples 

obtained at different temperatures are indicated by different letters (P < 0.05). ). Error 

bars represent standard error of the mean for 3 replicates. 

Figure 2. The activity of chamomile extracts obtained at different temperatures against 

tyrosinase inhibition; Significant differences among the samples obtained at different 

temperatures are indicated by different letters (P < 0.05). ). Error bars represent 

standard error of the mean for 3 replicates. 
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Figure 2. The activity of chamomile extracts obtained at different temperatures against tyrosinase 

inhibition; Significant differences among the samples obtained at different temperatures are 

indicated by different letters (P < 0.05). Error bars represent standard error of the mean for 3 

replicates. 
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Table 1. The influence of the extraction temperature on yields of flavonoids and their glycosides 

Compounds 

Yield (mg/kg*) 

65°C 85°C 115°C 130°C 150°C 180°C 210°C 

Apigenin-7-O-glucoside 47.5d 158a 69.9b 53.4c 2.58e 0.09f - 

Apigenin  231g 740c 1501b 1297a 634d 283f 298e 

Kaempferol-3-O-glucoside - - 24.5a - - - - 

Kaempferol  10.5e 29.2b 60.4a 58.7a 27.1b 14.5d 19.8c 

Luteolin-7-O-glucoside 351b 1101a 278c 166d - - - 

Luteolin 24.3e 55.2c 97.2a 83.2b 36.3d 20.7f 27.0e 

Naringin 

(Naringenin-7-O-

neohesperoside) 

1.44bc 4.08a 2.32ab - - - - 

Naringenin 1.62d 4.63bc 7.87a 6.64ab 3.37cd 1.55d 1.52d 

Rutin (Quercetin-3-O-

rutinoside) 
- - 5.35a 2.15b - - - 

Quercetin-3-O-galactoside - - 4.69a 3.01b - - - 

Catechin - - - 46.1a - - - 



  

38 

 

Galangin - - - - - - 2.22a 

* mg of compound per kg of dry extract.  

Significant differences between the contents of samples obtained at different temperatures are 

indicated by different letters (P < 0.05). 

 

 

 

 

Table 2. The influence of the extraction temperature on yields of polyphenolic compounds 

Compounds 

Yield (mg/kg*)   

65°C 85°C 115°C 130°C 150°C 180°C 210°C 

Phloretin - - - - - - 1.26a 

Resveratrol  - - - - - 15.9b 30.4a 

Aesculin 212b 326a 85.1c 56.9d 4.84e - - 

Ellagic acid  14.1f 30.2a 18.4cd 20.8bc 22.7b 15.4ef 17.0de 

p-Hydroxybenzoic acid - 259d 497c 535b 558a 208e 184f 

Protocatechuic acid 2.44b 34.4a - - - - - 

Caffeic acid - 134a - - - - - 

Sinapic acid 14.2g 39.2f 69.1d 55.5e 120b 113c 150a 

Cinnamic acid - - - - - 4.55b 6.80a 

5-O-caffeoylquinic acid 148b 188a 24.3c 18.1d 6.56e - 8.35e 
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p-Coumaric acid 55.4b 79.3a 13.6c 9.70d 8.42d 7.51d 10.2d 

Coniferyl aldehyde - - - - - - 7.62a 

* mg of compound per kg of dry extract.  

Significant differences between the contents of samples obtained at different temperatures are 

indicated by different letters (P < 0.05). 
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Table 3. Antioxidant activity of chamomile extracts obtained at different temperatures. 

Extraction 

temperature 

IC50 values (µg/mL)* 

DNA-based 

sensor 

(µGAE/mL)* 

OH 

scavenging 

capacity 

ABTS 

scavenging 

capacity 

DPPH 

scavenging 

capacity 

Inhibition of 

lipid 

peroxidation  

65 °C 43.1±0.9a 16.8±0.6a 45.0±1.4a 32.6±1.1a 57.0 ± 4.1d,e 

85 °C 42.7±0.4a 15.5±0.3b 28.3±2.0b 35.0±0.9a 40.5 ± 3.2e,f 

115 °C 42.7±0.2a 14.6±0.5b 15.3±0.5c 34.9±0.8a 147 ± 13b 

130 °C 42.1±1.1a 12.5±0.3c 13.6±0.6c,d 32.8±0.7a 107 ± 10c 

150 °C 38.1±0.6a 7.3±0.1d 12.5±0.0c,d 28.7±0.6b 78.8 ± 1.4d 

180 °C 39.2±0.7b 14.9±0.5b 13.5±2.3c,d 29.7±0.6b 28.9 ± 4.6f 

210 °C 41.5±0.9b 15.3±0.2b 10.0±0.6d 32.6±1.1a 219 ± 9.0a 

Gallic acid 59.1±1.1 2.00±0.41 3.79±0.69 255±12  

Ascorbic acid 160.5±2.3 11.0±0.9 6.05±0.34 >1000  

BHT 33.9±0.8 7.23±0.87 15.61±1.26 1.00±0.23  

α-tocopherol    0.48±0.05  

*
±2SD; BHT- Butylated hydroxy toluol; GAE-Galic acid equivalent  

Significant differences between the activities of samples obtained at different temperatures are 

indicated by different letters (P < 0.05) within a column. 
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Table 4. Cytotoxic activity of SCW chamomile extracts obtained at different temperatures. 

Cell line 

IC50 Values (µg/mL) 

65 °C 85 °C 115 °C 130 °C 150 °C 180 °C 210 °C 

Hep2C 

cellsA 
90.9± 0.9a 34.4 ± 0.6b 13.4±1.4e 17.5±0.5d 24.0 ± 1.8c 23.5±1.1c 25.9±1.0c 

RD cellsB 96.2±0.5a 47.3±0.5b 16.4±0.2d 19.6±1.6d 25.1±1.2c 26.8±0.7c 26.4±1.9c 

L2OB 

cellsC 
132±0.41a 110±0.52b 30.5±0.9e 44.4±1.1d 42.0±0.5d 61.5±2.0c 41.2±0.5d 

* Mean value ± 2SD; Significant differences between the activity of samples obtained at different 

temperature are indicated by different letters (P < 0.05). 

Acell line derived from human cervix carcinoma; 

Bcell line derived from human rhabdomyosarcoma; 

Ccell line derived from murine fibroblast. 
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Highlights 

 Extraction of chamomile by subcritical water 

 Influence of temperature on chemical composition of obtained extracts 

 Biosensor DNA assays for antioxidant potential of extracts 

 Influence of temperature on biological activity of the extracts 

 

 


