
ar
X

iv
:1

81
2.

00
39

7v
2 

 [
m

at
h.

M
G

] 
 9

 O
ct

 2
01

9

Polytopal Bier spheres and Kantorovich-Rubinstein

polytopes of weighted cycles

Filip D. Jevtić
Mathematical Institute

SASA, Belgrade

Marinko Timotijević
Faculty of Science

University of Kragujevac

Rade T. Živaljević
Mathematical Institute

SASA, Belgrade

October 1, 2019

Abstract

The problem of deciding if a given triangulation of a sphere can be realized as the
boundary sphere of a simplicial, convex polytope is known as the ‘Simplicial Steinitz
problem’. It is known by an indirect and non-constructive argument that a vast ma-
jority of Bier spheres are non-polytopal. Contrary to that, we demonstrate that the
Bier spheres associated to threshold simplicial complexes are all polytopal. Moreover,
we show that all Bier spheres are starshaped. We also establish a connection between
Bier spheres and Kantorovich-Rubinstein polytopes by showing that the boundary
sphere of the KR-polytope associated to a polygonal linkage (weighted cycle) is iso-
morphic to the Bier sphere of the associated simplicial complex of “short sets”.

Keywords: Kantorovich-Rubinstein polytopes, Gale transform, Bier spheres, polyhedral
combinatorics, simplicial Steinitz problem, polygonal linkages
MSC2010: 52B12, 52B35, 52B70

1 Introduction

The classic theory of the optimal transportation, as developed by L. Kantorovich [K42,
Vi1, Vi2], is one of the pillars of the theory of linear programming [Ve2, Vi1]. The central
paradigm of the theory is the Kantorovich duality principle [Vi1], in its manifold forms and
incarnations. It includes, as one of the central consequences, the Kantorovich-Rubinstein
theorem [Vi1, Theorem 1.14], which pertains to the case when the cost function is a metric.

Much more recent is the research program, proposed by A. Vershik in [Ve4], of study-
ing “fundamental polytopes” or Kantorovich-Rubinstein polytopes as a tool for classifying
metric spaces from the view point of polyhedral combinatorics (see Section 4 for an out-
line). These ideas can be traced back to Vershik’s earlier publications [Ve2, Ve3], especially
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[MPV] (with J. Melleray and F. Petrov) and to Kantorovich himself, see [K-R] where the
Kantorovich-Rubinstein norm ‖µ− ν‖KR is introduced.

Bier spheres Bier(K), where K ( 2[n] is an abstract simplicial complex, are combi-
natorially defined triangulations of the (n − 2)-dimensional sphere Sn−2 with interesting
combinatorial and topological properties, [Lo1, M03]. These spheres are known to be
shellable [BPSZ, ČD]. Moreover it is known, by an indirect and non-effective counting
argument, that the majority of these spheres are non-polytopal, in the sense that they do
not admit a convex polytope realization, see [M03, Section 5.6]. They also provide one of
the most elegant proofs of the Van Kampen-Flores theorem [M03] and serve as one of the
main examples of “Alexander complexes” [JNPZ].

Threshold complexes are ubiquitous in mathematics and arise, often in disguise and
under different names, in areas as different as cooperative game theory (quota complexes
and simple games) and algebraic topology of configuration spaces (polygonal linkages,
complexes of short sets) [CoDe, Far, GaPa].

The following theorem establishes a connection between the boundary ∂KR(dL) of the
Kantorovich-Rubinstein polytope of a weighted cycle, and the Bier sphere of the threshold
complex of “short sets” of the associated polygonal linkage.

Theorem 1.1. Suppose that L = (l1, l2, . . . , ln) ∈ Rn
+ is a strictly positive vector such

that
∑n

i=1 li = 1. Let µL be the associated measure (weight distribution) on [n] and let
Short(L) = TµL<1/2 := {I ⊆ [n] | µL(I) <

1
2
} be the associated simplicial complex of “short

sets”. We assume that L is generic in the sense that (∀I ⊂ [n]) µL(I) 6= 1
2
. Let L̂ be

a weighted cycle (linkage) with bars of the length li and let dL be the associated geodesic
distance function on [n]. Then

∂KR(dL) ∼= Bier(Short(L)) . (1.2)

The proof of Theorem 1.1, with all preliminary definitions and introductory facts, can
be found in Section 4.

As a corollary of (1.2) we observe that the Bier spheres associated to complexes of
generic short sets are always polytopal. In Section 2 (Theorem 2.3) we prove a more
general result, somewhat surprising and interesting in itself, that the Bier spheres of any
threshold complex (with an arbitrary quota and not necessarily generic) is polytopal. This
should be compared to the fact (proven by an indirect and non-constructive argument)
that a vast majority of Bier spheres are non-polytopal.

By an old result of Steinitz all triangulations of S2 are polytopal and the problem
of testing if a triangulation of a sphere is polytopal is known as the “Simplicial Steinitz
problem”. A closely related problem is the study of the asymptotic behavior of the number
of nonisomorphic combinatorial types of triangulated (shellable, polytopal, starshaped,
etc.) spheres with n-vertices. Early work of Goodman and Pollack [GP-1, GP-2], together
with the estimates of Kalai [Ka], showed that asymptotically very few triangulated spheres
are polytopal. Far reaching new results of this type, as well as a guide to some of the more
recent publications, can be found in [B-Z, NSW, P-Z].
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Recall that not all triangulations of (n− 2)-dimensional spheres are starshaped in the
sense that they admit a starshaped geometric realization in Rn−1. An example of such a
sphere can be found in [E, Theorem 5.5]. Our third main result, Theorem 3.5, claims that
all Bier spheres (associated to all simplicial complexes K ( 2[n]) are starshaped.

The notation and terminology in the paper is fairly standard. The book [E] is a general
reference for the geometry of convex sets while the book [M03] provides an interesting
and gentle introduction to combinatorial topology, with the emphasis on applications to
combinatorics and discrete geometry.

2 Polytopal Bier spheres

The Alexander dual of a simplicial complex K ( 2[n] is the complex K◦ = {Ic | I /∈ K}.
Suppose that u1 + u2 + · · · + un = 0 is a ‘minimal circuit’ in Rn−1, meaning that each
proper subset of the collection of vectors {ui}

n
i=1 is linearly independent. Suppose that

L = (l1, l2, . . . , ln) ∈ Rn
+ is a strictly positive vector. The associated measure (weight

distribution) µL on [n] is defined by µL(I) =
∑

i∈I li (for each I ⊆ [n]).

Given a threshold ν > 0, the associated threshold complex is TµL<ν := {I ⊆ [n] |
µL(I) < ν}. Without loss of generality we assume that µL([n]) = l1 + · · ·+ ln = 1.

Remark 2.1. If K = TµL<ν is a threshold complex then K = TµL<ν−ǫ for each sufficiently
small ǫ > 0. It follows that we may assume, without loss of generality, that µL(I) 6= ν
for each I ⊆ [n] and, as a consequence, we may assume that the Alexander dual of K is
K◦ = TµL≤1−ν = TµL<1−ν .

For a simplicial complex K ⊂ 2[n] let K◦ its Alexander dual, and let ∆S = Conv{ei}i∈S
be the geometric simplex spanned by S ⊆ [n]. Recall that for K,L ⊆ 2[n], the deleted join
K ∗∆ L is a subcomplex of the join ∆[n] ∗∆[n] defined by K ∗∆ L := {A ⊎B | A ∈ K,B ∈
L,A ∩B = ∅}.

For K ( 2[n], the associated Bier sphere is the deleted join,

Bier(K) := K ∗∆ K◦ ⊂ ∆[n] ∗∆ ∆[n]
∼= ∂♦[n] (2.2)

where ∂♦[n] is the boundary sphere of the n-dimensional cross-polytope ♦[n] = Conv{±ei}
n
i=1.

Theorem 2.3. Bier(TµL<ν) is isomorphic to the boundary sphere of a convex polytope.

Proof: Let yi = ui

li
which implies that l1y1+ l2y2+ · · ·+ lnyn = 0 is (up to a multiplicative

constant) the unique linear dependence of these vectors. Let α > 0 a positive constant and
β = 1

α
.

Let ∆ := Conv{yi}
n
i=1 ⊂ Rn−1 be the simplex spanned by yi and ∇α := −α∆ the

simplex spanned by the vectors −αyi. We want to show that there exists α > 0 such that
the Bier sphere Bier(TµL<ν) is isomorphic to the boundary sphere of the convex polytope,

Qα := Conv(∆ ∪∇α) = Conv{y1, y2, . . . , yn,−αy1,−αy2, . . . ,−αyn} . (2.4)
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A linear transform of the collection of vectors (2.4), representing vertices of the polytope
Qα, is easily found and can be read off from the following matrix relation,

[y1 y2 . . . yn −αy1 −αy2 . . . −αyn]
[

LT αIn
0 In

]

= 0 (2.5)

where LT = (l1, . . . , ln)
T is a column vector and In the identity (n× n)-matrix. If y is the

row matrix y = [y1 y2 . . . yn] then the relation (2.5) can be rewritten as,

[y −αy]
[

LT αIn
0 In

]

= 0 . (2.6)

Let z : Rn−1 → R be a non-zero linear form such that the associated hyperplane
Hz := {x ∈ Rn−1 | 〈z, x〉 = 1} is a supporting hyperplane of Qα. The corresponding face
of the polytope Qα is described by a pair (I, J) of subsets of [n] recording which vertices
of the polytope Qα belong to the hyperplane Hz. More explicitly

Qα ∩Hz = Conv({yi}i∈I ∪ {−αyj}j∈J) . (2.7)

It follows from (2.6) that,

[〈z, y〉 〈z,−αy〉]
[

LT αIn
0 In

]

= 0 (2.8)

where 〈z, y〉 = [〈z, y1〉 . . . 〈z, yn〉]. It follows from (2.7) that the ordered pair (I, J) of
subsets of [n] must satisfy the following:

(∀i ∈ I) 〈z, yi〉 = 1 (∀j ∈ J) 〈z,−αyj〉 = 1 (2.9)
(∀k /∈ I) 〈z, yk〉 < 1 (∀k /∈ J) 〈z,−αyk〉 < 1 (2.10)

From these relations it follows:

I ∩ J = ∅ and ∅ 6= I ∪ J 6= [n] (2.11)

(∀k /∈ I ∪ J) − β < 〈z, yk〉 < 1 (2.12)

From (2.12) and the relation,
∑

i∈[n]

li〈z, yi〉 = 0 =
∑

i∈I

li −
∑

j∈J

βlj +
∑

k/∈I∪J

lk〈z, yk〉 (2.13)

we deduce the following inequalities,

− µL((I ∪ J)c) < µL(I)− βµL(J) < βµL((I ∪ J)c) . (2.14)

The inequalities (2.14) can be rewritten as follows,

µL(J
c) > βµL(J) and µL(I) < βµL(I

c) . (2.15)
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In light of the assumption
∑n

i=1 li = 1 we finally obtain the inequalities,

µL(I) <
β

1 + β
and µL(J) <

1

1 + β
. (2.16)

In other words each face of the polytope Qα, described by the equation (2.7), is asso-
ciated a simplex (I, J) ∈ Bier(TµL<ν) where ν = β

1+β
.

Conversely, let (I, J) ∈ Bier(TµL<ν) be a face of the Bier sphere. Then the equation
(2.16) is translated back to (2.14) and we can choose 〈z, yk〉 (for k /∈ I∪J) satisfying (2.12)
such that the equality (2.13) is also satisfied.

More explicitly, let X = 1− µL(I)− µL(J) =
∑

i/∈I∪J li = µ((I ∪ J)c). Then

−X < µL(I)− βµL(J) < βX (2.17)

and there exists γ ∈ (0, 1) such that

µL(I)− βµL(J) = −γX + (1− γ)βX (2.18)

which is equivalent to

0 = µL(I)− βµL(J) +X(γ + (1− γ)(−β)) . (2.19)

Let us choose z such that 〈z, yk〉 satisfies the equations (2.9) for k ∈ I∪J while for k /∈ I∪J

〈z, yk〉 = γ · 1 + (1− γ)(−β) . (2.20)

This is possible in light of the equality (2.13). In turn this proves the validity of relations
(2.9) and (2.10) and eventually leads to (2.7). This observation completes the proof of the
theorem. �

3 Starshaped Bier spheres

A d-dimensional triangulated sphere Σd is starshaped if there exists an embedding e :
Σd → Rd+1, linear (affine) on simplices of Σd, and a point c ∈ Rd+1 \ e(Σd), such that
[c, x] ∩ [c, y] = {c} for each pair x 6= y of distinct points in e(Σd).

As shown by Ewald and Schulz in [E-S], for each d ≥ 4 there exists a (d−1)-dimensional
simplicial sphere which cannot be embedded in Rd as a starshaped set. An example of such
a sphere is also described in [E, Theorem 5.5].

Surprisingly enough all Bier spheres turn out to be starshaped. As a consequence Bier
spheres provide (at least statistically) numerous examples of non-polytopal, starshaped
spheres. Indeed, according to [M03] there are more than 2(2

n/n)−2n2 nonisomorphic Bier
spheres, while the number of different combinatorial types of (n−1)-dimensional, simplicial
convex polytopes with 2n vertices is not larger than 24n

3

.
Note that an exponential upper bound to the number of starshaped sets in terms of

the number of facets was recently proven in [AdBe, Theorem 2.5].
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From here on we make a clear distinction between combinatorial, geometric, and topo-
logical (deleted) join of simplicial complexes, as emphasized and discussed in [M03, Sec-
tion 4.2]. For example the “combinatorial deleted join” representation ∆[n] ∗∆∆[n]

∼= ∂♦[n],
used in (2.2), naturally leads to a “geometric deleted join” representation

∆e ∗∆ ∆−e = ∂♦[n] (3.1)

where ∆e = Conv{ei}
n
i=1 and ∆−e = Conv{−ei}

n
i=1. More generally, for each (labeled)

set b = {bi}
n
i=1 of affinelly independent vectors, there is an associated geometric simplex

∆b = Conv{bi}
n
i=1. Moreover, if S ∈ K ⊆ 2[n] is a simplex in an abstract simplicial

complex, then the associated b-realization is the geometric simplex Rb(S) = Conv{bi}i∈S.
For example if δ = (δ1, . . . , δn) is defined by δi = ei −

u
n
, where u = e1 + · · ·+ en, then

∆δ = Conv{δi}
n
i=1 and ∆−δ = Conv{−δi}

n
i=1 . (3.2)

If T ⊆ [n] then T is the corresponding subset of [n̄] = {1̄, 2̄, . . . , n̄}. The ‘tautological
geometric realization’ of the abstract simplicial complex Bier(K) = K ∗∆ K◦ ⊂ 2[n] ∗ 2[n̄]

is the geometric simplicial complex

R±e(Bier(K)) = {Re(S) ∗R−e(T ) | (S, T ) ∈ K ∗∆ K◦} (3.3)

where Re(S) ∗R−e(T ) = Conv(Re(S)∪R−e(T )) ⊂ ∂♦[n] is the geometric join of simplices.
Similarly, we define the ‘canonical geometric realization’ R±δ(Bier(K)) by replacing e and
−e in (3.3) respectively by δ and −δ. By construction

R±δ(Bier(K)) = π(R±e(Bier(K))) ⊂ H0 (3.4)

where π : Rn → H0 := {x ∈ Rn | 〈u, x〉 = 0} is the orthogonal projection.
It remains to be shown that R±δ(Bier(K)) is indeed a geometric realization of the

abstract simplicial complex Bier(K) and that it is precisely the desired starshaped real-
ization.

Theorem 3.5. Let K ( 2[n] be a simplicial complex and let Bier(K) be the associated Bier
sphere. Then R±δ(Bier(K)) is a geometric realization of the abstract simplicial complex
Bier(K) which is starshaped as a subset of H0 := {x ∈ Rn | 〈u, x〉 = 0}.

Proof: Let cone(C) = ∪λ≥0 λC be the convex cone with the apex at the origin generated
by a convex set C ⊂ H0. The theorem will follow from the observation that the collection
of convex cones

Cone±δ(K) = {Cone(Rδ(S) ∗R−δ(T )) | (S, T ) ∈ K ∗∆ K◦} (3.6)

is a complete simplicial fan in H0. Recall [E, Chapter III] that a family Σ of simplicial
cones (in V ) with apex 0 is a complete simplicial fan if Σ is a covering of V and for each
two cones C1, C2 ∈ Σ the intersection C1∩C2 is their common face which is also an element
in Σ.

6



We establish that (3.6) is a complete fan by showing that the associated geometric
“shore subdivision” Shore±δ(K) (see [Lo2, Section 4.3]), obtained by the shore subdivision
of each cone(Rδ(S) ∗ R−δ(T )) ∈ Cone±δ(K), coincides with the fan Σ generated by the
barycentric subdivision of the boundary of the simplex ∆δ.

In the sequel we denote by ν(∆) the barycenter of a geometric simplex ∆. If ∆ = Rb(S)
we also write νb(S) := ν(Rb(S)). By definition each cone C ∈ Shore±δ(K), subdividing
cone(Rδ(S) ∗R−δ(T )), is positively spanned by the vectors

νδ(S1), . . . , νδ(Sp), ν−δ(Tq), ν−δ(Tq−1), . . . , ν−δ(T1) (3.7)

where
S1 ⊂ S2 ⊂ · · · ⊂ Sp ⊆ S and T1 ⊂ T2 ⊂ · · · ⊂ Tq ⊆ T . (3.8)

On the other hand the cone spanned by (3.7) coincides with the cone positively spanned
by the vectors

νδ(S1), . . . , νδ(Sp), νδ(T
c
q ), νδ(T

c
q−1), . . . , νδ(T

c
1 ) (3.9)

(where T c
j = 2[n] \ Tj). In light of the fact that (S, T ) ∈ K ∗∆ K◦, the condition (3.8) is

equivalent to the condition

S1 ⊂ S2 ⊂ · · · ⊂ Sp ⊆ S ⊂ T c ⊆ T c
q ⊂ T c

q−1 ⊂ · · · ⊂ T1 (3.10)

This is precisely the condition that the positive span of (3.10) is a cone in Σ. �

The reader familiar with [Lo1] (see also [Lo2]) will agree that the proof of Theorem 3.5
can be concisely described as a geometrization of the short and elegant proof of Mark de
Longueville that Bier(K) triangulates a sphere. Note however that the very existence of
a canonical starshaped realization R±δ(Bier(K)) of Bier(K) is interesting in itself and
have some interesting consequences. For example it allows to compare Bier spheres by the
volume of the associated starshaped body

Star(K) = {λx ∈ H0 | x ∈ R±δ(Bier(K)) and 0 ≤ λ ≤ 1} . (3.11)

Moreover, it allows us to give a geometric interpretation of the classification of autodual
simplicial complexes described in [Tim].

4 Kantorovich-Rubinstein polytopes

Let (X, ρ), |X| = n, be a finite metric space and let V (X) := RX ∼= Rn be the associated
vector space of real valued functions (weight distributions, signed measures) on X. Let
V0(X) := {µ ∈ V (X) | µ(X) = 0} be the vector subspace of measures with total mass
equal to zero, and ∆X := {µ ∈ V (X) | µ(X) = 1 and (∀x ∈ X)µ({x}) > 0} the simplex
of probability measures.

Let Tρ(µ, ν) be the cost of the optimal transportation of measure µ to measure ν, where
the cost of transporting the unit mass from x to y is ρ(x, y). Then, as shown in [Ve2, Vi1],
there exists a norm ‖ · ‖KR on V0(X) (called the Kantorovich-Rubinstein norm), such that,

Tρ(µ, ν) = ‖µ− ν‖KR,
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for each pair of probability measures µ, ν ∈ ∆X .

Definition 4.1. The Kantorovich-Rubinstein polytope KR(ρ), associated to a finite metric
space (X, ρ), is the unit ball of the KR-norm in V0(X),

KR(ρ) = {x ∈ V0(X) | ‖x‖KR 6 1}. (4.2)

The following explicit description for KR(ρ) can be deduced from the Kantorovich-
Rubinstein theorem (Theorem 1.14 in [Vi1]),

KR(ρ) = Conv

{

ex − ey
ρ(x, y)

| x, y ∈ X

}

, (4.3)

where {ex}x∈X is the canonical basis in RX . More information about KR-polytopes can be
found in [DH, GoPe, JJZ].

4.1 Metrics induced by weighted graphs

Let Γ be a simple graph on the set of vertices V (Γ) = [n] with the set of edges E(Γ) ⊂ 2[n].
We say that the graph Γ is positively weighted if we have chosen a positive weight function
w : E(Γ) → R+.

Definition 4.4. Let Γ = Γ([n], E(Γ), w) be a connected graph with a positive weight func-
tion w : E(Γ) → R+. The associated “geodesic metric” dΓ on [n] is defined by

dΓ(i, j) = di,j = min
S∈Pij

∑

e∈S

w(e) , (4.5)

where Pij is the collection of all paths connecting vertices i and j.

Definition 4.4 is meaningless if the graph is not connected so in all subsequent statements
we tacitly assume that Γ is a connected graph.

Lemma 4.6. Let ([n], dΓ) be the geodesic metric space induced by a positively weighted
graph Γ = ([n], E(Γ), w). Then

KR(dΓ) = Conv
(

{±vi,j}{i,j}∈E(Γ)

)

, (4.7)

where vi,j =
ei−ej
di,j

.

Proof: Assume that {k, l} 6∈ E(Γ). Suppose that S ∈ Pkl is a path connecting k and l
where the minimum in (4.5) is attained. By re-enumerating the vertices we may assume
that S = ({k, k + 1}, {k + 1, k + 2}, . . . , {l − 1, l}). Let

αi =
dk+i,k+i+1

∑l−k−1
j=0 dk+j,k+j+1

, for i ∈ {0, . . . , l − k − 1}.
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Then
∑l−k−1

j=0 αj = 1 and vk,l = α0vk,k+1 + . . . + αl−k−1vl−1,l which completes the proof of
the lemma. �

Let us recall that if K = Conv(X ∪ {±v}) is such that 0 ∈ Conv(X) and v is not in the
vector subspace spanned by X, than K is a suspension over Conv(X),

K = Susp (Conv(X)) .

As a direct corollary we get the following lemma.

Lemma 4.8. Let Γ be a positively weighted graph, X subset of its vertices, and x ∈ X such
that Γ|Xc∪{x} is connected, Γ|X is a non-trivial tree, and E(Γ) = E(Γ|Xc∪{x}) ∪ E(Γ|X).
Then KR(Γ) can be expressed as an iterated suspension,

KR(Γ) = Susp|X|−1(KR(Γ|Xc∪{x})) .

Proof. If |X| = 2 we may assume without loss of generality that X = {n− 1, n} and that
n is the isolated vertex. Since vn−1,n is not in the linear span of KR(Γ|Xc∪{x}), there is
an isomorphism KR(Γ) ∼= Susp(KR(Γ|Xc∪{x})). The general case of the lemma follows by
induction on |X|.

The following proposition is an immediate consequence of Lemma 4.8.

Proposition 4.9. Let T = ([n], E(T ), w) be a positively weighted tree on [n]. Then
KR(dT ) ∼= ♦[n−1]. In other words, all KR-polytopes associated to weighted trees on [n]
are combinatorially equivalent.

4.2 Proof of Theorem 1.1

Theorem 1.1 says, in a nutshell, that the boundary of the Kantorovich-Rubinstein polytope
of the geodesic metric dL coincides with the complex of short sets of the associated linkage
L̂. Here we obtain this result as a corollary of Theorem 2.3.

Proof of Theorem 1.1: Let Γ be a positively weighted cycle. More explicitly Γ =
(V (Γ), E(Γ), w) is a positively weighted graph where

V (Γ) = [n], E(Γ) = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}

and w({i, i + 1}) = li for each i ∈ [n]. (Here and to the end of this section we use the
convention that n+ 1 := 1.)

By Lemma 4.6,

KR(dL) = Conv

{

±
ui

li

}n

i=1

= Conv{±yi}
n
i=1 (4.10)

where yi =
ui

li
= ei+1−ei

li
. By comparison with (2.4) we observe that α = β = 1 and

KR(dΓ) = Q1 = Conv(∆ ∪ ∇) . (4.11)
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Finally by (2.16) we observe that

Q1 = Short(L) := {I ⊆ [n] | µL(I) < 1/2} (4.12)

and the result follows as a consequence of Theorem 2.3. �

It is known, see [Far], that moduli spaces ML and MLσ of two linkages L = (l1, . . . , ln) and
Lσ = (lσ(1), . . . , lσ(n)), where σ ∈ Σn is a permutation, are homeomorphic. Since Short(L) ∼=
Short(Lσ), it follows from Theorem 1.1 that the polytopes KR(dL) and KR(dLσ) are
combinatorially isomorphic. Here we give a direct proof by constructing an explicit affine
isomorphism.

Proposition 4.13. Let L = (l1, . . . , ln) and Lσ = (lσ(1), . . . , lσ(n)) where σ ∈ Σn is a
permutation. Then KR(L) ∼= KR(Lσ).

Proof. It is sufficient to prove the statement when σ is a cycle or transposition. If σ is a
cycle, the statement is equivalent to relabeling the basis vectors. Let σ be a transposition.
Without loss of generality, let σ = (1, 2). Notice that there exists a hyperplane containing
e4 − e3, . . . , en − en−1, e1 − en which bisects the angle between e2 − e1 and e3 − e2. The
reflection with respect to that hyperplane sends KR(L) to KR(Lσ).
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