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 A B S T R A C T 

A tribological system is a complex non-linear system composed of the 
elements that are connected structurally and functionally. The aim of this 
paper is to present an overview of artificial neural networks, its 
development and applications of neural networks in the prediction of 
tribological properties of dental glass ceramic using a newly measured 
ball-on-plate nanotribometer. The possibility of artificial neural networks 
application to solve complex nonlinear problems and to identify 
tribological characteristics of dental glass ceramic in terms of wear rate 
and coefficient of friction are presented in this paper.  
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1. INTRODUCTION 
 
Application of ANNs has become wider in last 
few decades, especially in different areas of 
production engineering. Hence, in tribological 
experiments, application of ANNs models values 
has become more present for prediction of 
tribological properties, i.e. for wear rate and 
coefficient of friction, according to the defined 
terms of the contact, for materials that are 
tested. Neural networks have been used for 
prediction of short fibre composites tribological 
properties [1], for prediction of carbon fiber and 
TiO2 composites properties [2], plasma nitrided 
316L stainless steel tribological properties [3], 
for prediction of composite PEEK-CF30 
tribological behavior [4], etc.  
 
Particular attention of researchers in recent 
years was occupied by biotribology. Biotribology 

is one of the current and rapidly growing field of 
tribology. The diversity of research activities in 
biotribology is very large and includes many 
scientific fields. A large number of papers in 
various fields of biotribology from year to year 
are published in numerous prestigious scientific 
journals [5]. A very important area in recent 
years that is the focus of numerous studies is the 
field of research and development of new 
biomaterials. The term biomaterial refers to 
materials with such unique characteristics 
which make them particularly suitable for close 
contact with the living tissue, and whose 
production process is often applied, or mimics a 
biological phenomenon [6]. New nanomaterials 
such as nanotubes, carbon fibers, nanolegure, as 
well as various types of polymers, ceramics, or 
metal alloys and the nanocomposite and a 
number of other powerful new class of materials 
are promising extraordinary achievements in 
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the medical materials and services. Materials, 
observed at a nano level may show totally 
different characteristics in relation to those 
which are manifested on a macro level, thus 
allowing the unique application. In recent years 
a numerous areas of health services have 
progressed to the point that their new 
approaches to day-to-day raise the patients 
lifestyles. 
 
Having in mind previously mentioned, ANNs 
method were identified as appropriate for 
prediction of tribological parameters of all-
ceramic material prepared with different 
finishing processes. Ceramic is an inorganic, 
non-metallic material that is solidified by the 
heating process and has about 30 % of the 
crystal structure [7]. In dentistry it was always 
pursued and will be strived to find new 
materials that have suitable characteristics to 
replace the natural tooth structure. With the 
development of science in general and the 
development of dentistry through various 
scientific and technical research, aesthetic 
materials for prosthetic purposes have evolved 
almost to the extent that their properties meet 
all necessary requirements in the form of 
aesthetics, function and biocompatibility [9]. 
Excellent characteristics enabled the widespread 
use of ceramics as the restorative in the field of 
cosmetic dentistry. 
 
In the present research paper experiments were 
conducted on lithium disilicate (Lix(SiO2)y) 
sample. The material is characterized by high 
values of bending strength and broad 
application in making restorations and teeth 
bridges. Based on the idea that the future of all-
ceramic systems is to use PRESS (pressing 
technology) and CAD/CAM technology, a new 
advanced system called IPS e.max (Ivoclar 
Vivadent, Liechtenstein) was developed. It 
embraces the most aesthetic and high-resistant 
materials intended for the PRESS and CAD/CAM 
technology. Hence, commercial material IPS 
e.max CAD lithium disilicate glass ceramics for 
CAD/CAM systems and the pressing technology 
were designed. Blocks for CAD/CAM are blue in 
color, they are molded in one piece and within 
the metasilicate phase (partially crystallized, 
Li2SiO3). As raw material, the value of their 
bending strength is smaller which allows their 
quick processing in the CAD/CAM system. A 
crystallization process is performed to obtain a 

final form of the crystal of lithium disilicate 
(Li2Si2O5). Therefore, blocks are receiving a 
significantly higher bending strength with the 
values of 360 MPa [9]. 
 
In this paper, the influence of input 
nanotribometer parameters, i.e. parameters of 
the device used for testing tribological 
characteristics onto the lithium disilicate 
(Lix(SiO2)y) sample has been analysed. Artificial 
neural network approach has been used for 
mathematical modelling and for identification of 
input tribometer parameters which led to 
minimal degree of wear rate and coefficient of 
friction values.  

 
 
2. EXPERIMENTAL PROCEDURE 
 
Within the tribological tests, the characterization 
of tribological phenomena, friction and wear, 
according to the defined terms of the contact, for 
commercial dental material lithium disilicate IPS 
e.max CAD are determined. Tribology tests, 
whose parameters are shown in Table 1, are 
realized on the CSM nanotribometer (Fig. 1). 
 
Table 1. Tribological input parameters [9]. 

Instrument preferences 

- Linear reciprocating module (linear mode acquisition) 

- Half of amplitude: 0.5 mm 

- Frequency: 100 Hz 

- Ambient air temperature: 23±2 °C 

Tested samples 

- Commercial lithium disilicate - IPS e.max CAD (Ivoclar 

Vivadent, Liechtenstein) 

- Finishing procedures of samples: polishing, glazing and 

grinding 

Static body 

- Commercially supplied alumina ball (Al2O3) 

- Ball diameter: 1.5 mm 

Normal load values 

- Fn: 250 mN; 500 mN; 750 mN; 1000 mN 

Sliding speed values 

- v: 4 mm/s; 8 mm/s; 12 mm/s 

The test duration 

- 10.000 cycles (20 m) 

Environment contact zone 

- Artificial saliva medium 
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Fig. 1. CSM nanotribometer. 

 
Based on this literature review, it was decided 
that the tribological test should be carried out in 
the presence of artificial saliva in the contact 
zone, in order to more realistically simulate real 
conditions of the oral environment. The results 
of the in vitro wear test, which were conducted 
in [10], showed that the artificial saliva could 
also have the effect of cooling and lubrication 
during the wear process. Also, the risk of 
damage to the contact surfaces of the materials 
can be significantly reduced in the region of 
artificial saliva, compared with a dry state. 
Lubrication mechanism saliva is based on the 
complete separation of the sliding surfaces in 
contact with a thin layer of saliva [11]. 
 

 
Fig. 2. Crystallized samples of lithium disilicate IPS 
e.max CAD, prepared with 3 different finishing 
procedures. 

 
The contact elements of tribomechanical system 
are samples of lithium disilicate prepared with 
three different finishing procedures: polishing, 
glazing and grinding and commercial alumina ball 
(Al2O3) with the diameter of 1.5 mm. It is 

generally known that the alumina has an ultra-
high hardness with the value 9, according to 
Mohs scale [12], immediately behind the 
diamond, and excellent wear resistance. Prepared 
samples are in the shape of a block (18 mm 
length, 14 mm width and 12 mm height), Fig. 2. 
 
Tribological tests were intended for tracking of 
wear and friction values, depending on the 
sliding distance. During the tests, the coefficient 
of friction values were recorded in real time, by 
applying TRIBOX 2.9.0. software. After each test, 
the sample was removed from nanotribometer 
and the image of wear tracks were recorded 
with optical microscope. Wear of the contact 
surface material was measured by the average 
area of a wear track with software tools, based 
on optical images. Wear volume and wear rate 
were calculated for each test, according to ASTM 
G133-05 Standard, after the total sliding 
distance by 20 m. Wear rate (W) was calculated 
according to the following equation [13]: 

 W=V/S, [mm3/m]            (1) 

where: V – wear volume of material [mm3], and s 
– sliding distance [m]. Wear rate was calculated 
for each test.  

 
 
3. ARTIFICIAL NEURAL NETWORK 

MODELLING OF WEAR RATES AND 
COEFFICIENT OF FRICTION 

 
More or less similar to real biological neural 
networks, ANNs are made up of interconnected, 
simple processing elements called artificial 
neurons. When they process information, the 
processing elements in the NN operate 
simultaneously and collectively, like biological 
neurons. ANNs have the required properties 
similar to those which possess the biological 
neural network, such as the ability to learn, to be 
self-organized and support the robustness [14]. 
Similarly to biological neuron, each ANN neuron 
receives the inputs, processes them and delivers 
the outputs. The inputs can be an input set of data 
or the output from another neuron. The output 
can be the final result, or may be input to another 
neuron. In biological neurons and synapses, there 
are different strengths of synaptic transmission, 
and intensities in the neurons, in the ANN these 
strengths are represented as the values of the 
weight coefficients. These neurons are grouped in 
layers. Each ANN contains only one input layer, 
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zero or more hidden layers and one output layer. 
The most frequently applied structure of the ANN 
is a neural network consisting of three layers, all 
the layers except the input layer contain neurons. 
Number of inputs in ANN, corresponds to the 
number of defined independent parameters used 
for prediction, while the number of neurons in 
the output layer is equal to the number of 
dependent parameters whose values should be 
predicted. There is a direct ANN proportions 
between the number of hidden layers and the 
number of neurons in them and ANN capabilities 
to approximate complex functions. This does not 
mean that the networks with more complex 
structures work better. The reason for poor 
performance in these cases is linked to the fact 
that the complicated ANNs are more sensitive to 
noises that exist in the input data. It is necessary 
to make a compromise between the approximate 
ANNs capabilities and noises that are entered by 
the input data. 
 
The power of neural network models lies in the 
fact that the weights w and biases b can be 
adjusted. Weights adjustment procedure is 
based on a specific data set and it is called ANN 
training with a certain data set (training set). 
The basic idea of training is to adapt the data 
network, i.e. to determine the relations that 
exist between the independent and dependent 
data in the training set. Using a custom network 
in future situations (for new data) is possible 
on the basis of previously established 
relationships and network capacity to 
generalize these relations to a broader group 
and thus reach possible conclusions. 
 

 
Fig. 3. General framework of ANN training process. 

 
ANN training is presented at the Fig. 3. The 
present sample consists of two parts of the input 
and the target data portion (supervised 
learning). Initially, the network weight 
coefficients have assigned random values 
(usually in the range of -1 to 1). The input part of 

the first sample is put into the network. Network 
calculates the output on the basis of: the value of 
weight and biases, the number of layers that are 
in incorporated, and the type and quantity of 
neurons in each layer. The output value from the 
network is compared with the target value of the 
sample and the weights values of the network 
are adjusted, so that the metric, which describes 
the distance between the target value and 
outputs, is minimized. 

 
The parameters that are associated with training 
algorithms, that should be appointed, are: error 
function, learning rate and number of iterations. 
Error function is used to measure the difference 
between the target value and output values of 
the network. The values of ANN weights are 
updated in the direction that makes the error 
function to be minimized. Frequently used 
functions are Mean Square Error (MSE) and 
Mean Absolute Error (MAE). For training and 
testing of ANN, MSE is commonly applied. MSE 
may be used as a target function to be 
minimized, in order to obtain optimal initial 
values of the ANN weight coefficients [15]. 
 
There are two basic types of ANN training, which 
are incremental and serial training. In the context 
of the incremental training weights and biases of 
the ANN are adjusted each time when one of the 
input samples is introduced to the ANN, while in 
the serial training, connection weights of ANN 
neurons are adjusted only when all the input 
samples are introduced into the network [16]. The 
cycle of bringing the entire training set in an ANN 
is called an epoch, a number of cyclical repetitions 
is the characteristic of the ANN, called the total 
number of epochs. 
 
The updating mechanism of the ANN weights 
value is called a training algorithm. There are 
several training algorithms proposed in the 
literature [17-19]. The most commonly used 
training algorithm is related to the feed-forward 
ANN. ANN is characterized as a feed-forward 
network, if it is possible to connect the input 
layer to the hidden layers and the output layer, 
in a way that the each neuron is only associated 
with neurons from the preceding layers. All the 
algorithms use the MSE function to adjust the 
values of the weight coefficients and biases, so 
that the MSE function is minimized. The value of 
MSE function is determined by applying the back 
propagation techniques. Backpropagation is a 
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mechanism of ANN learning, this is an iterative 
process in which the difference between the 
outputs of the network and the target values are 
given back into the ANN, so that the values of 
ANN weights coefficients and biases are 
gradually adapted to create output values that 
are closer to the target values [15].  
 
In this paper, the three layered feed-forward 
backpropagation ANN architecture has been 
proposed for modelling. The input layer of the 
ANN model consists of two neurons 
corresponding to the two tribological 
parameters that were varied in the experiments, 
normal force (F) and sliding speed (v) and the 
output layer has one neurons for prediction of 
wear rate (W) or coefficient of friction (µ). Due 
to the different finishing procedures of samples 
(polished, glazed and grinded surfaces) and 
number of parameters that have to be predicted 
(W and µ), six different ANN models were 
determined, one for each finishing procedure 
and parameter.  
 
For all six ANN models, the entire experimental 
data set (Ntot=12xnxm) was divided into a six 
data subsets for different parameters prediction 
(n=2) and different conditions (m=3). After this, 
data were further divided within each of six 
subsets into a data subset for training, a data 
subset for validation and a data subset for 
testing. 50 % of randomly selected data have 
been employed for training, 25 % for validation 
and 25 % for testing, separately for each of the 
six subsets of experimental data. 
 
Main problems that could occur in 
backpropagation are ANNs overfitting and 
overtraining. Overtraining means that ANN 
only memorizes the training data set and learns 
these data excellently but doesn’t have an 
ability to generalize to new data and because of 
that performance of the validation set 
decreases [20]. Having this in mind, the 
objective is to determine the compatible ANN 

model that has the total MSE acceptably low 
[21,22]. Selected ANN architecture had one 
hidden layer with ten neurons for prediction 
and biotribological process modelling. It has 
been presumed that this architecture could 
obtain minimal MSE value, between the output 
values and real experimental target data. Two 
different functions have been used as a transfer 
function; from the input to a hidden layer, it has 
been transigmoid function, and between hidden 
and output layer, it has been pure linear 
function. Prior to ANN training, the training 
data were normalized within the range [-1 1] 
and the initial weights values were adopted 
according to Nguyen-Widrow method.  
 

The performance of the network was measured 
by the MSE of the predicted outputs with 
regards to the real experimental target data. The 
goal is to get MSE as close as possible to zero. 
The zero means that there is no error between 
outputs of the network and target values. In this 
case, ANN model trainings were initially set to 
terminate after a maximum number of epochs, 
but they were stopped after a certain number of 
epochs since no further improvement in the MSE 
was achieved. MSE values were obtained after 
trainings, validations and testing of ANN models 
and they are shown in Table 2. 
 

Except MSE another performance measure for 
ANN model is correlation coefficient (R). This is a 
statistical measure of the strength of correlation 
between predicted and experimental values. A 
perfect correlation is obtained when R=1. A 
suitable ANN model should have the correlation 
coefficient greater than 0.8. Correlation 
coefficients of the developed wear rate prediction 
ANN models for all three differently processed 
surfaces are shown in Fig. 4. 
 
Similarly to the previous correlation coefficients 
of the developed coefficient of friction 
prediction, ANN models for all three differently 
processed surfaces are shown in Fig. 5. 

 
Table 2. MSE values of ANN model. 

Model no. ANN architecture 
Mean Squared Error (MSE) 

No. of epochs 
Training Validation Testing 

M 1 2-10-1 0.0014 0.011220 0.0213 4 
M 2 2-10-1 0.0004 0.003248 0.001 3 
M 3 2-10-1 0.0000 0.006359 0.0011 6 
M 4 2-10-1 0.0012 0.000311 0.0021 4 
M 5 2-10-1 0.0001 0.000070 0.0075 5 
M 6 2-10-1 0.0028 0.003130 0.0059 5 
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a) polished surface 

 
b) glazed surface 

 
c) grinded surface 

Fig. 4. Correlation between predicted and 
experimental data during training, validation and 
testing of the developed ANN model for wear rate. 

 
a) polished surface 

 
b) glazed surfaces 

 
c) grinded surface 

Fig. 5. Correlation between predicted and experimental 
data during training, validation and testing of the 
developed ANN model for coefficient of friction. 
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The weights and biases of the wear rate ANN 
model with polished surface that were determined 
in training process are given in Table 3, for other 
models values are determined in a similar manner.  
 
Table 3. The weights and biases of developed ANN 
model for polished surface wear rate prediction. 

Weights Biases 
wji wkj bj bk 

2.9459 -3.1857 0.21534 -4.5085 -0.21755 
3.0566 3.1389 -0.0533 -3.5304  
-3.0417 2.9174 0.42509 2.8794  
4.3825 0.09847 0.52473 -1.559  
1.8201 4.0076 0.27768 -0.5393  
-2.9782 -3.2504 0.46395 -0.9972  
-4.1289 -1.5583 -0.3946 -1.4537  
0.50834 4.3896 0.10039 2.4669  
3.5561 1.9841 0.57493 3.8784  
3.2914 3.5083 -0.3414 3.9908  

 
Using the weights and biases from Table 3 and in 
accordance with selected ANN architecture the 
exact mathematical relationship between 
tribological response, Wear rate (W), coefficient 
of friction (µ) and input parameters, normal 
force (F) and sliding speed (v) in different 
finishing procedures, can be expressed by the 
following Equations 2 and 3. In these equation X 
is the column vector which contains normalized 
values of F and v and wnorm and µnorm are the 
normalized value for the W and µ for each of the 
defined contact conditions. To obtain actual 
values of wear rate and coefficient of friction, it 
is necessary to denormalize the obtained output 
values. 

𝑤𝑛𝑜𝑟𝑚 = [
2

1+𝑒
−2(𝑋∙𝑤𝑗𝑖+𝑏𝑗)

− 1] ∙ 𝑤𝑘𝑗 + 𝑏𝑘 (2) 

𝜇𝑛𝑜𝑟𝑚 = [
2

1+𝑒
−2(𝑋∙𝑤𝑗𝑖+𝑏𝑗)

− 1] ∙ 𝑤𝑘𝑗 + 𝑏𝑘 (3) 

The next section provides an overview of 
measured and predicted values of the wear rate 
and coefficient of friction, within the framework 
of tribological tests, according to the previously 
defined contact surfaces of samples. 
 
 

4. RESULTS 
 
Using Equation 2 and 3 and by varying values of 
both input parameters, the effects of tribological 
tests on the wear rate and coefficient of friction 
were analyzed. Hence, comparisons of actual 
target data and those predicted by developed 
ANN models were obtained. Results are shown 
in Tables 4 and 5. 

Table 4. The real and predicted values of the wear 
rate of lithium disilicate (IPS e.max CAD). 

Wear rate, W 

Polished surface 

Fn, N v, mm/s Real values ANN predicted values 

0.25 

4 1.893 1.97743 

8 3.512 3.89983 

12 3.983 3.97447 

0.5 

4 5.244 5.60719 

8 6.617 5.40687 

12 7.446 7.4358 

0.75 

4 6.635 6.99912 

8 8.653 8.72522 

12 10.013 9.98442 

1 

4 7.846 7.85105 

8 10.279 10.302 

12 12.648 12.6478 

Glazed surfaces 

Fn, N v, mm/s Real values ANN predicted values 

0.25 

4 1.905 1.905 

8 3.240 3.23984 

12 3.744 3.74389 

0.5 

4 2.449 2.44915 

8 5.363 5.36283 

12 7.203 6.82267 

0.75 

4 3.647 3.64679 

8 7.592 7.59199 

12 9.553 9.55301 

1 

4 5.122 5.12221 

8 8.655 8.65501 

12 10.348 10.348 

Grinded surface 

Fn, N v, mm/s Real values ANN predicted values 

0.25 

4 0.028 0.028 

8 0.084 0.084001 

12 0.100 0.099999 

0.5 

4 0.352 0.351996 

8 0.469 0.469004 

12 0.524 0.523996 

0.75 

4 0.721 0.721001 

8 0.806 0.806005 

12 1.075 1.075001 

1 

4 1.582 1.581998 

8 1.651 1.650994 

12 1.848 1.848 
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Table 5. The real and predicted values of the coefficient 
of friction of lithium disilicate (IPS e.max CAD). 

Coefficient of friction, µ 

Polished surface 

Fn, N v, mm/s Real values ANN predicted values 

0.25 

4 0.441 0.441 

8 0.406 0.406 

12 0.372 0.372 

0.5 

4 0.383 0.383 

8 0.347 0.347 

12 0.308 0.308 

0.75 

4 0.325 0.32501 

8 0.284 0.284 

12 0.255 0.255 

1 

4 0.249 0.249 

8 0.238 0.238 

12 0.213 0.213 

Glazed surfaces 

Fn, N v, mm/s Real values ANN predicted values 

0.25 

4 0.419 0.419 

8 0.359 0.359 

12 0.332 0.332 

0.5 

4 0.366 0.366 

8 0.337 0.337 

12 0.314 0.314 

0.75 

4 0.313 0.313 

8 0.248 0.248 

12 0.236 0.236 

1 

4 0.245 0.24499 

8 0.187 0.187 

12 0.134 0.134 

Grinded surface 

Fn, N v, mm/s Real values ANN predicted values 

0.25 

4 0.247 0.247 

8 0.240 0.24 

12 0.195 0.195 

0.5 

4 0.229 0.229 

8 0.218 0.218 

12 0.188 0.188 

0.75 

4 0.224 0.224 

8 0.207 0.207 

12 0.184 0.184 

1 

4 0.202 0.202 

8 0.183 0.183 

12 0.171 0.171 

Analysing the experimental data, the area of 
parameters combinations for F and v was 
defined. This area was shown in Figs. 6 and 7. 
 

 
a) polished surface 

 
b) glazed surfaces 

 
c) grinded surface 

Fig. 6. Influence of the F-v interaction on the wear 
rate (W). 
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a) polished surface 

 
b) glazed surfaces 

 
c) grinded surface 

Fig. 7. Influence of the F-v interaction on the 
coefficient of friction (µ). 

 
From Figs. 4 and 5, it can be concluded that 
higher values of normal force (>0.8 N) and 
sliding speed (>8 mm/s) lead to higher values of 
wear rate (W), while the lower values of normal 
force (<0.4 N) and sliding speed (<8 mm/s) lead 
to higher values of coefficient of friction (µ). 

Having this in mind, it is necessary to further 
optimize the input values in order to obtain 
preferred outputs. 
 
 
5. CONCLUSIONS 

 
In this paper a mathematical modelling of wear 
rate and coefficient of friction in tribological 
process of dental glass ceramic were introduced. 
This was performed using ANN models for 
different surface conditions. ANNs have proven to 
be suitable due to their potential to learn nonlinear 
features of any system from incomplete 
experimental data regardless of external noise. 
Model was verified using tribological 
experimental values obtained by means of 
nanotribometer. Beside that, a comparison 
between experimental and predicted values was 
conducted. These indices showed that the 
models were quite acceptable for all defined 
conditions. Created model was used to describe 
the influence of input tribological parameters 
such as normal force and sliding speed on 
analyzed material wear rate and coefficient of 
friction. According to this the plots were created 
that can be used to identify biotribological 
conditions that may lead to minimal wear rate or 
coefficient of friction. 
 
Future research will take in consideration other 
materials and conditions, or the application of an 
optimization method used for optimal values 
achievement of wear rate or coefficient of friction. 
Their values will be included in mathematical 
modelling procedure to obtain a complete view of 
output tribological properties. 
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