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A propagation numerical method for determining energy eigenvalues and eigen wave func-
tions for hydrogen atom in constant and uniform electric field is described in this paper. Solu-
tion is presented for 3-D Schroedinger equation in natural parabolic co-ordinate system. Cri-
teria for accepting eigenvalues are introduced, and results are compared with previous papers.
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INTRODUCTION

One of the most important partial differential
equations in mathematical physics is the Schroedinger
equation. It describes the quantum behaviour of some
quantum systems [1-3]. This equation has analytical
solution for a limited number of potentials [4]. In most
cases, the Schroedinger equation can not be solved an-
alytically, and a numerical method must be applied. In
principle, there are two groups of numerical methods
for solving the Schroedinger equation: propagating
method and matrix method. In the first group, the
Schroedinger equation is discretised in space. Energy
as eigenvalue can be arbitrary chosen. The wave func-
tion is then calculated from the Schroedinger equation,
by iterative method. Eigenvalue of energy is accepted
if the wave function boundary conditions are satisfied
[5]. Some of frequently used iterative methods are Eu-
ler method, Runge-Kutta method, Finite difference
method, etc. [6-8]. In the second group of numerical
methods, discretised Schroedinger equation is trans-
formed into matrix equation that can be solved numer-
ically [9, 10]. Matrix rank is equal to the number of
steps in discretized space.

The propagating method is usually used for calcu-
lation of one-dimension equation. The failure of the
method could be a long time of computer calculation. In
this paper, Euler iterative method has been used to solve
the Schroedinger equation for hydrogen in constant and
uniform electric field (Stark effect). The Schroedinger
equation in parabolic co-ordinates has been used, since
it enables separation of co-ordinates in electric field.
This decomposes the problem into one independent or-
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dinary differential equation (ODE) over ¢= (0. 2r), and
the system of two ODE over u= (0, «), v=(0, =), which
have common constant parameter. As a solution,
eigenvalues of energy and eigenfunctions have been
obtained. The objective of this paper is to find an ap-
proach for solving three-dimensional Schroedinger
equation and to apply it on entangled co-ordinates. This
will enable solving of the Schroldinger equation with-
out separation of co-ordinates. Finally, the aim is
pointed on determining the accuracy of results accord-
ing to spatial step segments in discretization and opti-
mising computer time needed for solving the problem.

METHODOLOGY

The Schroedinger equation for hydrogen atom in
uniform and constant electric field, 7 in atomic units is [1]
—%ALP——I'}%FN’:E‘P (1)
r
where ¥ =¥(7) is wave function, A — the Laplace's

operator, and £ — the eigenvalue of energy. In para-
bolic co-ordinate system 7 and z can be linked with par-
abolic co-ordinates u and v [1,3]

rzl(u+v) and Z=l(u—v) (2a)
2 2
Laplace operator in parabolic coordinates is

2 2 2
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where spatial domain is u = (0, «), v=(0, «),¢ = (0, 21)

Replacing eqgs. (2a) and (2b) into eq. (1),
Schroedinger equation in parabolic co-ordinates be-
comes

u+v
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Hamilton's operator for hydrogen atom can be
represented as the direct product of Hamiltonians of
factor spaces over co-ordinates, H = H [ VI:I¢. Equa-
tion (3) can be separated over coordinates introducing
wave function as product ¥ =¥ ¥ ¥, where
Y, =¥(u), ¥, =¥(v) and ¥, =¥(¢). Introducing
last expression in eq. (3), one can obtain
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Equation (4) is separable over co-ordinates (u, v,
¢) into three ODE

&Y,
L 2¢ =-m’ (5a)
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where m* and a are separation constants. Constant a
can have values between 0 and 1.
A former set of equations is now

i
=-m"¥ (6a)
2
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Discretisation of differential equations

The next step is to discretise differential equa-
tions given by egs. (6a) to (6¢). Let us introduce new
constant in eq. (6a), C = m?

d¥5(¢)

=—C¥ () )

d% @) _H@+dp) @) by
d¢ d¢

definition of first derivative. Discrete form ofeq. (7) is

W (§+dp) =% (@)~ dBCH P  ®)

If ¥4(0) and its derivation ¥',(0) are known at
the beginning of domain, and if the value of constant C
has some defined value, the value of the first deriva-
tive in the next interval segment, 'fg (0+d¢), canbe de-
termined. When the first derivative is known, function
in the next segment is ¥} (0+d¢) =¥} (0)+ ‘}{J(O)d¢.
The second derivative in the next segment can then be
calculated from eq. (7), ¥;(0+d¢)=-C¥, (0+dgp).
‘When function ‘P¢, its first and second derivative are
known on one segment, this enables calculation of
those values in the next segment. Block diagram,
which schematically describes the procedure is shown
in fig. 1, for general co-ordinate x. Following iterative
procedure and moving step by step, function ¥y(¢)
and its first derivative ¥4(¢) will be known on whole
interval ¢ = (0, 2 ).

Values of ¥,(¢) and ¥"y(¢) can be determined
from boundary conditions and properties of wave
function at the beginning of the interval (finite and
continuous). Constant C is unknown and can be taken
as a parameter. For different values of C, different
wave functions are obtained. Wave function must also
fulfil boundary conditions at the end of the interval.
The procedure is to accept those values of parameter
C, for which wave function fulfils boundary condi-
tions at the end of the interval. These wave functions
will be eigenfunctions and parameter C which corre-
sponds to eigenfunctions will correspond to quantum
number. In the procedure of discretisation it is neces-
sary to choose some finite discrete steps, dp — Ag,
which need to be small enough. Boundary conditions
impose that, at the beginning of the interval of the co-
ordinate ¢ (¢ = 0), wave function must be finite and
continuous, ¥;(¢)=1and ¥'y(¢). Any finite value at
the beginning of the interval is satisfactory, since wave
function must be normalized. For discrete value of
spatial step over ¢ is taken dg =27/1000, and constant
Cis varied from 1 to 40. Figure 1 shows ¥(2m) vs. pa-
rameter C, which is the value of wave function at the
end of the interval of the co-ordinate ¢.

where ¥ (¢) =

e vl
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Figure 1. Discretization scheme with algorithm for
solving second order ODE for known boundary
conditions at the beginning of interval
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Wave function ¥ must fulfil condition ¥(¢) =
= ¥,(¢+ 2n), which can be applied on boundary condi-
tion, ¥4(0) = ¥,(2n). From fig. 2 it can be seen that the
value of wave function at the end of the interval,
¥,(2n), diverges for C < 0. Since it was taken ¥,(0) =
=1, we need to find those values of parameters C, for
which is ¥;(0) = ¥, (27) = 1. From fig. 2 it can be seen
that this condition is fulfilled for C=0, 1, 4, 9, 16, 25,
36, ..., which are eigenvalues for ¥,. Since C is intro-
duced as C = m?, we arrive to quantum number m = 0,
+1, £2, +3,... For these values of quantum number,
eigenfunctions can be found and are presented in fig. 3.

Eigen problem for co-ordinate ¢ has been solved
at this point. Then, eigenvalues and eigenfunctions
over co-ordinates u and v have to be found. Equations
(6b) and (6¢) in discrete form can be written as

‘I’I;(u+Au)='f’L:(u)+Au( ¥ (u )+ ¢ >, (u)—-

gqf( )——‘P(u)+ o (u)) (%a)

¥ (v+Av)=Y, (v)+dv(—] ¥ (v)+ % ¥, (v)—
4y

1-a

791( )— '}’(v)— Fv‘P (v)) (9b)

7, (¢ =2n)
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Figure 2. Value of the wave function ¥, at the end of the
interval, ¥;(2n)
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Figure 3. Wave functions ‘¥, for quantum numbers
m=0, £1,£2,+3
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Previous two equations are not independent and
must be solved as a system of two second ODE. The
first step is to start without electric field and set /"= 0.
Parameter C is determined from eigen problem over ¢,
and can take values C=0, 1,4, 9, 16, 25, 36, ... . Let's
start from C = 0. There are two parameters in egs. (9a)
and (9b) which are unknown, a and E. We need to find
those parameters of values @ and E, for which, when
inserted into (9a) and (9b), boundary conditions over
u and v are fulfilled simultaneously. As in the case of
co-ordinate ¢, the following is set: ¥ (0) = ¥,(0) = 1
and ¥',(0) = ¥",(0) = 0. Parameter a needs to be varied
in range from 0 to 1. Parameter E is not bounded. We
need to find those a and E, for which at the end of in-
terval, u = (0, «) and v = (0, «) wave functions have
zero values. Since infinity cannot be reached numeri-
cally, we need to set the values for the end of the inter-
val at which behaviour of wave functions is the same
as at infinity. We choose u,,,, = Vi = 100 a. u. (100
Bohr radius) for large enough distance in which wave
functions are zero valued. This is fulfilled for ground
state and for first three excited states of hydrogen
atom, which are examined in this paper. Now, bound-
ary conditions are ¥, (1,,,,) =0 and ¥, (V,ax) = 0.

To exhibit clearly how eigenvalues of ¢ and £
can be found, in figs. 4, 5, and 6 are plotted absolute
values ¥, (U o Jand P, (v, Jover a, for E=-0.49,
E= —-0.5and E=-0.51, respectively. In iteration pro-
cedure, discrete step lengths of # and v are taken to be
10%a. u.

To present large scale values on plot, logarithmic
scale needs to be used. Since negative values cannot be
plotted on logarithmic scale, on ordinates of figs. 4 to 6
are presented absolute values of wave functions in loga-
rithmic scale. At points where ¥, (4 . Jand |, (v )
have minimums, wave functions |¥, (u,,, ) and
"}’ (V max )| actually have zero values and are changing
signs. Since from boundary conditions, wave functions
on the end of the interval are equal to zero, these mini-
mums of ¥, (4, )| and |, (v, | correspond to
eigenvalue parameters. Since both functions ¥, and ¥,
need to meet boundary conditions for the same values of

1e+21

1e+20 4

1e+15 4

le+18 4

1e+17 4

#(100)

1e+16

Te+15

1e414 4

e T
¥

Te+13 )
TS

lesiz v T -
0.450 0475 0.500 0525 4 0.550

Figure 4. Absolute values of functions ¥,(#n.,) and
¥, (Vmax), Over parameter a, for sy, = Vi = 100 a. u. and
E=-0.49 a. u.
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Figure 5. Absolute values of functions ¥,(un.x) and
Y, (Vmax), 0Ver parameter a, for #,y,x = Vimax = 100 a. u. and
E=-05a.u.

1e+21

1e+20+

1e+194

¥(100)

1e+184

1e+17 4

1e+16

1e+154

18+144

wu(umax)
== Vs

1e+134

1e+12 T T T
0.450 0.475 0.500 0.525 a 0.550

Figure 6. Absolute values of functions ¥,(uy.y) and
Y, (Vmax), OVer parameter a, for u, = vy =100 a. u. and
E=-0.51a.u.

a and E, one need to adopt E and a for which both
¥ (Upay) and P, (v,.,) have zero values. This is the case
for eigenvalues in fig. 5. In fig. 4 and 6, both functions ¥,
and ¥, have separate eigenvalues, for different ¢, and are
not eigenfunctions of problem.

In the following text, algorithm for determina-
tion of eigenvalues of @ and E, for already determined
m above, is presented. A general case with external
electric field, of strength F, is considered. For atom
with no electric field, algorithm is the same, with con-
dition F'=0.

Step I: Set value of electric field, F. Since m is al-
ready determined m =0, £1, +2, 3, choose the value
for m. For discrete steps of variables u# and v, chose
small enough dv and du (107* for 5 digits accuracy,
while algorithm runs very fast). For better accuracy,
du and dv should be smaller. Maximal value of vari-
ables u and v should be setup to u,,, = v,.. = 100 a. u.
for the first three states (for ground state 30 a. u. is
large enough).

Step 2: Set the initial value of energy E,;, and en-
ergy step, dE =—0.01. This value does not determine
energy value accuracy, since it is reduced to a smaller
amount in the surrounding of eigen energy.

Step 3: Letus label a with ¢, in eq. (9a), and a,, in
eq. (9b). Set initial values of a,, a,, da,, and da, (da, =
da,=0.01).

Step 4: Set values of wave functions and their
derivations at the beginning of intervals, ¥,(0) =
=¥, (0)=1and ', (0)="¥",(0)=0. Iteratively calcu-
late values of wave functions at the end of intervals
¥, (ta) and ¥ (v,,,), using egs. (9a) and (9b). As-
sign obtained values to some variables for storing val-
ues, ¥, and ¥,

Step 5: For every value of a, with step da,, step 4
isrepeated, and obtained values for ¥ (v,,,,) are com-
pared with ¥ . With an increase of @, when the condi-
tion is fulfilled that function at the end of interval is
changing sign, or in other words ¥, (Vj.): o < 0
(changing sign implies that function intercepted ordi-
nate, and went through zero value), then a, is accepted
as an eigenvalue. Go to the next step.

Step 5a: To increase the precision of @, return for
one step da,, setda,=0.1 da,, and return to step 5. Step
5a should be run until step size da,, is equal or less than
1077 (for 5 digits accuracy and fast algorithm).

Step 6: Step 5 is now applied on variable u. For
each value of a, with step da,, step 4 is repeated, and
the obtained values of ¥, (u,,,,) are compared with
¥ o- With increasing a,,, for some value function at the
interval will change sign, ¥, (t4,,.) ¥ 10 < 0. Accepted
that a,, as eigenvalue.

Step 6a: Apply step 6a on da,,, until the value of
1077 is gained.

Step 7: Find difference a, = a, — a,. Change the
value of energy E for dE, and repeat the procedure
from step 3, to this step. We need to find those £ for
which a, = 0, or for which values a, and a,, are the
same. If for instance a, > 0 for some £, and with chang-
ing E for dE, if parameter a, becomes a, <0, then E that
causes changing of sing is eigenenergy.

Step 8: To increase the accuracy of E determined
in step 7, one needs to return one step dE backward,
and set d£=0.1 dE. Return to step 3, in order to deter-
mine eigenvalue £ with better precision. Repeat pro-
cedure until gain desired precision or dE < 107,

u

max.

RESULTS

Hydrogen atom without
external field (F = 0)

In order to obtain eigenvalues and eigenfunctions
of hydrogen atom we should start from determined val-
ues of constant C, which determines magnetic quantum
number. For C=0, parameter a can be in range of 0 to 1.
Eigenvalues of parameter a, and energy £ can be deter-
mined following the above mentioned iteration steps.
Energy range is set to be from—0.51 to—0.01 a. u. To vi-
sually interpret the results, we introduce new function
=|#,, (1 yax ) ¥, (V o ) This function has ze-

Umax,Ymax
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ros for either ¥, (u,,,,) = 0 or ¥, (V,.) = 0. From egs.
(6b) and (6c¢), it could be seen that ¥, and ¥, should be
symmetric in respect to parameter a, in the way that ¥,
for some a should be the same as ¥, for 1—a. Function
¥, ., whichdepends onaand £, should be symmet-
ricin (Zm XE ¥, . )plotinrespecttoplanea=0.5.Ze-
ros of ¥, ., are ¢ determined with zeros of ¥/ (Unas)s
and ¥ (vmax) Since our condition is that ¥, (u,,,) and
¥ (Vimax) both have zeros, one should accept those zeros
of ¥, in(a, E,¥, , )plot, where interception
of ¥ (umax) zeros and ¥ (vmax) zeros occurs. In fig. 7,
¥, ., ispresented for C =0 (m = 0). The first eigen
engrxgy"?xs —0.5 a.u. fora=0.5. The second eigen energy
E, =—0.125 occurs for a = 0.25 and a = 0.75. Other
eigenvalues are summarized in tab. 1.

Figure 7 and 8 present plotted values of ¥,
as functions of ¢ and E for the value of parameters C=
=1 and C = 4, respectively. Eigenvalues are summa-
rized in tab. 1.

It is known that in parabolic co-ordinates for hydro-
gen atom, the following relations between quantum num-
bers are valid, 7, +n, +|nj+1=n, where n is the main

'max > Vmax

Uma? Vmex

Energy [a.u.]

-0.6+4 - - !
0.0 0.2 0.4 0.6 0.8 1.0
Parameter a

Figure 7. Function '{’

- (a, E), for parameter
C=0(m=0)

Umax’ Vmax

Energy [a.u.]

: B 18415

I 1e+16

=8 o 1e+17

1e+18

1e+19

1420

0.5 1e+21
0.0 0.2 0.4 06 0.8 1.0

Parameter a

Figure 8. Function ¥,

- (a, E), for parameter
C=0(m=+=1)

Table 1. Summarized eigenvalues of energy and parameter
aforn=1,2,and 3
n E(a.u) a,m
1 -0.5 0.5,m=0
2 —0.125 0.25,m=0
0.5, m=%1
0.75, m =0
0.1667, m=0
0.3333, m = +1
05, m=0,m=4%2
0.6667, m = £1
0.8333, m =0
0.125,m=0
0.25, m==1
0.375,m=0,m=+2
05, m=1,m=4%3
0.625, m =0, m=+2
0.75, m = +1
0.875, m =0

3 —0.0555

4 —0.03125

Umax’ Vmax

=
o

Energy [a. u.]

Bl 1e+5
B 1046
B 1e+7
Il 1e+8
Bl 1e+9
N 1e+10
I 1e+11
4 s B 1e+12
4 * N 1e+13
: s T 1e+14
“1e+15
1e+16
1e+17
1e+18

1
=
-

-0.21 . . v 1
0.0 0.2 0.4 0.6 0.8 1.0
Parameter a

Figure 9. Function EP - (a,E), for parameter
C=4(m=+2)
quantum number, 7 is magnetic quantum number and 7,
and 7, are parabolic quantum numbers [1, 2, 4]. Number
of states which is defined by quantum numbers », and n, is
ny +ny +1=n—|n. This is fulfilled from the results ob-
tained in this paper by counting solutions for specified
main quantum number (number of states with the same
energy) and magnetic quantum number m (m?> = C). For
example, for energy £=-0.125a.u. (n=2)and C=0 (m=
=0), from fig. 5, there are 2 states, which agrees with
n—|m =2 from theory. Eigenvalues of a for these states
are 0.25 and 0.75.

In figs. 10 to 12 are presented eigenfunctions ob-
tained in this paper and compared with analytical solutions.

Hydrogen atom in electric
field — Stark effect

Let us introduce external uniform and constant
electric field with strength F, defined in atomic units.
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Figure 10. Eigenfunctions presented as continuous lines
and comparison with theory [1, 3] given with dots

E£=-0.0555, a=0.1867
. n=0n=2
E=-0.0555,a=0.5
A n=1n=1
————— E=-0.125,a=0.8333
¥ n=2nm,=0
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Figure 11. Eigenfunctions presented as continuous lines
and comparison with theory [1, 3] given with dots

E=-0.03125,a=0.125
. n=0,n=3
— —— E=-0.03125, a=0.37496
A n=1m,=1
————— E=-0.03125, a=0.6494
v n=2n=1
E=-0.03125, a=0.875
mn=3n=0
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Figure 12. Eigenfunctions presented as continuous lines
and comparison with theory [1, 3] given with dots

Electric field, taken to be in z-direction cancels degener-
acy and shifts eigenenergies. To calculate eigenvalues of
energy and parameter a, for defined values of electric
field F we use the procedure described in methodology.
Table 2 summarizes the results obtained in this paper,
compared with literature values.

In fig. 13, Stark shifting of energies is graphi-
cally presented for electric field strength up to 0.005 a.

Table 2. Eigenvalues of Hydrogen energies in Stark effect

n|C F E a
1|0 |510° -0.5000563000 [this work]
—0.5000553 [9]
~0.5000562848 [10]
2 10 | 5107 | —0.14246822 [this work]
—0.1426204 [9]
—0.1426186076 [11]
—0.142618607 [12]
—0.1426186076 [13]
—0.1426188 [14]
2 |0 | 5107 | —0.11206044 [this work]
—0.1120633 [9]
—0.1120619240 [11]
—0.112061924 [12]
—0.1120619240 [12]
—0.12062 [14]
2| 15107 | —0.1271457 [this work]
—0.1271464 [9]
—0.127146612 [12]
—0.50611 [this work]
—0.506105425 [12]
~0.50610542535 [15]
—0.5061054 [16]
—0.5061054253626 [17]
~0.506105392 [18]

0.5025003259

0.27510834298
0

0.77606458807

0.5307046459

110]510°

0.5255

m=0, a=0.8333
m=1,a=0.887
m=0,a=05
m=1.a=0.333
m=0, a=0.1667
= =0,a=075
a L
£ o2 m=0a=0.
2
@
&
-0.3
-04
-0.5 m=0,a=05
=086 ¥ T T T
0.000 0.001 0.002 0.003 0.004 0.005

Fla. u]

Figure 13. Calculated energies for hydrogen atom as
function of electric field strength

u. forn=1,2,and 3. The results presented in fig. 13 are
the same as in [7], used for comparison.

CONCLUSION

The aim of this paper is to use the simplest itera-
tive method to find solutions of the Schroedinger
equation for hydrogen atom in external constant and
uniform electric field. Propagation methods are
mostly used to find solutions of one dimensional
Schroedinger equations. Here, 3-D partial differential
equation is decomposed in parabolic co-ordinates on
three ODE, which are not completely independent.
Criteria for accepting eigen solutions are introduced in
this paper, and the results show that this method can
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give accurate results within small computational time,
which goes up to several minutes for fixed quantum
number m. The accuracy of results can be increased by
taking smaller discrete steps during computation.
There is no limiting value of electric field strength.
Unlike perturbation method, strong field does not
have an effect on applicability of the method used in
this paper. Another advantage of this method is the
possibility to expand its usage to non-separable prob-
lems where, instead of separation constant, separation
function can be introduced. This function can be deter-
mined, as in the case of separation constant, by impos-
ing criteria from boundary conditions. This possibility
will be explored in our future work.
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Henag CTEBAHOBWh, Bnagumup M. MAPKOBWH, [Iparocias P. HUKE3Wh

JEAJHOCTABHA METOJA 3A HYMEPUYKO PENMABAILE IIPENVUHIEPOBE
JEIJHAYMHE 3A BOJOHUKOB ATOM Y EJEKTPUYHOM IIOBY

[IponaratuBHa HymMepuuyka MeTOAa 3a oOfipehuBame CBOjCTBEHE €HEPruje W CBOjCTBEHE
(pyHKIHje cTama BOTOHUKOBOT aTOMa Y KOHCTAHTHOM W YHI()OPMHOM €JIEKTPUIHOM II0JbY OIIHCAHA je Y
oBOM pajy. Periemse je mpeacraBbeHO 3a TpopuMeH3nonanny lllpenuare poBy jefHauNHy y HapaboInIHOM
KOOPAMHATHOM cucTteMy. Kputepujymu 3a mpuxBaTame CBOjCTBEHUX BPEAHOCTH Cy YBEACHU U PE3YITATH Cy

ynopebeHnu ca noganuma y 00jaB/beHUM pajloBUMa.

Kmwyune peuu: lllpedunzeposa jeOHauuna, aitiom 8000HUKA, eACKIUPUUHO TO/beE,

Ojaeposa uitiepaitiu6Ha Metiooa



