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Abstract The Kraus form of the completely positive dynamical maps is
appealing from the mathematical and the point of the diverse applications
of the open quantum systems theory. Unfortunately, the Kraus operators
are poorly known for the two-qubit processes. In this paper, we derive the
Kraus operators for a pair of interacting qubit, while the strength of the in-
teraction is arbitrary. One of the qubits is subjected to the x-projection spin
measurement. The obtained results are applied to calculate the dynamics of
the initial entanglement in the qubits system. We obtain the loss of the cor-
relations in the finite time interval; the stronger the inter-qubit interaction,
the longer lasting entanglement in the system.

1. Introduction
The ”integral”, i.e. so-called, Kraus form [1] of a completely positive dy-

namical map for an open quantum system [2, 3] is appealing for the mathe-
matical reasons. Mathematical existence of the Kraus form for such processes
is guaranteed by the Kraus theorem, universally [1-3]. On the other hand,
a Kraus-form (KF) may be regarded as a solution to a differential master
equation (ME) for the open system’s statistical operator (density matrix); a
case when no ME exists for the process can be found e.g. in Refs. [4,5].

The Kraus operators are often constructed due to some physical assump-
tions or understanding of the underlying physical processes [6]. Nevertheless,
such derivations may not provide the full physical (e.g. microscopic) details
[7]. One way to obtain a proper KF for the open system’s dynamics is deriva-
tion from the related master equation for the process [7,8]–if such an ME ex-
ists [4,5]. To this end, it is important to note: phenomenological derivations
of MEs may also be unreliable–often there appear certain subtleties of both
mathematical and physical nature as well as unexpected pitfalls [9,10].

Having this in mind as well as the above-distinguished usefulness of KF,
in this paper we derive the Kraus operators starting from a microscopically
derived master equation for a pair of two-level systems (qubits). We are
concerned with an ancilla qubit interacting with another qubit, which is
subjected to a Sx spin-projection quantum measurement. Usefulness of the
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KF for the process is emphasized by application of our results in investigating
the dynamics of entanglement in the qubits system.

2. The master equation and the task

The total, isolated, system is described by the Hamiltonian:

H = H1◦ +H2◦ +HE1◦ +H12 +H1E1
, (1)

where the symbol ”◦” stands for the subsystems self-Hamiltonians and the
rest are the interaction terms. While the self-Hamiltonian terms are standard
(see below), the qubits interaction is chosen [6,11]:

H12 = βS1z ⊗ S2z, (2)

where the 1/2-spin operators Spz = σpz/2, p = 1, 2 and we take h̄ = 1, while
the interaction with the environment:

H1E1
= S1x ⊗

∫ νmax

0

dνh(ν)(a†ν + aν) ≡ S1x ⊗ BE1
, (3)

where appear the annihilation and creation operators satisfying the standard
Bose-Einstein commutation [a†ν , aν′] = −δ(ν − ν ′).

For non-interacting qubits, i.e. for β = 0, the qubits can be described by
mutually independent dynamics. However, for the interacting qubits (β 6= 0),
dynamics of the qubits cannot be mutually independent. Therefore we regard
the pair of qubits, 1+ 2, as an open system subjected to the environment E1

as described above.
Physically, eq.(3) describes a quantum measurement of the S1x observ-

able. We assume the initial tensor product state ρ12⊗ρE1
and the weak cou-

pling limit for eq.(3), while the environemnt E1 being in the thermal state
ρE1

= ρth = exp[−HE1◦/kBT ]/Z on temperature T ; kB is the Boltzmann
constant and Z is the normalization ”statistical sum”. That is, we consider
the time-homogeneous, completely positive and trace preserving process for
the 1 + 2 system and below we derive the proper master equation in the
weak-coupling limit. Such physical situation is generally described by the
following, Lindblad-form master equation (in the interaction picture) for the
pair of qubits [3]:

dρ12
dt

= −ı[HLS, ρ12] +
∑

ν,i,j

(

γij(ν)

[

Aj(ν)ρ12A
†
i(ν)−

1

2
{A†

i (ν)Aj(ν), ρ12}
])

(4)
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Our task in this section is, starting from equations (1)-(3), to derive the
explicit forms for the damping functions γij(ν) and the Lindblad operators
Ai(ν); for simplicity, but without loss of generality, we ignore the Lamb shift
term HLS.

The interaction picture is defined by the self-Hamiltonian

H◦ = H1◦ +H2◦ +H12 +HE1◦ =
ω

2
σ1z +

ω

2
σ2z +

β

4
σ1z ⊗ σ2z +HE1◦, (5)

where the environmental self-Hamiltonian: HE1◦ =
∫ νmax

0
dνa†νaν with the

maximal frequency νmax. The alternative choice [3,13] of the interaction
picture without the H12 term in eq.(5) reduces the considerations to the
weak qubits interaction, β ≪ 1, which is a special case of our considerations.

From eq.(5) it readily follow the energy eigenvalues and eigenprojectors
for the qubits system:

E1 = ω +
β

4
, P1 = |++〉〈++ |,

E2 = −β

4
, P2 = |+−〉〈+− |+ | −+〉〈−+ |,

E3 = −ω +
β

4
, P3 = | − −〉〈− − |. (6)

where |mn〉 ≡ |m〉|n〉, m, n ∈ {+,−} and σz|±〉 = ±|±〉. From eq.(6) follows
the set of the values for the parameter ν in eq.(4): {0, ν1 = E1 − E2 =
ω + β/2, ν2 = E1 − E3 = 2ω, ν3 = E2 − E3 = ω − β/2}.

The general expressions for the Lindblad operators [3]:

Ai(ν) = PnAiPm, ν = Em −En (7)

where Ai = S1x, cf. eq.(3), while:

γkl(ν) = 2πtr [Bk(ν)BlρE1th] . (8)

In eq.(8) [3]: Bk(ν) =
∫ a

−a
dtexp(−ıνt)Bk(t) for the Bk(t) representing the

interaction-picture form of Bk. In eq.(3) there is only one such operator,
BE1

.
The desired master equation can be shortly presented as:

dρ12
dt

= −α2

(

2
∑

i=1

(

γiAi + γ−
i A†

i

)

)

[ρ12], (9)

3



where α presents the weak coupling constant of the system-environment in-
teraction; if γ ≡ γ(ν), then γ− ≡ γ(−ν), with all superoperators satisfying:

A[ρ12] = Aρ12A
† − 1

2
{A†A, ρ12}, A†[ρ] = A†ρ12A− 1

2
{AA†, ρ12}. (10)

From (6) and (7) straightforwardly follow the non-zero Lindblad operators
in eq.(10):

A1 =
1

8
σ1− ⊗ (I2 − σ2z),

A2 =
1

8
σ1− ⊗ (I2 + σ2z). (11)

Calculation of the damping functions γkl(ν) is straightforward; technical
details are presented in [7]. For completeness, we provide a few main steps.

Due to the only one term in eq.(3), the general expression eq.(8) reduces
to:

γxx(ν) = 2πh(ν)

∫ νmax

0

dν ′h(ν ′)tr(aν(aν′ + a†ν′)ρth). (12)

With the use of expressions for the thermal averages, i.e. when the envi-
ronment is in thermal equilibrium [14]:

aν′aν = 0 = a†ν′a
†
ν , (13)

aν′a
†
ν = δ(ν ′ − ν)(1 + n̄(ν ′)) (14)

and

a†ν′aν = −δ(ν ′ − ν)n̄(ν ′), (15)

follow the expressions for γxx(ν) and γxx(−ν):

γxx(ν) = 2πJ(ν)(1 + n̄(ν)), γxx(−ν) = 2πJ(ν)n̄(ν), (16)

where ν takes the above distinguished values and the average number of
bosons in thermal state n̄(ν) = (e−ν/T − 1)−1. We choose the standard
Ohmic spectral density J(ν) = ανe−ν/νc with the cutoff νc.

In the high temperature limit, which we are concerned with, n̄(ν) ≫ 1 and
therefore γ(ν) ≈ γ(−ν) = 2πJ(ν)n̄(ν), which reduces the list of the damping
functions to only two of them (for fixed ν): γ1 ≡ γ(ν1) and γ2 ≡ γ(ν3).
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Substitution of eqs. (10) and (11) in eq.(9), after simple calculation, gives
the following relation of the damping functions to the Lindblad operators
appearing in eq.(9):

γ1 ≡ 4πJ(ω + β/2)n̄(ω + β/2), A2, A
†
2,

γ2 ≡ 4πJ(ω − β/2)n̄(ω − β/2), A1, A
†
1, (17)

that completes the master equation (9).
3. Derivation of the Kraus operators

In this section we derive the interaction-picture Kraus operators for the
qubits dynamics described by the master equation (9). We use a method
recently developed in Ref.[8].

3.1 A brief overview of the method

In Ref. [8], the authors developed a general procedure for deriving a Kraus
decomposition from a known master equation and vice versa, regarding the
finite-dimensional quantum systems. The only assumption is that the master
equation is local in time.

If the dynamical map for the process eq.(9) is formally presented as:

ρ12(t) = Φt[ρ12(0)], (18)

and the master equation eq.(9) is shortly presented as:

dρ12(t)

dt
= Λt[ρ12(0)], (19)

then (for the time-independent superoperator Λ), the following matrix rela-
tion is fulfilled:

F = eLt. (20)

The matrices F = (Fij) and L = (Lij) are well defined for the finite-
dimensional systems, and representations for the map Φt and for the super-
operator Λ, respectively, in a chosen orthonormalized basis {Gi} of hermitian
operators acting on the system’s Hilbert state space.

Introducing the so-called Choi matrix [8]:

Snm =
∑

r,s

Frstr (GrGnGsGm) (21)

and its non-negative (real) eigenvalues di, follow the desired Kraus operators:
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Ki =
∑

j

√

djuijGj, (22)

where the unitary matrix U = (uij) diagonalizes the Choi matrix S = (Snm).
That is, the procedure provides a Kraus form of the process:

ρ12(t) =
∑

i

Ki(t)ρ12(0)K
†
i (t). (23)

The trace preservation implies:

∑

i

K†
i (t)Ki(t) = I, ∀t. (24)

3.2 The Kraus operators for eq.(9)

Distilled from Section 3.1, the procedure for derivation of the Kraus op-
erator is as follows: First, from the master equation eq.(9), the L matrix is
derived. Then due to eq.(20), the F matrix follows that, in accordance with
eq.(21), provides the Choi matrix S. Finally, diagonalization of the Choi
matrix gives rise to the Kraus operators, eq.(22).

We proceed by first obtaining the Λ operator in the standard represen-
tation of the σ1i ⊗ σ2j/2, i, j = 0, 1, 2, 3, operators; σ◦ = I/

√
2, while for

i > 0, the σi/
√
2s represent the standard (normalized) Pauli operators. The

nonzero marix elements are as follows: −8(γ1 + γ2) = L2,2 = L3,3 = L5,5 =
L6,6 = L8,8 = L9,9 = L10,10 = L11,11 = L12,12 = L13,13 = L14,14 = L15,15,
−b(γ1 − γ2) = L2,14 = L3,15 = L14,2 = L15,3, −16(γ1 + γ2) = L4,4 = L16,16 and
−16(γ1 − γ2) = L4,16 = L16,4.

From the L matrix easily follows the F matrix with the following non-
zero entries: 1 = F1,1 = F7,7, (exp(−16tγ1) + exp(−16tγ2))/2 = F2,2 =
F3,3 = F14,14 = F15,15, (exp(−16tγ1) − exp(−16tγ2))/2 = F2,14 = F3,15 =
F14,2 = F15,3, exp(−8t(γ1 + γ2)) = F5,5 = F6,6 = F8,8 = F9,9 = F10,10 =
F11,11 = F12,12 = F13,13, (exp(−32tγ1) + exp(−32tγ2)/2 = F4,4 = F16,16 and
(exp(−32tγ1)− exp(−32tγ2)/2 = F4,16 = F16,4.

The rest of the calculation is also straightforward but rather involved.
Hence we just give the final expressions for the non-zero Kraus operators:

K1 =

√
1− e−32tγ2

2









0 0 0 0
0 0 0 ı
0 0 0 0
0 −ı 0 0









, K2 =

√
1− e−32tγ2

2









0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0









,

(25)
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K3 =

√
1− e−32tγ1

2









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









, K4 =

√
1− e−32tγ1

2









0 0 −ı 0
0 0 0 0
ı 0 0 0
0 0 0 0









,

(26)

K5 =
1− e−16tγ2

2









0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 1









, K6 =
1− e−16tγ1

2









1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0









.

(27)
The last two matrices are diagonal and are given by the respective entries,

where we use the following notation: τ = (γ1+γ2)t, W = (γ1−γ2)/(γ1+γ2).
For K7: K

7
1,1 = K7

3,3 = A(−8e32τ +2e24τ sinh(16Wτ)+4e32τ sinh(8Wτ)+B);
K7

2,2 = K7
4,4 = A(−8e32τ − 2e24τ sinh(16Wτ)− 4e32τ sinh(8Wτ) +B).

For theK8 matrix: K8
1,1 = K8

3,3 = −A′(8e32τ−2e24τ sinh(16Wτ)−4e32τ sinh(8Wτ)+
B); K8

2,2 = K8
4,4 = −A′(8e32τ + 2e24τ sinh(16Wτ) + 4e32τ sinh(8Wτ) +B).

The notation for K7 and K8:

A =

√

2e−16τ + 2e−32τ cosh(16Wτ) + 4e−24τ cosh(8Wτ)− e−56τB

16(2e16τ sinh(16Wτ) + 4e24τ sinh(8Wτ))2 + 16e−16τ (B − 8e32τ )2

(28)

A′ =

√

2e−16τ + 2e−32τ cosh(16Wτ) + 4e−24τ cosh(8Wτ) + e−56τB

16(2e16τ sinh(16Wτ) + 4e24τ sinh(8Wτ))2 + 16e−16τ (B + 8e32τ )2

(29)
and

B2 = 2e48τ (28e16τ − 1) + 2e48τ cosh(32Wτ)− 8e56τ cosh(8Wτ)

+8e64τ cosh(16Wτ) + 8e280τ cosh(120Wτ). (30)

From equations (25)-(30) follows the completeness relation eq.(24) for ev-
ery instant of time t. Hermiticity of the Kraus operators,K†

i = Ki, ∀i, implies
the unital character of the map Φt described by eq.(9), that is,

∑

i KiIKi = I;
equivalently Φt[I] = I, see eq.(18), i.e. Λt[I] = 0, see eq. (19).
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In the initial instant of time t = 0 (τ = 0), B = 8, and therefore A = 0
while A′ = 1/16. Therefore Ki(0) = 0, i = 1, 2, ..., 7, while K8(0) = −I, thus
satisfying the initial condition, ρ12(0) = K8(0)ρ12(0)K8(0). From eqs.(25)-
(27) it follows the time independence of the Kraus operators Ki, i = 1, 2, ...6
in the asymptotic limit. That is

lim
t→∞

6
∑

i=1

Ki(t)Ki(t) = I/4. (31)

Then, due to the completeness relation eq.(24), it follows the dominant con-
tribution from the K7 and K8 operators:

lim
t→∞

8
∑

i=7

Ki(t)Ki(t) = 3I/4. (32)

Of course, this does not imply existence of a stationary state, which is
defined in the Schrödinger picture, in which the Kraus operators are defined
as:

U (12)
◦ (t)Ki(t), i = 1, 2, ..., 8, (33)

where U
(12)
◦ (t) = exp(−ıt(H◦ −HE1◦)) and H◦ is defined by eq.(5).

3.3 Entanglement sudden death for the pair of qubits

As an application of the results of Section 3.2, we investigate entanglement
dynamics for the pair of qubits described by the master equation (9). We
assume the initial maximally entangled state for the pair of qubits, (|+−〉+
| − +〉)/

√
2, and choose the following set of the values for the parameters

appearing in eq.(17): ω = 0.1, α = 0.02, T = 100, νc = 100. As a measure
of quantum entanglement we use the standard and well-studied measure of
concurrence [15]

C(ρ(t)) = max{0,Λ(t)}, (34)

where Λ(t) =
√

λ1(t) −
√

λ2(t) −
√

λ3(t) −
√

λ4(t) with the eigenvalues
λ1 > λ2 > λ3 > λ4 of

ρ(t)(σ1y ⊗ σ2y)ρ
∗(t)(σ1y ⊗ σ2y) (35)

and ”∗” denoting the complex-numbers conjugate. The density matrix ρ(t)
in eq.(35) is the 1 + 2-system’s state eq.(23) for the Kraus operators given
by eq.(33).
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In Fig.1 we can see dependence of C on both, time t and the strength of
the inter-qubits interaction β. Expectably, we observe dynamical decrease of
C and hence of the entanglement in the qubits 1 + 2 system for every chosen
value of β. Fig.2 depicts slower decrease of C for larger β, for every instant
of time t. That is, the largest (negative) value of Λ(t) increases with the
increase of β. Physically, Figures 1 and 2 reveal detrimental influence of the
environment on the initial entanglement for the pair of qubits; the stronger
inter-qubits interaction (the larger β) the qubits more efficiently ”hold to-
gether”. Our results reveal the phenomenon of the so-called entanglement
sudden death [16]: instead of the expected smooth, asymptotic approach
to C = 0, we obtain dynamical change of the concurrence from the initial
C(0) = 1 to the final C(t) = 0 value for the finite time interval t.

Figure 1: Concurrence presented as a function of both time t and the inter-
qubit interaction β. The larger values are shown lighter, while the parameters
are given in the body text.

Figure 2: Concurrence dynamics with β = 0, 50, 100 presented respectively
by the dashed, thin and thick lines.

4. Discussion

Procedure presented in this paper is universal, in that it formally equally
applies to arbitrary physical situation for a pair of qubits that is subjected
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to a completely positive dynamical process. For both qubits monitored by
their respective environments (or by a common environment), the technical-
ities are much more involved but without any conceptual or methodological
obstacles or open issues. The use of the Kraus operators is a straightforward
application of the matrix (linear algebra) calculus.

Tracing out a qubit from eq.(9) universally leads to a master equation
for the other qubit. However, this procedure is trivial only for the initial
tensor-product state ρ1 ⊗ ρ2 for the pair of qubits. A qubit can be regarded
as a part of the (extended) environment of the other qubit. This gives rise
to alternative bipartitions of the total system.

Tracing out that includes the qubit 2 (the qubit 1) regards the 1 +E ′
1 ≡

1 + (E1 + 2) (the 2 + E ′
2 ≡ 2 + (1 + E1)) bipartition. Only if there is not

correlations in the initial state of the qubits, the bipartition of the total
system, (1 + 2) + E1, which is assumed in Section 2 and leads to eq.(4), is
interchangeable with the alternative bipartitions of the total system: (1 +
E1) + 2 and 1 + (E1 + 2). The presence of the initial correlations in the
qubits 1+2 system implies initial correlations [17] in both 1+E ′

1 and 2+E ′
2

bipartitions, and hence [3] non-complete-positivity of the processes for the
individual qubits; for this reason, in general, independent derivations of the
master equations for the individual qubits are required [18,19]. That is, the
initial correlations in the qubits system breaks the symmetry between the
different bipartitions of the total system. For this reason we only regarded
the bipartition (1+2)+E1 and eq.(4) as the reliable basis for the analysis of
the qubits dynamics–the absence of the initial correlations in this bipartition
is supposed from the very start, ρ12 ⊗ ρE1

, Section 2.
For a pair of qubits, every Kraus operator can be writtenKk =

∑

i,j c
k
ijA1i⊗

B2j ; an example is given by eq.(11). Then the state for the pair of qubits
reads:

ρ12(t) =
∑

k,i,i′,j,j′

ckijc
k∗
i′j′A1i ⊗ B2jρ12(0)A

†
1i′ ⊗ B†

2j′, (36)

which after the tracing out the qubit 2 (the qubit 1) gives a master equation
for the qubit 1 (for the qubit 2). As emphasized above, only for the initial
tensor-product state ρ12 = ρ1 ⊗ ρ2, one can obtain a Kraus form for a single-
qubit dynamics–that guarantees [1] complete positivity of the process the
qubit is subjected to. Then eq.(36) gives, e.g.:

ρ1 = tr2ρ12 =
∑

i,i′

A1iρ1A
†
1i′

(

tr2
∑

k

(
∑

j

ckijB2j)ρ2(
∑

j

ckijB2j)
†

)

. (37)

10



Since the terms

bii′ = tr2
∑

k

(
∑

j

ckijB2j)ρ2(
∑

j

cki′jB2j)
† ≡

∑

k

tr2B2ikρ2B
†
2i′k (38)

constitute a positive semi-definite matrix, diagonalization of the (bii′) matrix,
bii′ = bkwikw

∗
i′k, bk ≥ 0, ∀k, gives rise to the Kraus operators for the qubit 1:

K1
k =

∑

i

√

bkwikA1i, (39)

where the unitary matrix (wik) diagonalizes the (bii′) matrix. As empha-
sized above, this procedure, and complete positivity of the qubit’s dynamics,
breaks for any kind of the initial correlations in the 1 + 2 system [3, 13].
To this end, a more detailed analysis with an emphasis on the subtleties re-
garding the very concept of complete positivity [3, 13, 20] will be presented
elsewhere.

An important extension of the standard procedure for Markovian dynam-
ics is considered for a pair of weekly interacting damped harmonic oscillators
[3, 13]; in our considerations, this is the β ≪ 1 case. Then the interaction
term H12, eq.(2), may be regarded as a perturbation and an alternative in-
teraction picture can be used by omitting H12 in eq.(5). Then H12 appears
in the commutator term of the master equation with the Lindblad operators,
which are obtained for the case β = 0, cf. eq.(B.1) in Ref. [13]. Neverthe-
less. this is just a special case of our considerations. Due to the commutation
[H1◦ +H2◦, H12] = 0, the Lindblad operators eq.(11) are the same for both
β 6= 0 and β = 0. Of interest is the interaction picture state defined as
ρ̃◦(t) = U †

◦ρ(t)U◦, where U◦ = exp(−ıt(H1◦ + H2◦ + HE1◦)); ρ(t) is in the
Schrödinger-picture. The exact interaction picture state ρ̃(t) = U †ρ(t)U ,
where U(t) = exp(−ıt(H1◦ +H2◦ +H12 +HE1◦)). Keeping the terms of the
first order in (small) β, the approximation U ≈ U◦(I − ıtH12) easily gives:

ρ̃◦(t) ≈ ρ̃(t)− ıt[H12, ρ̃◦(t)]. (40)

Taking the time derivative of eq.(40) easily follows, in the new interaction
picture:

dρ̃◦
dt

≈ −ı[H̃1E1
, ρ̃(t)]− ı[H12, ρ̃◦(t)] ≈ −ı[H̃1E1

+H12, ρ̃◦(t)], (41)

which is eq.(B.1) in Ref. [13]; H12 is of the same form for both pictures. We
also note that, while eq.(40) is universal (for sufficiently small β), in general,
the Lindblad operators for the two interaction pictures are not identical;
nevertheless, even in the more general cases, our approach (approximation of
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the above unitary operator U(t)), in the zeroth order of the time-independent
perturbation, leads to eq.(B.1) of Ref. [13].

5. Conclusion

Derivation of the Kraus operator-sum from the microscopic Hamiltonian
model may be technically involved. This may be the reason behind the lack
of the explicit forms of the Kraus operators for most of the non-single-qubit
processes. Nevertheless, the use of the Kraus form of the dynamical map is
often technically simple. Our results aim at reducing this gap and exhibiting
the technical advantage of the use of a Kraus form for certain basic tasks in
open systems and quantum information theory contexts.
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[19] R. E. Kastner, J. Jeknić-Dugić, G. Jaroszkiewicz, eds. Quantum
Structures. Classical Emergence from the Quantum Level, World Scientific,
Singapore, 2017.

[20] A. Brodutch, A. Datta, K. Modi, Á. Rivas, C. A. Rodrguez-Rosario,
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