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The paper presents a new approach to estimation of the dynamic power phasors parameters. The observed system is modelled in
algebra of matrices related to its Taylor-Fourier-trigonometric series representation. The proposed algorithm for determination
of the unknown phasors parameters is based on the analytical expressions for elements of the Gram’s matrix associated with this
system. The numerical complexity and algorithm time are determined and it is shown that new strategy for calculation of Gram’s
matrix increases the accuracy of estimation, as well as the speed of the algorithm with respect to the classical way of introducing
the Gram’s matrix. Several simulation examples of power system signals with a time-varying amplitude and phase parameters are
given by which the robustness and accuracy of the new algorithm are confirmed.

1. Introductions

The very intense and rapid development of electronic tech-
nologies, including the production of renewable energy
sources (commercial solar, wind power plants, and biomass
power plants) and power devices, caused a change in the
structure of the traditional power system. Electrical variables,
such as the basic harmonics amplitude and its frequency,
can be significantly altered inmicronetworks, weak networks,
and networks of the island type due to reduced capacity in
terms of short-circuit currents. In addition, the harmonic
is injected into the system using electrical electronic equip-
ment [1]. Under these circumstances, an ideal algorithm for
assessing and estimation of the pharos must enable quick,
accurate, and steady monitoring of the changing parameters
of the electrical signals that are contaminated by the present
harmonic components.

In the last few years,many algorithms have been proposed
in the literature for evaluating the phases in different dynamic
states and conditions that can be controlled in the network.
In general, they can be classified into methods based on the
application of discrete Fourier transform (DFT) [2–4] and
non-DFT-based methods. Each of the algorithms requires

a harmonic/pharos model and uses some of the specific
techniques thatmodel the parameters of the observed system.
In accordance with the modelling method, the measurement
method, the algorithms can be divided into two main classes:
algorithms that rely on the pure sinusoidal signal model
(static model) and algorithms based on a nonsinusoidal
model (dynamic model) [5].

A simultaneous estimation of phasor and frequency
based on the application of the fast recursive Gauss-Newton
algorithm was proposed in [6], while the method based on
the modified Fourier transformation in order to eliminate
the DC offset was presented in [7]. The paper [8] proposes
a new method based on an adaptive band-pass filter in
order to evaluate the phasor. On the other hand, the authors
of [9] introduce a special angle-shifted energy operator to
separate the value of the instantaneous amplitude of the
phasor. The least square curve fitting approach was proposed
in [10] in order to eliminate the unwanted effect of saturation
of the current transformer. Measurement of the phase and
frequency during the transient processes was considered in
[11], while the dynamic estimation of the phase based on the
application of maximally flat differentiators was proposed in
[12] and the phasorlet in [13]. The paper [14] introduces an
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approach to estimate the parameters of the phasor based on
recursive wavelet transformation. Taylor-Fourier algorithm
[15] approximates the dynamic phase with the second-order
Taylor expansion and the least square observer. The Taylor-
Kalman method based on the Kalman observer in order to
achieve nondelayed dynamic phase estimation is described in
[16]. This method is further enhanced by the development of
the state space for harmonic infiltration in [17] and is called
Tailor Fourier Kalman. The Prony algorithm [18] was used to
estimate the phasor described by the exponential amplitude
and the linear phase, with no Taylor expansion. There are
other methods that are modifications of earlier methods [19,
20]. The Shank method is another method for estimating a
dynamic phasor, using the least square and consecutive delays
of the unit response system [21]. The algorithm [22] for TFT
(Taylor-Fourier transform) harmonic analysis uses recursive
multiple-resonator-based computational techniques, which
enable the reduction of both the computational cost and the
memory requirements of the algorithm.

In [23] a more precise dynamic model describing the
complex trajectory of the dynamic phasor is derived owing
to a revised state transition equation of the rotating pha-
sor and its derivatives. Based on the improved dynamic
model [23], a modified Taylor-Kalman Filter for instan-
taneous dynamic phasor estimation is developed which
is coincident with the self-adaptive nature of the Kalman
filter principle. An extension of the Taylor Weighted Least
Squares (TWLS) algorithm for the estimation of the pha-
sor, frequency, and ROCOF, Rate-Of-Change-Of-Frequency,
parameters of an electric waveform has been analyzed in
[24]. Paper [25] introduces a dynamic phasor estimation
method for PMUs/IEDs based on a modified time domain
hybridmethod.Dynamic phasor is estimated using theTaylor
expansion, where frequency deviation is derived directly
from fitting parameters to avoid magnification of fitting
errors. A double suboptimal-scaling factor-adaptive strong-
tracking Kalman filter (DSTKF)-based phasor measurement
unit algorithm which can meet the accuracy requirement of
the IEEE standard C37.118.1 under the dynamic condition was
proposed in [26]. This method uses a kth Taylor polynomial
to linearize the complex exponential of the signal model
and estimates the dynamic phasor using DSTKF. In [27], a
combination of the least square-based Prony analysis and
Taylor expansion called Taylor–Prony is proposed to estimate
the dynamic phasor.

In this paper, a special transformation (representation) of
Taylor-Fourier expansion and corresponding Gram matrix
is used to estimate the dynamic phasors from input pha-
sorlets in real domain, based on synchronously sampled
values of the input signal. The dynamic system’s behaviour
is described in algebra of matrices related to their Taylor-
Fourier-trigonometric series representation. The explicit for-
mulas for calculation of elements of the associated Gram’s
matrix are given. In this way, we are in a position to improve
the computational performance of the proposed algorithm, as
regards precision and speed. Namely, the proposed algorithm
is based on matrix multiplication. It is a well-known fact
that mathematical definition of multiplication of matrices
gives an algorithm that takes 𝑝𝑞𝑟 time to multiply a matrix

of type 𝑝 × 𝑞 with a matrix of type 𝑞 × 𝑟 (in the case of
square 𝑝 × 𝑝-matrices, it takes 𝑝3 time). If we use the explicit
formulas for elements of Gram’s matrix in our algorithm,
then one matrix multiplication is avoided, and the task is
reduced to 𝑝𝑟 consecutive calculations of the values of spe-
cific polynomials. Moreover, each element of Gram’s matrix
depends on the number of samples𝑁 (it is expressed in terms
of a polynomial of variable 𝑁), but the time necessary for
this calculation depends on the degree of that polynomial.
Consequently, the time needed for calculation of Gram’s
matrix remains the same even if the number of samples
is increased. Another important reason for using analytical
expressions for elements of Gram’s matrix instead of their
interpretation through the usual matrix multiplication can be
found in the fact that rounding of exact numbers is almost
unavoidable when reporting many computations and these
rounding errors generally accumulate (explicit formulas for
elements of Gram’s matrix induce smaller round-off errors in
the case of large number of samples).

The accuracy of the proposed method is compared with
some well-known methods from literature, illustrating the
capability of tracking dynamic phasors, especially in com-
parison with other procedures based on the least squares
method. Sinusoidal and step changes of the amplitude and
phase, harmonic condition, frequency tracking test, and com-
putation time are different tests which are used to validate the
proposed method, according to the definition and test cases
in the standard [28]. The potential of the proposed approach
is demonstrated by simulating various numerical signals in
MATLAB. The proposed algorithm is particularly suitable
for the integration of distributed generating sources with
microgrids, when fast detection of faults and the islanding
condition is required.

2. Dynamic Signal Model and
Algorithm Description

The behaviour of a power system under oscillation is usually
modelled by trigonometric series

𝑥 (𝑡) = 𝑀∑
𝑚=0

𝑎𝑚 (𝑡) sin (𝑚𝜔𝑡 + 𝜓𝑚 (𝑡)) , (1)

where 𝑎𝑚(𝑡) and 𝜓𝑚(𝑡) are the amplitude and the phase
functions which represent variations of the mth dynamic
harmonic over time, and 𝜔 = 2𝜋𝑓1 (𝑓1 is frequency
of fundamental component). In an equivalent form, the
behaviour of such power system can be represented as

𝑥 (𝑡) = 𝑀∑
𝑚=0

{𝐴𝑚 (𝑡) sin𝑚𝜔𝑡 + 𝐵𝑚 (𝑡) cos𝑚𝜔𝑡} , (2)

where 𝐴𝑚 (𝑡) = 𝑎𝑚 (𝑡) cos𝜓𝑚 (𝑡) ,
𝐵𝑚 (𝑡) = 𝑎𝑚 (𝑡) sin𝜓𝑚 (𝑡) . (3)

Clearly, the following holds

𝜓𝑚 (𝑡) = arctg 𝐵𝑚 (𝑡)𝐴𝑚 (𝑡) (4)
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and

𝑎𝑚 (𝑡) = √𝐴2𝑚 (𝑡) + 𝐵2𝑚 (𝑡). (5)

Let 𝐴𝑚(𝑡) and 𝐵𝑚(𝑡) be approximated with two Taylor
series within a short period of time near the reference time𝑡𝑟𝑒𝑓 = 0, i.e.,

𝐴𝑚 (𝑡) = 𝐾∑
𝑘=0

𝐴(𝑘)𝑚 (0)𝑘! 𝑡𝑘 = 𝐾∑
𝑘=0

𝐴𝑚𝑘𝑡𝑘 (6)

and

𝐵𝑚 (𝑡) = 𝐾∑
𝑘=0

𝐵(𝑘)𝑚 (0)𝑘! 𝑡𝑘 = 𝐾∑
𝑘=0

𝐵𝑚𝑘𝑡𝑘. (7)

Therefore, we have

𝑥 (𝑡) = 𝑀∑
𝑚=0

{( 𝐾∑
𝑘=0

𝐴𝑚𝑘𝑡𝑘) sin𝑚𝜔𝑡

+ ( 𝐾∑
𝑘=0

𝐵𝑚𝑘𝑡𝑘) cos𝑚𝜔𝑡} .
(8)

In a discrete version, this can be written as the system of𝑁 equations

𝑥 (𝑛𝑇) = 𝑀∑
𝑚=0

{( 𝐾∑
𝑘=0

𝐴𝑚𝑘𝑛𝑘𝑇𝑘) sin𝑚𝜔𝑛𝑇

+ ( 𝐾∑
𝑘=0

𝐵𝑚𝑘𝑛𝑘𝑇𝑘) cos𝑚𝜔𝑛𝑇} ,
(9)

where 𝑛 = 1, 2, . . . , 𝑁.
For each 𝑚 = 1, 2, . . . ,𝑀, the mth harmonic representa-

tion is

𝑥𝑚 (𝑛𝑇) = ( 𝐾∑
𝑘=0

𝐴𝑚𝑘𝑛𝑘𝑇𝑘) sin𝑚𝜔𝑛𝑇

+ ( 𝐾∑
𝑘=0

𝐵𝑚𝑘𝑛𝑘𝑇𝑘) cos𝑚𝜔𝑛𝑇.
(10)

In order to perform the necessary and proposed calcu-
lations for the estimation of unknown phasors parameters
from input phasorlet, samples of the processed signal are
first transformed through the Fourier nonrecursive algorithm
[29, 30]. After that they are introduced in the form of input
parameters to the algorithm proposed in this paper. The
mathematical model of the algorithm for digital filtering is
defined as

𝑥𝑓𝑖𝑙𝑚 (𝑛𝑇) = 1𝑁
𝑁−1∑
𝑘=0

𝑥 ((𝑘 + 𝑛) 𝑇) cos 𝑘𝑚𝜔𝑇,
𝑛 = 1, 2, . . . , 𝑁,

(11)

where 𝑥𝑚𝑓𝑖𝑙(𝑛) is nth filtered sample of the mth harmonic
voltage or current signal, 𝑥((𝑘 + 𝑛)𝑇) is the processed
signal–sample in the timemoment (𝑘+𝑛)𝑇,𝑇 is the sampling
period, and 𝑁 is the number of samples, 𝑁 = 𝑓/𝑓1 (𝑓 =1/𝑇). After the extraction we obtain the vector of the filtered
samples, the length of 𝑁, on which to apply the proposed
procedure. For the realization of this filter transformation, the
FIR structure described in [31] can be used, but it was chosen
(11) for the reason of obtaining a simpler and faster procedure
for estimating the processed phasors.

Let us observe that for 𝐾 = 2, we obtain the following
system of equations

𝑥𝑓𝑖𝑙𝑚 (𝑇) = (𝐴𝑚0 + 𝐴𝑚1𝑇 + 𝐴𝑚2𝑇2) sin𝑚𝜔𝑇
+ (𝐵𝑚0 + 𝐵𝑚1𝑇 + 𝐵𝑚2𝑇2) cos𝑚𝜔𝑇,

𝑥𝑓𝑖𝑙𝑚 (2𝑇) = (𝐴𝑚0 + 𝐴𝑚12𝑇 + 𝐴𝑚222𝑇2) sin𝑚𝜔2𝑇
+ (𝐵𝑚0 + 𝐵𝑚12𝑇 + 𝐵𝑚222𝑇2) cos𝑚𝜔2𝑇,

𝑥𝑓𝑖𝑙𝑚 (3𝑇) = (𝐴𝑚0 + 𝐴𝑚13𝑇 + 𝐴𝑚232𝑇2) sin𝑚𝜔3𝑇
+ (𝐵𝑚0 + 𝐵𝑚13𝑇 + 𝐵𝑚232𝑇2) cos𝑚𝜔3𝑇,

...
𝑥𝑓𝑖𝑙𝑚 (𝑁𝑇)

= (𝐴𝑚0 + 𝐴𝑚1𝑁𝑇 + 𝐴𝑚2𝑁2𝑇2) sin𝑚𝜔𝑁𝑇
+ (𝐵𝑚0 + 𝐵𝑚1𝑁𝑇 + 𝐵𝑚2𝑁2𝑇2) cos𝑚𝜔𝑁𝑇.

(12)

The traditional algorithm for estimating the value of the
phasor is based on the subsystem of (12), in which only
two column vectors are taken into account; in this way
the dynamic phasor is approximated by Tailor's zero-order
polynomial over the interval in which observations are made.
This generates a staircase function, with a variable step from
one interval to another. Such a model is accurate only when
the input signal is in the stationary state. This is certainly not
enough in a situation where oscillations in the power system
occur, in which the first and second derivatives are as relevant
as the constant term. A matrix representation of this discrete
system (12) has the form

𝑥𝑓𝑖𝑙𝑚 = 𝐻 ⋅ 𝑦𝑚, (13)

where

𝑥𝑓𝑖𝑙𝑚 = [𝑥 (𝑇) , 𝑥 (2𝑇) , 𝑥 (3𝑇) . . . , 𝑥 (𝑁𝑇)]𝑇 , (14)

𝑦𝑚 = [𝐴𝑚0, 𝐴𝑚1, 𝐴𝑚2, 𝐵𝑚0, 𝐵𝑚1, 𝐵𝑚2]𝑇 , (15)

And
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𝐻 =
[[[[[[[[[[
[

sin𝑚𝜔𝑇 𝑇 sin𝑚𝜔𝑇 𝑇2 sin𝑚𝜔𝑇 cos𝑚𝜔𝑇 𝑇 cos𝑚𝜔𝑇 𝑇2 cos𝑚𝜔𝑇
sin𝑚𝜔2𝑇 2𝑇 sin𝑚𝜔2𝑇 22𝑇2 sin𝑚𝜔2𝑇 cos𝑚𝜔2𝑇 2𝑇 cos𝑚𝜔2𝑇 22𝑇2 cos𝑚𝜔2𝑇
sin𝑚𝜔3𝑇 3𝑇 sin𝑚𝜔3𝑇 32𝑇2 sin𝑚𝜔3𝑇 cos𝑚𝜔3𝑇 3𝑇 cos𝑚𝜔3𝑇 32𝑇2 cos𝑚𝜔3𝑇

... ... ... ... ... ...
sin𝑚𝜔𝑁𝑇 𝑁𝑇 sin𝑚𝜔𝑁𝑇 𝑁2𝑇2 sin𝑚𝜔𝑁𝑇 cos𝑚𝜔𝑁𝑇 𝑁𝑇 cos𝑚𝜔𝑁𝑇 𝑁2𝑇2 sin𝑚𝜔𝑁𝑇

]]]]]]]]]]
]

. (16)

Our goal is to minimize the sum of squares of the
residuals

𝑅 (𝑦𝑚) = 𝑥𝑓𝑖𝑙𝑚 − 𝐻 ⋅ 𝑦𝑚, (17)

i.e., to find the solution to the matrix equation

𝐻𝑇 ⋅ 𝐻 ⋅ 𝑦𝑚 = 𝐻𝑇 ⋅ 𝑥𝑓𝑖𝑙𝑚 (18)

The matrix 𝐻𝑇 ⋅ 𝐻 is called the Gram’s matrix. The
best solution (in the least squares sense) exists provided
that the Gram's matrix is invertible, which is fulfilled when
the column vectors H are linearly independent [32]. The
Grammian inversion depends on the size of the interval N
and the order describing the model of the signal itself that
is the subject of processing. In our approach we assume that2𝑚𝜔𝑁𝑇 = 2𝑠𝜋, for some 𝑠 ∈ N (in the case that 𝑠 = 1, the
number of samples N covers the whole period).

It is clear that phasors are given by the inverse transform
of the phasorlets and that the best solution is given by

𝑦𝑚 = (𝐻𝑇 ⋅ 𝐻)−1 ⋅ 𝐻𝑇 ⋅ 𝑥𝑓𝑖𝑙𝑚 . (19)

Thepseudoinversematrix (𝐻𝑇 ⋅𝐻)−1 ⋅𝐻𝑇 depends only on
the parameters of the adopted signal model. The estimation
of the phasors in the center of the evaluation interval where
Tailor's error is zero is correct if the input signal is well
described by the adopted model for which the least mean
squared error (LMS) is also zero. An LMS error would affect
the estimate if the signal was outside the projection subspace
of the LMS algorithm.

3. Gram’s Matrix of Dynamic Signal Model

In this section, we will investigate the Gram's matrix of the
dynamic signal model (12), and for each element of that
matrix, an explicit formula will be given.

The Gram’s matrix 𝐻𝑇 ⋅ 𝐻 has the form

𝐻𝑇 ⋅ 𝐻 = [𝐴 𝐶
𝐶 𝐵] , (20)

where𝐴 = [𝑎𝑖𝑗]3𝑖,𝑗=1, 𝐵 = [𝑏𝑖𝑗]3𝑖,𝑗=1 and 𝐶 = [𝑐𝑖𝑗]3𝑖,𝑗=1, and for all𝑖, 𝑗 = 1, 2, 3 and 𝑝 = 𝑖 + 𝑗 − 2, the elements 𝑎𝑖𝑗, 𝑏𝑖𝑗, and 𝑐𝑖𝑗 are
finite trigonometric series

𝑎𝑖𝑗 = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ sin2 𝑚𝜔𝑛𝑇, (21)

𝑏𝑖𝑗 = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ cos2𝑚𝜔𝑛𝑇, (22)

𝑐𝑖𝑗 = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ sin𝑚𝜔𝑛𝑇 ⋅ cos𝑚𝜔𝑛𝑇. (23)

With the goal of calculating the elements 𝑎𝑖𝑗, 𝑏𝑖𝑗, and 𝑐𝑖𝑗,
we will consider finite series

𝐴𝑝 (𝑁, 𝑥) = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ sin2 𝑛𝑥, (24)

𝐵𝑝 (𝑁, 𝑥) = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ cos2 𝑛𝑥, (25)

𝐶𝑝 (𝑁, 𝑥) = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ sin 𝑛𝑥 ⋅ cos 𝑛𝑥. (26)

Clearly, for 𝑥 = 𝑚𝜔𝑇 the following holds

𝑎𝑖𝑗 = 𝑇𝑝 ⋅ 𝐴𝑝 (𝑁,𝑚𝜔𝑇) ,
𝑏𝑖𝑗 = 𝑇𝑝 ⋅ 𝐵𝑝 (𝑁,𝑚𝜔𝑇) ,
𝑐𝑖𝑗 = 𝑇𝑝 ⋅ 𝐶𝑝 (𝑁,𝑚𝜔𝑇) .

(27)

The series 𝐴𝑝(𝑁, 𝑥), 𝐵𝑝(𝑁, 𝑥), and 𝐶𝑝(𝑁, 𝑥) can be
represented equivalently as

𝐴𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑁∑
𝑛=1

𝑛𝑝 − 12 ⋅ 𝑁∑
𝑛=1

𝑛𝑝 ⋅ cos 2𝑛𝑥, (28)

𝐵𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑁∑
𝑛=1

𝑛𝑝 + 12 ⋅ 𝑁∑
𝑛=1

𝑛𝑝 ⋅ cos 2𝑛𝑥, (29)

𝐶𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑁∑
𝑛=1

𝑛𝑝 ⋅ sin 2𝑛𝑥. (30)

It is a well-known fact that an analytic solution for a sum
of powers of positive integers is

𝑆𝑝 (𝑁) = 𝑁∑
𝑛=1

𝑛𝑝 = 𝜁 (−𝑝) − 𝜁 (−𝑝,𝑁 + 1) = 𝐻𝑛(−𝑝), (31)

where 𝜁(𝑧) is Riemann zeta function [33, 34], 𝜁(𝑧, 𝑎) is
Hurvitz zeta function [35], and𝐻𝑛(𝑘) is generalized harmonic
number [36]. The Swiss mathematician Jacob Bernoulli
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Table 1: Sum of powers of positive integers.

𝑆0(𝑁) 𝑁
𝑆1(𝑁) 12 ⋅ (𝑁2 + 𝑁)
𝑆2(𝑁) 16 ⋅ (2𝑁3 + 3𝑁2 + 𝑁)
𝑆3(𝑁) 14 ⋅ (𝑁4 + 2𝑁3 + 𝑁2)
𝑆4(𝑁) 130 ⋅ (6𝑁5 + 15𝑁4 + 10𝑁3 − 𝑁)

(1654-1705) derived the formula for the finite sum of powers
of consecutive positive integers [37] representing 𝑆𝑝(𝑁) as
polynomial in 𝑁 of degree 𝑝 + 1. In the case that the
power𝑝 takes values in the set {0, 1, . . . , 4}, the corresponding
polynomials are presented in Table 1.

Now, let us consider the finite sums involving trigonomet-
ric functions

𝑅𝑝 (𝑁, 𝑥) = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ cos 2𝑛𝑥,

𝐼𝑝 (𝑁, 𝑥) = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ sin 2𝑛𝑥.
(32)

The following holds for their exponential form

𝐸𝑝 (𝑁, 𝑥) = 𝑁∑
𝑛=1

𝑛𝑝 ⋅ 𝑒i2𝑛𝑥 = 1(2i)𝑝 ⋅
𝑁∑
𝑛=1

d𝑝

d𝑥𝑝 (𝑒i2𝑛𝑥)

= 1(2i)𝑝 ⋅ d𝑝

d𝑥𝑝 (
𝑁∑
𝑛=1

𝑒i2𝑛𝑥)

= 1(2i)𝑝 ⋅ d𝑝

d𝑥𝑝 (𝑒i2𝑥 ⋅ 𝑒i2𝑁𝑥 − 1𝑒i2𝑥 − 1 )
= 1(2i)𝑝 ⋅ d

𝑝𝑓 (𝑥)
d𝑥𝑝 ,

(33)

where

𝑓 (𝑥) = 𝑒i2𝑥 ⋅ 𝑒i2𝑁𝑥 − 1𝑒i2𝑥 − 1 . (34)

For arbitrary 𝑁 ∈ N, let functions 𝑔𝑝(𝑧) : 𝐶 󳨀→ 𝐶 be
defined in the following way:

𝑔0 (𝑧) = 𝑧 ⋅ 𝑧𝑁 − 1𝑧 − 1 ,
𝑔𝑝 (𝑧) = 2i ⋅ 𝑧 ⋅ d𝑔𝑝−1 (𝑧)

d𝑧 , 𝑝 = 1, 2, . . . .
(35)

Clearly, for 𝑧 = 𝑒i2𝑥 hold 𝑓(𝑥) = 𝑔0(𝑧) and
d𝑝𝑓 (𝑥)
d𝑥𝑝 = d

d𝑥 (d𝑝−1𝑓 (𝑥)
d𝑥𝑝−1 )

= d
d𝑧 (d𝑝−1𝑓 (𝑥)

d𝑥𝑝−1 ) ⋅ d𝑧
d𝑥

= d
d𝑧 (𝑔𝑝−1 (𝑧)) ⋅ d𝑧d𝑥 = 𝑔𝑝 (𝑧) .

(36)

Therefore, we have

𝐸𝑝 (𝑁, 𝑥) = 1(2i)𝑝 ⋅ 𝑔𝑝 (𝑒i2𝑥) , (37)

and implicitly we obtain

𝑅𝑝 (𝑁, 𝑥) = Re{ 1(2i)𝑝 ⋅ 𝑔𝑝 (𝑒i2𝑥)} ,
𝐼𝑝 (𝑁, 𝑥) = Im{ 1(2i)𝑝 ⋅ 𝑔𝑝 (𝑒i2𝑥)} .

(38)

The series 𝐴𝑝(𝑁, 𝑥), 𝐵𝑝(𝑁, 𝑥), and 𝐶𝑝(𝑁, 𝑥) can be
represented, in the terms of 𝑆𝑝(𝑁) and 𝑔𝑝(𝑥), in the following
way:

𝐴𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑆𝑝 (𝑁) − 12 ⋅ Re{ 1(2i)𝑝 ⋅ 𝑔𝑝 (𝑒i2𝑥)} , (39)

𝐵𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑆𝑝 (𝑁) + 12 ⋅ Re{ 1(2i)𝑝 ⋅ 𝑔𝑝 (𝑒i2𝑥)} , (40)

𝐶𝑝 (𝑁, 𝑥) = 12 ⋅ Im{ 1(2i)𝑝 ⋅ 𝑔𝑝 (𝑒i2𝑥)} , (41)

Also, these series can be represented in the terms of𝑆𝑝(𝑁), 𝑅𝑝(𝑁, 𝑥), and 𝐼𝑝(𝑁, 𝑥) in the following simple nota-
tion:

𝐴𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑆𝑝 (𝑁) − 12 ⋅ 𝑅𝑝 (𝑁, 𝑥) , (42)

𝐵𝑝 (𝑁, 𝑥) = 12 ⋅ 𝑆𝑝 (𝑁) + 12 ⋅ 𝑅𝑝 (𝑁, 𝑥) , (43)

𝐶𝑝 (𝑁, 𝑥) = 12 ⋅ 𝐼𝑝 (𝑁, 𝑥) . (44)

In the case that 𝑝 takes values in the set {0, 1, . . . , 4},
the explicit forms of functions 𝑔𝑝(𝑧) obtained by 𝑝 consec-
utive derivations according to formula (35) are presented in
Table 2.

In the main section of this article, the synchronous model
is observed, i.e., the number 𝑁 is chosen with respect to the
relation𝑁𝑥0 = 𝜋. For 𝑝 = 0, 1, . . . , 4 and 𝑧0 = 𝑒𝑖2𝑥0 , this leads
to the values 𝐸𝑝(𝑁, 𝑥0) given in Table 3.

If we represent each 𝑧0𝑠 in 𝐸𝑝(𝑁, 𝑧0) in its expanded form
as a polynomial in sin 𝑥0 and cos 𝑥0 of degree 𝑝 (the degree of
each term in this polynomial in two variables is the sumof the
exponents in each term), then 𝑅𝑝(𝑁, 𝑥0) can be transformed
into the form given in Table 4.
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Table 3: The values of functions 𝐸𝑝(𝑁, 𝑥0).
𝐸0(𝑁, 𝑥0) 0

𝐸1(𝑁, 𝑥0) 𝑞11𝑧01/22i ⋅ Im 𝑧01/2 𝑞11 = 𝑁

𝐸2(𝑁, 𝑥0) 𝑞21𝑧03/2 + 𝑞22𝑧01/2 + 𝑞23(2i ⋅ Im 𝑧01/2)3
𝑞21 = 𝑁2

𝑞22 = −2𝑁2 − 2𝑁
𝑞33 = 𝑁2 + 2𝑁

𝐸3(𝑁, 𝑥0) 𝑞31𝑧01/2 + 𝑞32𝑧0 + 𝑞33 + 𝑞34𝑧0−1(2i ⋅ Im 𝑧01/2)4

𝑞31 = 𝑁3
𝑞32 = −3𝑁3 − 3𝑁2 + 3𝑁

𝑞33 = 3𝑁3 + 6𝑁2
𝑞34 = −𝑁3 − 3𝑁2 − 3𝑁

𝐸4(𝑁, 𝑥0) 𝑞41𝑧05/2 + 𝑞42𝑧03/2 + 𝑞43𝑧01/2 + 𝑞44𝑧0−1/2 + 𝑞45𝑧0−3/2(2i ⋅ Im 𝑧01/2)5

𝑞41 = 𝑁4𝑧𝑁+4
𝑞42 = −4𝑁4 − 4𝑁3 + 6𝑁2 − 4𝑁
𝑞43 = 6𝑁4 + 12𝑁3 − 6𝑁2 − 12𝑁
𝑞44 = −4𝑁4 − 12𝑁3 − 6𝑁2 + 12𝑁

𝑞45 = 𝑁4 + 4𝑁3 + 6𝑁2 + 4𝑁

Table 4: The values of functions 𝑅𝑝(𝑁, 𝑥0).
𝑅0(𝑁, 𝑥0) 0

𝑅1(𝑁, 𝑥0) 𝑁2
𝑅2(𝑁, 𝑥0) 12 ⋅ (𝑁2 + 𝑁 + 𝑁 ⋅ ctg2𝑥0)
𝑅3(𝑁, 𝑥0) 14 ⋅ (2𝑁3 + 3𝑁2 + 3𝑁2 ⋅ ctg2𝑥0)
𝑅4(𝑁, 𝑥0) 14 ⋅ (2𝑁4 + 4𝑁3 − 2𝑁 − 6𝑁 ⋅ ctg4𝑥0 + (4𝑁3 − 8𝑁) ⋅ ctg2𝑥0)

In a similar way, by representing each 𝑧0𝑠 in 𝐸𝑝(𝑁, 𝑧0)
in its expanded form as a polynomial in sin 𝑥0 and cos𝑥0 of
degree 𝑝, 𝐼𝑝(𝑁, 𝑥0) can be transformed into the form given
in Table 5.

Now, by formula (42), we obtain values 𝐴𝑝(𝑁, 𝑥0), 𝑝 =0, 1, . . . , 4, given in Table 6.
Using formula (43) we obtain values 𝐵𝑝(𝑁, 𝑥0), for 𝑝 =0, 1, . . . , 4, given in Table 7.
Finally, by (44) we obtain values 𝐶𝑝(𝑁, 𝑥0), for 𝑝 =0, 1, . . . , 4, given in Table 8.
Now, by (27)we obtain the elements ofGram'smatrix𝐻𝑇 ⋅𝐻. Namely, for all 𝑖, 𝑗 = 1, 2, 3 and 𝑝 = 𝑖 + 𝑗 − 2, the elements𝑎𝑖𝑗 are given by

𝑎11 = 𝑁2 , (45)

𝑎12 = 𝑎21 = 𝑇𝑁24 , (46)

𝑎13 = 𝑎22 = 𝑎31 = 𝑇2 ⋅ (16 (𝑁3 − 𝑁) − 14𝑁
⋅ ctg2𝑚𝜔𝑇) ,

(47)

𝑎23 = 𝑎32 = 𝑇3 ⋅ (18 (𝑁4 − 2𝑁2) − 38𝑁2 ⋅ ctg2𝑚𝜔𝑇) , (48)

𝑎33 = 𝑇4 ⋅ ( 130 (3𝑁5 − 10𝑁3 + 7𝑁) + 34𝑁
⋅ ctg4𝑚𝜔𝑇 − 12 (𝑁3 − 2𝑁) ⋅ ctg2𝑚𝜔𝑇) .

(49)
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Table 5: The values of functions 𝐼𝑝(𝑁, 𝑥0).
𝐼0(𝑁, 𝑥0) 0

𝐼1(𝑁, 𝑥0) −𝑁2 ⋅ ctg𝑥0
𝐼2(𝑁, 𝑥0) −𝑁22 ⋅ ctg𝑥0
𝐼3(𝑁, 𝑥0) 14 ⋅ (3𝑁 ⋅ ctg3 𝑥0 − (2𝑁3 − 3𝑁) ⋅ ctg𝑥0)
𝐼4(𝑁, 𝑥0) 12 ⋅ (3𝑁2 ⋅ ctg3 𝑥0 − (𝑁4 − 3𝑁2) ⋅ ctg𝑥0)

Further, for all 𝑖, 𝑗 = 1, 2, 3 and 𝑝 = 𝑖 + 𝑗 − 2, the elements𝑏𝑖𝑗 are given by

𝑏11 = 𝑁2 , (50)

𝑏12 = 𝑏21 = 𝑇4 ⋅ (𝑁2 + 2𝑁) , (51)

𝑏13 = 𝑏22 = 𝑏31 = 𝑇2 ⋅ (16 (𝑁3 + 3𝑁2 + 2𝑁) + 14𝑁
⋅ ctg2𝑚𝜔𝑇) ,

(52)

𝑏23 = 𝑏32 = 𝑇3 ⋅ (18 (𝑁4 + 4𝑁3 + 4𝑁2) + 38𝑁2
⋅ ctg2𝑚𝜔𝑇) ,

(53)

𝑏33 = 𝑇4 ⋅ ( 130 (3𝑁5 + 15𝑁4 + 20𝑁2 − 8𝑁) − 34𝑁
⋅ ctg4𝑚𝜔𝑇 + 12 (𝑁3 − 2𝑁) ⋅ ctg2𝑚𝜔𝑇) .

(54)

Finally, for all 𝑖, 𝑗 = 1, 2, 3 and 𝑝 = 𝑖 + 𝑗 − 2, the elements𝑐𝑖𝑗 are given by

𝑐11 = 0, (55)

𝑐12 = 𝑐21 = −𝑇𝑁4 ⋅ ctg𝑚𝜔𝑇, (56)

𝑐13 = 𝑐22 = 𝑐31 = −𝑇2𝑁24 ⋅ ctg𝑚𝜔𝑇, (57)

𝑐23 = 𝑐32
= 𝑇38

⋅ (3𝑁 ⋅ ctg3𝑚𝜔𝑇 − (2𝑁3 − 3𝑁) ⋅ ctg𝑚𝜔𝑇) ,
(58)

𝑐33 = 𝑇44
⋅ (3𝑁2 ⋅ ctg3𝑚𝜔𝑇 − (𝑁4 − 3𝑁2) ⋅ ctg𝑚𝜔𝑇) .

(59)

The presented representation of Gram’s matrix shows that
the computation of pseudoinverse (𝐻𝑇 ⋅ 𝐻)−1 ⋅ 𝐻𝑇 can be
performed more rapidly and with more precision.

4. Simulation Results

The proposed phasor measurement scheme is employed
to estimate coefficients of the power signal under nonsta-
tionary scenarios, during which we compared the results
obtained in the proposed algorithm with some other well-
known procedures. Practically, through the simulation test
we estimated the ability of the algorithms to track harmonic
changes. Tests have been performed to show the performance
of the proposed technique with reference to the conditions
of the standard [28] for synchronized phasor measurement
systems in power systems. The first is a proposed estimation
procedure verified on the basis of the following test signal,
which is characteristic for oscillating conditions:

𝑥 (𝑡) = 𝑎 (𝑡) cos (2𝜋𝑓1𝑡 + 𝜙 (𝑡)) , (60)

where 𝑎(𝑡) = 𝑎0 + 𝑎1 sin 2𝜋𝑓𝑎𝑡, 𝜙(𝑡) = 𝜙0 + 𝜙1 sin 2𝜋𝑓𝜙𝑡, 𝑎0 =𝜙0 = 1, 𝑎1 = 𝜙1 = 0.1, 𝑓𝑎 = 𝑓𝜙 = 5 and𝑁 = 24.
As can be seen from the above relations, the test signal

is sampled with a frequency of 1200 Hz, thus forming 24
samples within a 20 ms wide window, which is the period of
the signal with a fundamental frequency of 50Hz. Figures 1(a)
and 1(b) show the size of the estimated amplitude and phase
of the fundamental dynamic phasor, using the proposed esti-
mation method. It is clear that the main difference between
the proposed method and some other methods based on the
application of the least square methods [15, 21, 27], and the
methods based on the application of Kalman filters [16, 17,
23, 31] is in the occurrence of the delay in the estimation due
to the use of the data window.

One of the established criteria for assessing the quality
of the estimation is based on the Total Vector Error (TVE),
where we can estimate the error size in the estimation of the
phasor magnitude and angle, defining it as

𝑇𝑉𝐸 = 󵄨󵄨󵄨󵄨𝑋𝑟 − 𝑋𝑒󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋𝑟󵄨󵄨󵄨󵄨 , (61)

where 𝑋𝑟 and 𝑋𝑒 are real and estimated values. Figure 2
shows the total vector error of the proposed method in the
first ten cycles; one cycle time delay of estimated phasor is
compensated as in [27]. It can be concluded that the error
occurring is above all the results of the introduced delay,
similar to that of [15, 21]. Owing to the modification made
in calculating the parameters of the phasors, the magnitudes
of this calculated error are smaller than in other methods
based on the least squares method, with their size becoming
comparable to [16, 17, 23, 38], therefore being much smaller
than [27, 39–41]. The proposed approach can calculate the
derivatives of the phasor-phasor speed and acceleration,
which reduces the estimation error. In addition, it is possible
to calculate the frequency of the processed signal and detect
faults and power swings.
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Table 6: The values of 𝐴𝑝(𝑁, 𝑥0).
𝐴0(𝑁, 𝑥0) 𝑁2
𝐴1(𝑁, 𝑥0) 𝑁24
𝐴2(𝑁, 𝑥0) 16 (𝑁3 − 𝑁) − 14𝑁 ⋅ ctg2𝑥0
𝐴3(𝑁, 𝑥0) 18 (𝑁4 − 2𝑁2) − 38𝑁2 ⋅ ctg2𝑥0
𝐴4(𝑁, 𝑥0) 130 (3𝑁5 − 10𝑁3 + 7𝑁) + 34𝑁 ⋅ ctg4𝑥0 − 12 (𝑁3 − 2𝑁) ⋅ ctg2𝑥0

Table 7: The values 𝐵𝑝(𝑁, 𝑥0).
𝐵0(𝑁, 𝑥0) 𝑁2
𝐵1(𝑁, 𝑥0) 14 (𝑁2 + 2𝑁)
𝐵2(𝑁, 𝑥0) 16 (𝑁3 + 3𝑁2 + 2𝑁) + 14𝑁 ⋅ ctg2𝑥0
𝐵3(𝑁, 𝑥0) 18 (𝑁4 + 4𝑁3 + 4𝑁2) + 38𝑁2 ⋅ ctg2𝑥0
𝐵4(𝑁, 𝑥0) 130 (3𝑁5 + 15𝑁4 + 20𝑁2 − 8𝑁) − 34𝑁 ⋅ ctg4𝑥0 + 12 (𝑁3 − 2𝑁) ⋅ ctg2𝑥0

Table 8: The values 𝐶𝑝(𝑁, 𝑥0).
𝐶0(𝑁, 𝑥0) 0

𝐶1(𝑁, 𝑥0) −𝑁4 ⋅ ctg𝑥0
𝐶2(𝑁, 𝑥0) −𝑁24 ⋅ ctg𝑥0
𝐶3(𝑁, 𝑥0) 18 ⋅ (3𝑁 ⋅ ctg3𝑥0 − (2𝑁3 − 3𝑁) ⋅ ctg𝑥0)
𝐶4(𝑁, 𝑥0) 14 ⋅ (3𝑁2 ⋅ ctg3𝑥0 − (𝑁4 − 3𝑁2) ⋅ ctg𝑥0)

4.1. Amplitude Oscillation Case. The ability of the proposed
approach to track an arbitrary oscillating amplitude is given
in the following example where

𝑥 (𝑡) = 𝑎 (𝑡) ∞∑
ℎ=0

𝑐ℎ cos 2𝜋ℎ𝑓1𝑡 (62)

is the input signal to the estimator, with 𝑓1 = 50 Hz and
nonzero Fourier coefficients (𝑐1 = 1, 𝑐3 = 0.4, and 𝑐5 = 0.2),
and where 𝑎(𝑡) represents an amplitude oscillation, given by
the following second-order polynomial

𝑎 (𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 (63)

with coefficients 𝑎 = −4, 𝑏 = 4, and 𝑐 = 0. The
corresponding digital signal is sampled at 24 samples/cycle
(𝑓 = 1200Hz). The oscillation of main-original signal and
its corresponding estimated signal components are shown in

Figure 3. Based on this representation, it can be clearly seen
that the proposed method for estimation is fully conducive
to following the dynamics of all components of the processed
input signal. Also, we can see that the quality of estimation
decreases with increasing the number of harmonic, which are
the results of relatively small and fixed-constant number of
samples. For higher harmonics components this number of
samples cannot provide precise reconstruction. If the number
of samples adaptively changed as the function of the order
of harmonics, the accuracy of the estimation would be the
same as on the first-fundamental harmonic component. An
additional problem is certainly the nonideality of the filter
function.

4.2. Magnitude-Phase Step Test. In this section the amplitude
and the phase step tests are performed using the proposed
estimation procedure.The test signal is defined as [28] (in the
standard, changes in this step are happening separately)

𝑥 (𝑡) = 𝑋𝑚 (1 + 𝑘𝑎𝑢 (𝑡 − 𝑡𝑠)) cos (𝜔𝑡 + 𝑘𝜑𝑢 (𝑡 − 𝑡𝑠)) (64)

where 𝑢(𝑡) is a unit step function, 𝑘𝑎 is the amplitude step
size, 𝑘𝜑 is the phase step size, and 𝑡𝑠 is the step instant. In this
test, a signal with the 10∘ phase angle step and the amplitude
step changes from 0.9 to 1 p.u. in the fundamental component
which is fed to the algorithm. The parameters are chosen as𝑋𝑚 = √2,𝜔 = 2𝜋 ⋅ 50𝐻𝑧, 𝑘𝑎 = +0.1𝑝.𝑢., 𝑘𝜙 = 𝜋/18, while
the measurement noise is set to be negligible. The results for
the amplitude and phase step tests are shown in Figure 4, in
which the upper subplot shows the transient response of the
amplitude or the phase, while in the lower plot the TVE are
illustrated.
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It is observed that the proposed approach achieves
relatively long transient periods but with small overshoots.
Based on the results presented in Figure 4, the proposed
method is capable of performing a precise estimation of
the amplitude and phase after the expiry of the transition
period (the model is more appropriate for smooth amplitude
and phase changes), since it represents the modification of
Tailor’s-Fourier expansion. The duration of this transition in
the proposed approach is shorter than in some othermethods
that have the same starting point [17, 27], which is the result
of the position of the poles of the transfer function with
respect to the unit circle in the 𝑧 plane (as the poles are
more spaced). In addition, there is no large overshoot in the
response, as opposed to [16, 17, 23] due to the amplitude and
phase discontinuities at the step change, since no previous
assessment is performed concerning a sample window.

In Table 9 the performance indices defined in the stan-
dard [28] including response time, delay time, and overshoot
are listed for both amplitude and phase step change tests. The
performances achieved by the proposed algorithm fulfill the
M-Class measurement requirements in the standard.

4.3. Frequency Step Test. During this simulation test, a signal
having a 5 Hz frequency step is used to evaluate the possi-
bility of a transient response in a frequency step condition
(although 5 Hz frequency step is not likely to happen in a
power grid, this test is designed based on IEEE standard [28]).

𝑥 (𝑛) = cos 2𝜋𝑓1𝑛Δ𝑡, 0 < 𝑛 < 10𝑁1,
𝑥 (𝑛) = cos 2𝜋 (𝑓1 + 5) 𝑛Δ𝑡, 10𝑁1 ≤ 𝑛. (65)

Table 9: Performance indices for phasor estimation under step
changes in amplitude and phase using the proposed estimation
algorithm.

Response time Delay time Overshoot
Amplitude step 19.7ms 8.86ms 0.008 [p.u.]
Phase step 9.67ms 0.02 [rad]

The frequency was calculated as a ratio of roots of char-
acteristic equation based on extracted unknown coefficients𝐴𝑚0, 𝐴𝑚1, 𝐴𝑚2, 𝐵𝑚0, 𝐵𝑚1, 𝐵𝑚2 from (12) and 2𝜋 [15, 27].
The proposed method shows characteristics, as well as the
evaluation process, similar to the previous type of signal
(magnitude-phase step condition). Figure 5 shows that the
proposed processing method can be successfully tracked as
+5 Hz frequency step, versus the traditional approach to
processing the phasors.

4.4. Harmonic Infiltration Test. Input signal definedwith (66)
was used to validate the proposed methods in harmonic
condition:
𝑥 (𝑡) = 𝑎 (𝑡) cos (𝜔1𝑡 + 𝜙 (𝑡)) + 0.05 cos 5𝜔1𝑡 + 0.03 cos 7𝜔1𝑡,
𝑎 (𝑡) = 𝑎0 + 𝑎1 sin 2𝜋𝑓𝑎𝑡,
𝜙 (𝑡) = 𝜙0 + 𝜙1 sin 2𝜋𝑓𝜙𝑡,
𝑎0 = 1, 𝜙0 = 0.5, 𝑎1 = 0.1, 𝜙1 = 0.05, 𝑓𝑎 = 𝑓𝜙 = 5, 𝑁 = 24.

(66)

Figure 6 represents the output of the proposed method in
the harmonic condition. According to Figure 6, fundamental
phasor estimation based on proposed modification is free
from harmonic, which shows the superiority of harmonic
modification of the proposed method in this paper. Since𝑁 = 24 in this test, it is possible to estimate the dynamic
phasor of the first 𝑁 − 1 = 23 harmonics. To increase the
range of harmonics, the sampling number per cycle should
be increased.

4.5. Frequency Response. In order to evaluate the frequency
characteristic of the proposed estimator, its transfer function
is defined in the form

𝐻(𝑧) = 𝑝 (𝑧)𝑋 (𝑧) , (67)
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Figure 3: Measured and estimated waveforms in the case of a time-varying signal (62): (a) tracking the first phasors, (b) tracking the 3rd
phasors, (c) tracking the 5th phasors, and (d) measured and estimated waveforms of main input signal.
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Figure 5: Frequency estimation during frequency step test.

where𝑋(𝑧) and 𝑝(𝑧) are 𝑧 transforms of the input (main sig-
nal) and output (estimated dynamic phasor). The frequency
response of the proposed method is given in Figure 7. The
magnitude responses are unsymmetrical, which is completely
understandable since it belongs to complex filters. In the
surroundings of the fundamental frequency, complete elimi-
nation of the negative one and complete pass of the positive
one occur. The flatter transfer characteristic causes a lower
distortion in the estimation of the phasor and provides zero-
gain in the nonfundamental component. In this way, the har-
monics at the output are removed, as opposed to [16, 21, 23].

4.6. Error Bounds. In order to determine the boundary of the
possible error in the estimation of the phasor, signals with
variable envelopes were used:

𝑎 (𝑡) = 1 + 0.5 3∑
𝑖=1

𝑒𝑡/𝜏𝑖 cos 2𝜋𝑓1𝑡, (68)

where the time constants (𝜏i) were generated by a uniform
random process in the interval of [20, 40] cycles. In a similar
way, the three frequencies were randomly generated in the
intervals of [1, 3], [3, 5], and [5, 7]Hz. The error is calculated
by

𝑟𝑚𝑠 − 𝑒𝑟𝑟𝑜𝑟 = √∑(𝑎 (𝑛) − 𝑎 (𝑛)), (69)

where 𝑎(𝑛) and 𝑎(𝑛) are real and estimated amplitudes,
respectively. Figure 8 shows the histograms of the errors
attained by proposed method.

The RMS error belongs to the range of 3×10−3 and
8×10−3 for proposed estimation method. This error is related
to elimination of the third derivative term of the Taylor
expansion in phasor estimation process, and it is much better
than error estimated in [16, 17, 22–24, 27].
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4.7. Noise, Subharmonics and Interharmonics Infiltration. It is
useful to analyze the estimation error of the proposedmethod
when the noise level changes. A criterion named transient
monitor (TM) is used for this evaluation [21]. TM is an index
to monitor a sudden change of the measured signal and is
calculated by

[𝑡𝑛] = [𝑆𝑛 − 𝑆𝑛]
𝑇𝑀 = 𝑛=𝑟∑

𝑛=𝑟−𝑁1

󵄨󵄨󵄨󵄨𝑡𝑛󵄨󵄨󵄨󵄨 (70)

where 𝑆𝑛 is the real (measured) value of sample and 𝑆𝑛 is
the recomputed sample obtained by the estimated dynamic
phasor. Estimation error 𝑡𝑛, is the difference between these
two quantities. TM is calculated by estimation error in every
sample and can be used as a quality measure of phasor
estimation. Figure 9 shows the TM as a function of noise
variance, for the proposed and somewell-knownmethods for
phasors estimation. As the noise variance increases, higher
errors are obtained, so there is an upward trend when noise
level increases. According to Figure 9, there is a stable trend
for least squares-based methods and our proposed method,
before critical point with variance of about 10−2. After
this point, transient monitor increases steeply by increasing
error variance. Generally Kalman based methods [16, 17, 23]
show lower values compared to least square-based methods;
however, our proposed algorithm has the best performance
relative to other Taylor expansion based methods, when noise
variance is low, according to Figure 9. Also we can conclude
that the proposed method depicts a downward trend by
increasing the sampling frequency because the estimation
accuracy increases with a high sampling rate, and contrary to
[21], does not increase its noise sensitivity at a high sampling
rate.

The standard [28] does not explicitly define the behaviour
of estimation methods in the presence of interharmonic
and subharmonic components, which can be found in the

installations in which these measurements are applied. In
general, interharmonics can be very difficult to detect and
isolate if they are located in the band of interest of the
phasor dynamic model. In order to obtain an even more
complete picture of the performance of the phasor estimation
method described here, a subharmonic frequency of 20 Hz,
as well as two interharmonic components frequency of 57.5
Hz and 85 Hz [5], with a 10% amplitude with respect to
the fundamental component amplitude, has been added to
a sinusoidal signal with the aforementioned contents. An
out-of-band interference test is defined to test the capability
to filter interfering signals that could be aliased into the
measurement, and it is considered only for M class and it is
eliminated for P class [39].

The precision in estimation of the proposed algorithms
is directly related to their filtering capabilities. When the
interharmonic is in the passband of the algorithm (designed
to include dynamic phenomena of interest), as for inter-
harmonic components on 57.5 Hz, the TVE is about 3%,
whereas for interharmonics in the stopband frequencies, TVE
depends on the stopband attenuation. In this case, for an
interharmonic frequency of 85 Hz, TVE is about 0.5 %. The
same situation is for subharmonics components on 20 Hz.
The obtained results are better than the results obtained in
[5, 39].

The proposed approach in estimation of phasor values
was also tested in a situation when processing the input signal
contains the third harmonic with amplitude settled to 20%
of the fundamental component, and an interharmonic fre-
quency 75 Hz. This level of the harmonics is very commonly
present in current waveforms in the control applications such
as a current tracking in shunt active power filters (APFs) in
marine networks or smart distributed grids with renewable
energy sources [39]. TVE in estimation of third harmonics
in this test was about 1%. In all above-mentioned tests the
number of samples was N=24.

4.8. Computational Complexity and Simulation Time. The
inputs of the algorithm are matrix𝐻 of the type𝑁×2(𝐾+1)
and matrix 𝑥𝑓𝑖𝑙𝑚 of the type 𝑁 × 1 given by (16) and (13),
respectively. The output of the algorithm is column matrix𝑦𝑚 of the type 2(𝐾 + 1) × 1 obtained by (19). The proposed
algorithm can be decomposed in the following steps:

(A1) Calculation of the elements of Gram’s matrix 𝐻𝑇 ⋅ 𝐻
by (45)-(59).

(A2) Inversion (𝐻𝑇 ⋅ 𝐻)−1 of Gram’s matrix 𝐻𝑇 ⋅ 𝐻.
(A3) Multiplication of (𝐻𝑇 ⋅ 𝐻)−1 with 𝐻𝑇.
(A4) Multiplication of (𝐻𝑇 ⋅ 𝐻)−1 ⋅ 𝐻𝑇 with 𝑥𝑓𝑖𝑙𝑚 .

(A1) If the formulas (45)-(59) are used for calculation of the
elements of Gram's matrix𝐻𝑇 ⋅𝐻, then the task is reduced to4(𝐾+1)2 consecutive calculations of specific values based on
polynomials. If 𝑐0 denotes the maximum of all computational
times needed for executing (45)-(59), then the computational
time for𝐻𝑇 ⋅ 𝐻 does not exceed 4(𝐾 + 1)2𝑐0.

(A2) The solution to (19) includes the inversion of the
Gram’smatrix. To find the inverse of 2(𝐾+1)×2(𝐾+1)-matrix
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𝐻𝑇⋅𝐻one canuse Lower-Upper (LU) decompositionmethod
which takes (4/3)⋅(2(𝐾+1))3+(3/2)⋅(2(𝐾+1))2−(5/6)⋅2(𝐾+1)
FLOPs.

(A3) In this step, the matrix (𝐻𝑇 ⋅ 𝐻)−1 of type 2(𝐾 +1) × 2(𝐾 + 1) is to be multiplied by the matrix 𝐻𝑇 of the type2(𝐾 + 1) × 𝑁 which takes the 4(𝐾 + 1)2𝑁 FLOPs.
(A4) In this step, the matrix (𝐻𝑇 ⋅ 𝐻)−1 ⋅ 𝐻𝑇 of the type2(𝐾+ 1) ×𝑁 is to be multiplied by the matrix 𝑥𝑓𝑖𝑙𝑚 of the type𝑁 × 1 which takes the 2(𝐾 + 1)𝑁 FLOPs.
Based on the all above-mentioned procedures-steps, the

proposed algorithm does not exceed

4 (𝐾 + 1)2 𝑐0 + 43 ⋅ (2 (𝐾 + 1))3 + 32 ⋅ (2 (𝐾 + 1))2 − 56
⋅ 2 (𝐾 + 1) + 4 (𝐾 + 1)2𝑁 + 2 (𝐾 + 1)𝑁

= (4𝐾2 + 8𝐾 + 4) 𝑐0
+ (323 𝐾3 + 38𝐾2 + 1273 𝐾 + 15)
+ (4𝐾2 + 10𝐾 + 6)𝑁

(71)

operations-FLOPs, which practically defined its computa-
tional costs. If the step (A1) is replaced with

(A’1) Multiplication of𝐻𝑇 with 𝐻,

then the computational time of this step is increased with
respect to the time needed for performing (A1). Since 𝐻 is𝑁×2(𝐾+1)-matrix, it follows that𝐻𝑇 ⋅𝐻 is 2(𝐾+1)×2(𝐾+1)-matrix and multiplication of matrices gives an algorithm
that takes time 4(𝐾 + 1)2𝑁 to multiply the matrix 𝐻𝑇 of

type 2(𝐾 + 1) × 𝑁 with the matrix 𝐻 of type 𝑁 × 2𝐾.
Clearly, the time needed for such an algorithm depends on
the number of samples 𝑁. On the other hand, the time 𝑐0 in
(A1) is independent of𝑁, so the number of samples does not
influence the speed of (A1).This enables us to deal with a large
number of samples, without decreasing the performance
of algorithm. Also, if the time 𝑐0 is the maximum of all
computational times needed for executing (45)-(59), clearly,
it is the time needed for realization of (54). If ctg𝑥 is regarded
as ctg𝑥 ≈ 1/𝑥 − 𝑥/3, then its computational time takes
3 FLOPs for basic arithmetic operations. Consequently, the
computational time for (54) can be approximated with finite
number 𝑐which is the number of basic arithmetic operations
(addition, subtraction, multiplication, and division) in (54).

In order to practically (in real conditions) determine
the time needed for the computation of unknown phasors
parameters according to the proposedmethod, the frequency
of the processed signal is increased, which can clearly define
whether the method can be used for offline or online pro-
cessing. A comparison was made with well-known methods
in the literature and the resulting comparisons were given in
Figure 10. The hardware features of the following character-
istics were used: Intel(R) Core(TM) i5-4460, 3.2GHz, 16 GB
RAM.The proposedmodification in the algorithm described
here showed that the time required for the calculation was
significantly less than in other methods based on the least
squares method [24, 27], and approaching the speed by
methods [22, 23, 39–41].

5. Conclusions

In this paper we used the dynamic phasor concept to estimate
the variable amplitude and phase in processing of oscillating
signals in modern power grids. The specific modification of
Taylor-Fourier expansion and corresponding Gram matrix
give us the possibility to develop more precise and compu-
tational attractive algorithm for estimation of all unknown
parameters of processing signal, in all conditions defined
with standard. Simulation results demonstrate the accuracy
and capability of the proposed method in view of TVE,
harmonic condition, frequency tracking, and computation
time. The proposed method has been investigated under
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different conditions and found to be a valuable and efficient
tool for detection of signal components under dynamic
conditions. The simulations results have shown that the
proposed technique provides accurate estimates and offers
the possibility to track the phase, frequency, and amplitude
changes of nonstationary signals. Due to its specific form,
which enables the reduction of both the computational cost
and the memory requirements of the algorithm the proposed
algorithm can be very useful for real-time digital systems.
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