Relations between Ordinary and Multiplicative Degree-Based Topological Indices

Ivan Gutman ${ }^{\text {a }}$, Igor Milovanović ${ }^{\text {b }}$, Emina Milovanovićc ${ }^{\text {b }}$
${ }^{a}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
${ }^{b}$ Faculty of Electronics Engineering, University of Niš, A. Medvedeva 14, 18000 Niš, Serbia

Abstract

Let G be a simple connected graph with n vertices and m edges, and sequence of vertex degrees $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$. If vertices i and j are adjacent, we write $i \sim j$. Denote by $\Pi_{1}, \Pi_{1}^{*}, Q_{\alpha}$ and H_{α} the multiplicative Zagreb index, multiplicative sum Zagreb index, general first Zagreb index, and general sumconnectivity index, respectively. These indices are defined as $\Pi_{1}=\prod_{i=1}^{n} d_{i}^{2}, \Pi_{1}^{*}=\prod_{i \sim j}\left(d_{i}+d_{j}\right), Q_{\alpha}=\sum_{i=1}^{n} d_{i}^{\alpha}$ and $H_{\alpha}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}$. We establish upper and lower bounds for the differences $H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}}$ and $Q_{\alpha}-n\left(\Pi_{1}\right)^{\frac{\alpha}{2 n}}$. In this way we generalize a number of results that were earlier reported in the literature.

1. Introduction

Let G be a simple connected graph with vertex set $V=\{1,2, \ldots, n\}$ and edge set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Further, let $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0, d_{i}=d(i)$, and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)$ be sequences of vertex and edge degrees, respectively. Throughout the paper we will use the following (standard) notation: $\Delta=d_{1}, \Delta_{1}=d_{2}$, $\delta=d_{n}, \delta_{1}=d_{n-1}, \Delta_{e_{1}}=d\left(e_{1}\right)+2, \Delta_{e_{2}}=d\left(e_{2}\right)+2, \delta_{e_{1}}=d\left(e_{m}\right)+2, \delta_{e_{2}}=d\left(e_{m-1}\right)+2$. If the vertices i and j are adjacent, we write $i \sim j$. As usual, $L(G)$ denotes a line graph of G.

Two vertex-degree based topological indices, the first and the second Zagreb index, M_{1} and M_{2}, are defined as [19, 22, 23]

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j} .
$$

For details and further references on these indices see [4, 5, 20, 37].
As shown in [37], the first Zagreb index can be also expressed as

$$
\begin{equation*}
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right) \tag{1}
\end{equation*}
$$

[^0]Bearing in mind that for the edge e connecting the vertices i and j,

$$
d(e)=d_{i}+d_{j}-2,
$$

the index M_{1} can also be considered as an edge-degree based topological index, since according to (1) holds [32]

$$
M_{1}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right) .
$$

A so-called forgotten topological index, F, is defined as [13] (see also [14]):

$$
F=F(G)=\sum_{i=1}^{n} d_{i}^{3}
$$

By analogy to M_{1}, the invariant F can be written in the following way [32]

$$
F=\sum_{i \sim j}\left(d_{i}^{2}+d_{j}^{2}\right)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{2}-2 M_{2} .
$$

The general sum-connectivity index, denoted by H_{α}, is defined as [51]:

$$
H_{\alpha}=H_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}
$$

where α is an arbitrary real number. It can be easily observed that

$$
H_{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}, \quad H_{0}=m
$$

Hence, H_{α} can be considered as edge-degree-based topological index as well. It can be easily verified that $M_{1}=H_{1}, \chi=H_{-\frac{1}{2}}$ (sum-connectivity index introduced in [50]), $H=2 H_{-1}$ (harmonic index defined in [11]).

The general first Zagreb index, Q_{α}, is defined as [29]:

$$
Q_{\alpha}=Q_{\alpha}(G)=\sum_{i=1}^{n} d_{i}^{\alpha}
$$

where α is an arbitrary real number. Obviously, $Q_{2}=M_{1}, Q_{3}=F, Q_{-1}=I D$ and $Q_{-1 / 2}={ }^{0} R$, where

$$
I D=\sum_{i=1}^{n} \frac{1}{d_{i}}
$$

is the inverse degree index $[7,8,11]$, whereas

$$
{ }^{0} R=\sum_{i=1}^{n} \frac{1}{\sqrt{d_{i}}}
$$

is the zeroth-order Randić index [26, 28].
Multiplicative versions of topological indices were proposed in 2010 [40, 41], whereas the first and second multiplicative Zagreb indices, denoted by Π_{1} and Π_{2}, respectively, were first considered in a paper [18] published in 2011, and were promptly followed by numerous additional studies [9, 10, 15, 24, 30, 39, $42,44,46,47]$. These indices are defined as:

$$
\Pi_{1}=\Pi_{1}(G)=\prod_{i=1}^{n} d_{i}^{2}, \quad \Pi_{2}=\Pi_{2}(G)=\prod_{i \sim j} d_{i} d_{j}
$$

One year later, the multiplicative sum-Zagreb index, Π_{1}^{*}, was introduced [10], defined as

$$
\Pi_{1}^{*}=\Pi_{1}^{*}(G)=\prod_{i \sim j}\left(d_{i}+d_{j}\right)
$$

Π_{1}^{*} can be also be viewed as an edge-degree-based topological index since

$$
\Pi_{1}^{*}(G)=\prod_{i=1}^{m}\left(d\left(e_{i}\right)+2\right) .
$$

It should be mentioned that much earlier, the product of vertex degrees was considered by Narumi and Katayama [35, 36], which essentially is the oldest multiplicative Zagreb-type index.

Further details on the multiplicative Zagreb indices can be found in the recent papers [1, 25, 43, 45] and the references quoted therein.

In this paper, we are interested in establishing upper and lower bounds for the differences

$$
H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \quad \text { and } \quad Q_{\alpha}-n\left(\Pi_{1}\right)^{\frac{\alpha}{2 n}}
$$

By achieving this goal, we will generalize a number of results that were earlier reported in the literature. In particular, in [39], the following inequalities were shown that:

$$
\begin{align*}
& 2 m-n\left(\Pi_{1}\right)^{\frac{1}{2 n}} \geq 0 \tag{2}\\
& M_{1}-n\left(\Pi_{1}\right)^{\frac{1}{n}} \geq 0 \tag{3}\\
& M_{2}-m\left(\Pi_{2}\right)^{\frac{1}{m}} \geq 0 \tag{4}
\end{align*}
$$

In [44] it was proven that

$$
\begin{equation*}
M_{1}-m\left(\Pi_{1}^{*}\right)^{\frac{1}{m}} \geq 0 \tag{5}
\end{equation*}
$$

whereas in [12] that

$$
\begin{equation*}
F+2 M_{2}-m\left(\Pi_{1}^{*}\right)^{\frac{2}{m}} \geq 0 \tag{6}
\end{equation*}
$$

2. Preliminaries

In this section we recall some analytical inequalities for real number sequences that will be used in the subsequent considerations.

Let $a_{i}=\left(a_{i}\right)$ and $b=\left(b_{i}\right), i=1,2, \ldots, p$, be positive real number sequences with the properties

$$
0<r_{1} \leq a_{i} \leq R_{1}<+\infty \quad \text { and } \quad 0<r_{2} \leq b_{i} \leq R_{2}<+\infty
$$

In [2] (see also [33]) the following inequality was proven

$$
\begin{equation*}
\left|p \sum_{i=1}^{p} a_{i} b_{i}-\sum_{i=1}^{p} a_{i} \sum_{i=1}^{p} b_{i}\right| \leq p^{2} \gamma(p)\left(R_{1}-r_{1}\right)\left(R_{2}-r_{2}\right) \tag{7}
\end{equation*}
$$

where

$$
\gamma(p)=\frac{1}{p}\left\lfloor\frac{p}{2}\right\rfloor\left(1-\frac{1}{p}\left\lfloor\frac{p}{2}\right\rfloor\right)=\frac{1}{4}\left(1-\frac{(-1)^{p+1}+1}{2 p^{2}}\right)
$$

For the positive real number sequence $a=\left(a_{i}\right), i=1,2, \ldots, p$, the following inequality was proven in [48] (see also [27])

$$
\begin{equation*}
\left(\sum_{i=1}^{p} \sqrt{a_{i}}\right)^{2} \leq(p-1) \sum_{i=1}^{p} a_{i}+p\left(\prod_{i=1}^{p} a_{i}\right)^{1 / p} . \tag{8}
\end{equation*}
$$

For the sequence of positive real numbers $a=\left(a_{i}\right), i=1,2, \ldots, p$, with the property $a_{1} \geq a_{2} \geq \cdots \geq a_{p}>0$, in [6] the following was proven

$$
\begin{equation*}
\sum_{i=1}^{p} a_{i}-p\left(\prod_{i=1}^{p} a_{i}\right)^{1 / p} \geq\left(\sqrt{a_{1}}-\sqrt{a_{p}}\right)^{2} \tag{9}
\end{equation*}
$$

Before we proceed, let us define one special class of d-regular graphs Γ_{d} (see [38]). Let $N(i)$ be a set of all neighbors of the vertex i, i.e., $N(i)=\{k \mid k \in V, k \sim i\}$. Let $d(i, j)$ be the distance between the vertices i and j. Denote by Γ_{d} a set of all d-regular graphs, $1 \leq d \leq n-1$, with diameter 2 , and $|N(i) \cap N(j)|=d$ for $i \nsim j$.

3. Main results

In the next theorem, we establish upper and lower bounds for the difference $Q_{\alpha}-n\left(\Pi_{1}\right)^{\alpha / 2 n}$, in terms of the number of vertices and minimal and maximal vertex degrees.
Theorem 3.1. Let G be a simple connected graph with $n \geq 2$ vertices. Then, for any real $\alpha \geq 0$,

$$
\begin{equation*}
\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} \leq Q_{\alpha}-n\left(\Pi_{1}\right)^{\frac{\alpha}{2 n}} \leq n^{2} \gamma(n)\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} \tag{10}
\end{equation*}
$$

If $\alpha \leq 0$, then

$$
\begin{equation*}
\left(\delta^{\frac{\alpha}{2}}-\Delta^{\frac{\alpha}{2}}\right)^{2} \leq Q_{\alpha}-n\left(\Pi_{1}\right)^{\frac{\alpha}{2 n}} \leq n^{2} \gamma(n)\left(\delta^{\frac{\alpha}{2}}-\Delta^{\frac{\alpha}{2}}\right)^{2} \tag{11}
\end{equation*}
$$

Equalities on the right-hand sides hold if and only if G is regular. Equalities on the left-hand sides hold if and only if $d_{2}=\cdots=d_{n-1}=\sqrt{d_{1} d_{n}}$.
Proof. For $p=n, a_{i}=b_{i}=d_{i}^{\frac{\alpha}{2}}, R_{1}=R_{2}=\Delta^{\frac{\alpha}{2}}, r_{1}=r_{2}=\delta^{\frac{\alpha}{2}}, \alpha \geq 0, i=1,2, \ldots, n$, the inequality (7) becomes

$$
n \sum_{i=1}^{n} d_{i}^{\alpha}-\left(\sum_{i=1}^{n} d_{i}^{\frac{\alpha}{2}}\right)^{2} \leq n^{2} \gamma(n)\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2}
$$

i.e.,

$$
\begin{equation*}
n Q_{\alpha}-\left(\sum_{i=1}^{n} d_{i}^{\frac{\alpha}{2}}\right)^{2} \leq n^{2} \gamma(n)\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} \tag{12}
\end{equation*}
$$

For $p=n, \alpha \geq 0, a_{i}=d_{i}^{\alpha}, i=1,2, \ldots, n$, the inequality (8) transforms into

$$
\left(\sum_{i=1}^{n} d_{i}^{\frac{\alpha}{2}}\right)^{2} \leq(n-1) \sum_{i=1}^{n} d_{i}^{\alpha}+n\left(\prod_{i=1}^{n} d_{i}^{\alpha}\right)^{1 / n},
$$

i.e.,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} d_{I}^{\frac{\alpha}{2}}\right)^{2} \leq(n-1) Q_{\alpha}+n\left(\Pi_{1}\right)^{\frac{\alpha}{2 n}} \tag{13}
\end{equation*}
$$

From (12) and (13) the inequality (10) is obtained.
Equality in (13) holds if and only if $d_{1}=\cdots=d_{n}$, so the equality on the right-hand side of (10) holds if and only if G is regular.

For $p=n, \alpha \geq 0, a_{i}=d_{i}^{\alpha}, i=1,2, \cdots, n$, the inequality (9) becomes

$$
\sum_{i=1}^{n} d_{i}^{\alpha}-n\left(\prod_{i=1}^{n} d_{i}^{\alpha}\right)^{1 / n} \geq\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2}
$$

i.e.,

$$
\begin{equation*}
Q_{\alpha}-n\left(\Pi_{1}\right)^{\frac{\alpha}{2 n}} \geq\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} \tag{14}
\end{equation*}
$$

which coincides with the left-hand side of (10).
Equality in (14) holds if and only if $d_{2}=\cdots=d_{n-1}=\sqrt{d_{1} d_{n}}$. Equality on the left-hand side of (10) holds under same condition.

Inequalities (14) can be verified in an analogous manner.
In a similar way, we arrive at the following:
Theorem 3.2. Let G be a simple connected graph with n vertices. If $n \geq 3$ and $\alpha \geq 0$, then

$$
\begin{aligned}
\Delta^{\alpha}+\left(\Delta_{1}^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} & \leq Q_{\alpha}-(n-1)\left(\frac{\Pi_{1}}{\Delta^{2}}\right)^{\frac{\alpha}{2(n-1)}} \\
& \leq \Delta^{\alpha}+(n-1)^{2} \gamma(n-1)\left(\Delta_{1}^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

If $n \geq 3$ and $\alpha \leq 0$, then

$$
\begin{aligned}
\Delta^{\alpha}+\left(\delta^{\frac{\alpha}{2}}-\Delta_{1}^{\frac{\alpha}{2}}\right)^{2} & \leq Q_{\alpha}-(n-1)\left(\frac{\Pi_{1}}{\Delta^{2}}\right)^{\frac{\alpha}{2(n-1)}} \\
& \leq \Delta^{\alpha}+(n-1)^{2} \gamma(n-1)\left(\delta^{\frac{\alpha}{2}}-\Delta_{1}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

Equalities on the right-hand sides hold if and only if $\Delta_{1}=d_{2}=\cdots=d_{n}=\delta$. Equalities on the left-hand sides hold if and only if $d_{3}=\cdots=d_{n-1}=\sqrt{\Delta_{1} \delta}$.
Theorem 3.3. Let G be a simple connected graph with n vertices. If $n \geq 3$ and $\alpha \geq 0$, then

$$
\delta^{\frac{\alpha}{2}}+\left(\Delta^{\frac{\alpha}{2}}-\delta_{1}^{\frac{\alpha}{2}}\right)^{2} \leq Q_{\alpha}-(n-1)\left(\frac{\Pi_{1}}{\delta^{2}}\right)^{\frac{\alpha}{2(n-1)}} \leq \delta^{\alpha}+(n-1)^{2} \gamma(n-1)\left(\Delta^{\frac{\alpha}{2}}-\delta_{1}^{\frac{\alpha}{2}}\right)^{2}
$$

If $n \geq 3$ and $\alpha \leq 0$, then

$$
\delta^{\frac{\alpha}{2}}+\left(\delta_{1}^{\frac{\alpha}{2}}-\Delta^{\frac{\alpha}{2}}\right)^{2} \leq Q_{\alpha}-(n-1)\left(\frac{\Pi_{1}}{\delta^{2}}\right)^{\frac{\alpha}{2(n-1)}} \leq \delta^{\alpha}+(n-1)^{2} \gamma(n-1)\left(\delta_{1}^{\frac{\alpha}{2}}-\Delta^{\frac{\alpha}{2}}\right)^{2} .
$$

Equalities on the right-hand side of the above inequalities hold if and only if $\Delta=d_{1}=\cdots=d_{n-1}=\delta_{1}$, and on the left-hand side if and only if $\Delta_{1}=d_{2}=\cdots=d_{n-2}=\sqrt{\Delta \delta_{1}}$.

Theorem 3.4. Let G be a simple connected graph with n vertices. If $n \geq 4$ and $\alpha \geq 0$, then

$$
\begin{aligned}
\Delta^{\alpha}+\delta^{\alpha}+\left(\Delta_{1}^{\frac{\alpha}{2}}-\delta_{1}^{\frac{\alpha}{2}}\right)^{2} & \leq Q_{\alpha}-(n-2)\left(\frac{\Pi_{1}}{\Delta^{2} \delta^{2}}\right)^{\frac{\alpha}{2(n-1)}} \\
& \leq \Delta^{\alpha}+\delta^{\alpha}+(n-2)^{2} \gamma(n-2)\left(\Delta_{1}^{\frac{\alpha}{2}}-\delta_{1}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

If $n \geq 4$ and $\alpha \leq 0$, then

$$
\begin{aligned}
\Delta^{\alpha}+\delta^{\alpha}+\left(\delta_{1}^{\frac{\alpha}{2}}-\Delta^{\frac{\alpha}{2}}\right)^{2} & \leq Q_{\alpha}-(n-2)\left(\frac{\Pi_{1}}{\Delta^{2} \delta^{2}}\right)^{\frac{\alpha}{2(n-1)}} \\
& \leq \Delta^{\alpha}+\delta^{\alpha}+(n-2) \gamma(n-2)\left(\delta_{1}^{\frac{\alpha}{2}}-\Delta_{1}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

Equalities on the left-hand sides of the above inequalities hold if and only if $\Delta_{1}=d_{2}=\cdots=d_{n-1}=\delta_{1}$, and on the right-hand sides if and only if $d_{3}=\cdots=d_{n-2}=\sqrt{\Delta_{1} \delta_{1}}$.

In the next corollary we point out some inequalities that are obtained from (10) and (11) for some particular values of the parameter α.

Corollary 3.5. Let G be a simple connected graph with $n \geq 2$ vertices. Then

$$
\begin{align*}
& \frac{(\sqrt[4]{\Delta}-\sqrt[4]{\delta})^{2}}{\sqrt{\Delta \delta}} \leq{ }^{0} R-n\left(\Pi_{1}\right)^{-\frac{1}{4 n}} \leq n^{2} \gamma(n) \frac{(\sqrt[4]{\Delta}-\sqrt[4]{\delta})^{2}}{\sqrt{\Delta \delta}} \\
& \frac{(\sqrt{\Delta}-\sqrt{\delta})^{2}}{\Delta \delta} \leq I D-n\left(\Pi_{1}\right)^{-\frac{1}{2 n}} \leq n^{2} \gamma(n) \frac{(\sqrt{\Delta}-\sqrt{\delta})^{2}}{\Delta \delta} \tag{15}\\
& (\sqrt{\Delta}-\sqrt{\delta})^{2} \leq 2 m-n\left(\Pi_{1}\right)^{\frac{1}{2 n}} \leq n^{2} \gamma(n)(\sqrt{\Delta}-\sqrt{\delta})^{2} \tag{16}\\
& (\Delta-\delta)^{2} \leq M_{1}-n\left(\Pi_{1}\right)^{\frac{1}{n}} \leq n^{2} \gamma(n)(\Delta-\delta)^{2} \tag{17}\\
& \left(\Delta^{\frac{3}{2}}-\delta^{\frac{3}{2}}\right)^{2} \leq F-n\left(\Pi_{1}\right)^{\frac{3}{2 n}} \leq n^{2} \gamma(n)\left(\Delta^{\frac{3}{2}}-\delta^{\frac{3}{2}}\right)^{2} \tag{18}
\end{align*}
$$

Remark 3.6. The left-hand side inequalities in (16) and (17) are stronger than (2) and (3), respectively.
Since $2 R_{-1} \leq I D$ (see [31]), where $R_{-1}=\sum_{i \sim j} \frac{1}{d_{i} d_{j}}$ is an often used Randić-type index [3,28], the following corollary of Theorem 3.1 is valid:

Corollary 3.7. Let G be a simple connected graph with $n \geq 2$ vertices. Then

$$
2 R_{-1}-n\left(\Pi_{1}\right)^{-\frac{1}{2 n}} \leq n^{2} \gamma(n) \frac{(\sqrt{\Delta}-\sqrt{\delta})^{2}}{\Delta \delta}
$$

with equality if and only if G is regular.
Since $F \geq 2 M_{2}$, based on the right part of (18) the following result is obtained.
Corollary 3.8. Let G be a simple connected graph with $n \geq 2$ vertices. Then

$$
2 M_{2}-n\left(\Pi_{1}\right)^{\frac{3}{2 n}} \leq n^{2} \gamma(n)\left(\Delta^{\frac{3}{2}}-\delta^{\frac{3}{2}}\right)^{2}
$$

with equality if and only if G is regular.
Let $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}>\mu_{n}=0$ be the Laplacian eigenvalues values of the graph G [16, 17, 34]. Then the Kirchhoff index, $K f$, is defined as [21] (see also [52])

$$
K f(G)=n \sum_{i=1}^{n-1} \frac{1}{\mu_{i}}
$$

Corollary 3.9. Let G be a simple connected graph with n vertices. If $n \geq 2$ then

$$
\begin{equation*}
K f(G) \geq-1+(n-1)\left(n\left(\Pi_{1}\right)^{-\frac{1}{2 n}}+\frac{(\sqrt{\Delta}-\sqrt{\delta})^{2}}{\Delta \delta}\right) \tag{19}
\end{equation*}
$$

If $n \geq 3$, then

$$
\begin{equation*}
K f(G) \geq \frac{n-1-\Delta}{\Delta}+(n-1)\left((n-1)\left(\frac{\Pi_{1}}{\Delta^{2}}\right)^{-\frac{1}{2(n-1)}}+\frac{\left(\sqrt{\Delta_{1}}-\sqrt{\delta}\right)^{2}}{\Delta_{1} \delta}\right) \tag{20}
\end{equation*}
$$

Equality in (19) holds if and only if $G \cong K_{n}$ or $G \cong K_{\frac{n}{2}, \frac{n}{2}}$ when n is even, or $G \in \Gamma_{d}$. Equality in (20) holds if and only if $G \cong K_{n}$, or $G \cong K_{\frac{n}{2}, \frac{n}{2}}$ for even n, or $G \cong K_{1, n-1}$, or $G \in \Gamma_{d}$.
Proof. In [49], the following inequality for the Kirchhoff index was reported:

$$
\begin{equation*}
K f(G) \geq-1+(n-1) \sum_{i=1}^{n} \frac{1}{d}=-1+(n-1) I D \tag{21}
\end{equation*}
$$

The inequality (19) is obtained from (21) and the left part of (15).
For $\alpha=-1$, from Theorem 3.2 the following is obtained:

$$
I D-(n-1)\left(\frac{\Pi_{1}}{\Delta^{2}}\right)^{-\frac{1}{2(n-1)}} \geq \frac{1}{\Delta}+\frac{\left(\sqrt{\Delta_{1}}-\sqrt{\delta}\right)^{2}}{\Delta_{1} \delta} .
$$

According to the above and inequality (21), inequality (20) is obtained.
In the next theorem we establish lower and upper bounds for the difference $H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}}$ depending on the parameters $m, \Delta_{e_{1}}$, and $\delta_{e_{1}}$.

Theorem 3.10. Let G be a simple graph with $m \geq 1$ edges. If $\alpha \geq 0$ then

$$
\begin{equation*}
\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} \leq H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} \tag{22}
\end{equation*}
$$

If $\alpha \leq 0$, then

$$
\left(\delta_{e_{1}}^{\frac{\alpha}{2}}-\Delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} \leq H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \leq m^{2} \gamma(m)\left(\delta_{e_{1}}^{\frac{\alpha}{2}}-\Delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2}
$$

Equalities on the right-hand sides of the above inequalities are attained if and only if $L(G)$ is regular. Equalities on the left-hand sides hold if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}=\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}$.

Proof. For $p=m, \alpha \geq 0, a_{i}=b_{i}=\left(d\left(e_{i}\right)+2\right)^{\frac{\alpha}{2}}, R_{1}=R_{2}=\Delta_{e_{1}}^{\frac{\alpha}{2}}, r_{1}=r_{2}=\delta_{e_{1}}^{\frac{\alpha}{2}}, i=1,2, \ldots, m$, the inequality (7) becomes

$$
m \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}-\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\frac{\alpha}{2}}\right)^{2} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2}
$$

i.e.,

$$
\begin{equation*}
m H_{\alpha}-\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\frac{\alpha}{2}}\right)^{2} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} \tag{23}
\end{equation*}
$$

For $p=m, \alpha \geq 0, a_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha}, i=1,2, \ldots, m$, the inequality (8) transforms into

$$
\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\frac{\alpha}{2}}\right)^{2} \leq(m-1) \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}+m\left(\prod_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{\frac{1}{m}}
$$

i.e.,

$$
\begin{equation*}
\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\frac{\alpha}{2}}\right)^{2} \leq(m-1) H_{\alpha}+m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \tag{24}
\end{equation*}
$$

The right-hand side of (22) is obtained from (23) and (24), .
Equality in (24) holds if and only if $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{1}}$. Therefore, equality on the right-hand side of (22) holds if and only if $L(G)$ is regular.

For $p=m, \alpha \geq 0, a_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha}, a_{1}=\Delta_{e_{1}}^{\alpha}, a_{m}=\delta_{e_{1}}^{\alpha}, i=1,2, \ldots, m$, the inequality (9) becomes

$$
\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}-m\left(\prod_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{\frac{1}{m}} \geq\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2}
$$

i.e.,

$$
H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \geq\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2}
$$

which is just the left-hand side of (22). Equality in the above inequality, and therefore on the left-hand side of (22), holds if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-2}\right)+2=\delta_{e_{2}}=\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}$.

For the case $\alpha \leq 0$ the inequalities are proved in a similar way.
The same procedure as in the case of Theorem 3.10 can be applied to deduce the following result.
Theorem 3.11. Let G be a simple connected graph with m edges. If $m \geq 2$ and $\alpha \geq 0$, then

$$
\begin{aligned}
\Delta_{e_{1}}^{\alpha}+\left(\Delta_{e_{2}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} & \leq H_{\alpha}-(m-1)\left(\frac{\Pi_{1}^{*}}{\Delta_{e_{1}}}\right)^{\frac{\alpha}{m-1}} \\
& \leq \Delta_{e_{1}}^{\alpha}+(m-1)^{2} \gamma(m-1)\left(\Delta_{e_{2}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

If $m \geq 2$ and $\alpha \leq 0$, then

$$
\begin{aligned}
\Delta_{e_{1}}^{\alpha}+\left(\delta_{e_{1}}^{\frac{\alpha}{2}}-\Delta_{e_{2}}^{\frac{\alpha}{2}}\right)^{2} & \leq H_{\alpha}-(m-1)\left(\frac{\Pi_{1}^{*}}{\Delta_{e_{1}}}\right)^{\frac{\alpha}{m-1}} \\
& \leq \Delta_{e_{1}}^{\alpha}+(m-1)^{2} \gamma(m-1)\left(\delta_{e_{1}}^{\alpha}-\Delta_{e_{2}}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

Equalities on the right-hand sides hold if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{1}}$, and on the left-hand sides if and only if $d\left(e_{3}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{2}}=\sqrt{\Delta_{e_{2}} \delta_{e_{1}}}$.

Theorem 3.12. Let G be a simple connected graph with m edges. If $m \geq 3$ and $\alpha \geq 0$, then

$$
\begin{aligned}
\Delta_{e_{1}}^{\alpha}+\delta_{e_{1}}^{\alpha}+\left(\Delta_{e_{2}}^{\frac{\alpha}{2}}-\delta_{e_{2}}^{\frac{\alpha}{2}}\right)^{2} & \leq H_{\alpha}-(m-2)\left(\frac{\Pi_{1}^{*}}{\Delta_{e_{1}} \delta_{e_{1}}}\right)^{\frac{\alpha}{m-2}} \\
& \leq \Delta_{e_{1}}^{\alpha}+\delta_{e_{1}}^{\alpha}+(m-2)^{2} \gamma(m-2)\left(\Delta_{e_{2}}^{\frac{\alpha}{2}}-\delta_{e_{2}}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

If $m \geq 3$ and $\alpha \leq 0$, then

$$
\begin{aligned}
\Delta_{e_{1}}^{\alpha}+\delta_{e_{1}}^{\alpha}+\left(\delta_{e_{2}}^{\frac{\alpha}{2}}-\Delta_{e_{2}}^{\alpha}\right)^{2} & \leq H_{\alpha}-(m-2)\left(\frac{\Pi_{1}^{*}}{\Delta_{e_{1}} \delta_{e_{1}}}\right)^{\frac{\alpha}{m-2}} \\
& \leq \Delta_{e_{1}}^{\alpha}+\delta_{e_{1}}^{\alpha}+(m-2)^{2} \gamma(m-2)\left(\delta_{e_{2}}^{\frac{\alpha}{\varepsilon_{2}}}-\Delta_{e_{2}}^{\frac{\alpha}{2}}\right)^{2}
\end{aligned}
$$

Equalities on the right-hand sides hold if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2},}$, and on the left-hand sides if and only if $d\left(e_{3}\right)+2=\cdots=d\left(e_{m-2}\right)+2=\sqrt{\Delta_{e_{2}} \delta_{e_{2}}}$.

Since $2 \delta \leq \delta_{e_{1}} \leq \Delta_{e_{1}} \leq 2 \Delta$, the following corollary of Theorem 3.10 is valid.
Corollary 3.13. Let G be a simple connected graph with $m \geq 1$ edges. If $\alpha \geq 0$, then

$$
H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \leq 2^{\alpha} m^{2} \gamma(m)\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} .
$$

If $\alpha \leq 0$, then

$$
H_{\alpha}-m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \leq 2^{\alpha} m^{2} \gamma(m)\left(\delta^{\frac{\alpha}{2}}-\Delta^{\frac{\alpha}{2}}\right)^{2} .
$$

In both cases equalities hold if and only if G is regular.
We now state some inequalities resulting from Theorem 3.10 and Corollary 3.13, pertaining to particular values of the parameter α, namely for $\alpha=-\frac{1}{2}, \alpha=-1, \alpha=1$, and $\alpha=2$, respectively.

Corollary 3.14. Let G be a simple connected graph with $m \geq$ edges. Then

$$
\begin{align*}
& \frac{\left(\sqrt[4]{\Delta_{e_{1}}}-\sqrt[4]{\delta_{e_{1}}}\right)^{2}}{\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}} \leq \chi-m\left(\Pi_{1}^{*}\right)^{-\frac{1}{2 m}} \leq m^{2} \gamma(m) \frac{\left(\sqrt[4]{\Delta_{e_{1}}}-\sqrt[4]{\delta_{e_{1}}}\right)^{2}}{\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}} \\
& \leq m^{2} \gamma(m) \frac{(\sqrt[4]{\Delta}-\sqrt[4]{\delta})^{2}}{\sqrt{2 \Delta \delta}} \\
& \begin{aligned}
\frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{1}}} \leq \frac{1}{2} H-m\left(\Pi_{1}^{*}\right)^{-\frac{1}{m}} & \leq m^{2} \gamma(m) \frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{1}}} \\
& \leq m^{2} \gamma(m) \frac{(\sqrt{\Delta}-\sqrt{\delta})^{2}}{2 \Delta \delta} \\
\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2} \leq M_{1}-m\left(\Pi_{1}^{*}\right)^{\frac{1}{m}} & \leq m^{2} \gamma(m)\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2} \\
& \leq 2 m^{2} \gamma(m)(\sqrt{\Delta}-\sqrt{\delta})^{2}
\end{aligned}
\end{align*}
$$

$$
\begin{align*}
\left(\Delta_{e_{1}}-\delta_{e_{1}}\right)^{2}-2 M_{2} \leq F-m\left(\Pi_{1}^{*}\right)^{\frac{2}{m}} & \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}-\delta_{e_{1}}\right)^{2}-2 M_{2} \tag{26}\\
& \leq 4 m^{2} \gamma(m)(\Delta-\delta)^{2}-2 M_{2} .
\end{align*}
$$

Remark 3.15. Left inequality of (25) is stronger than (5), and left inequality of (26) is stronger than (6).
As $F \geq 2 M_{2}$, from (26) we obtain:

Corollary 3.16. Let G be a simple connected graph with $m \geq 1$ edges. Then

$$
\begin{aligned}
& 2 F-m\left(\Pi_{1}^{*}\right)^{\frac{2}{m}} \geq\left(\Delta_{e_{1}}-\delta_{e_{1}}\right)^{2} \\
& 4 M_{2}-m\left(\Pi_{1}^{*}\right)^{\frac{2}{m}} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}-\delta_{e_{1}}\right)^{2} \leq 4 m^{2} \gamma(m)(\Delta-\delta)^{2}
\end{aligned}
$$

Equalities hold if and only G is regular.
In the next theorem we establish a relationship between H_{α} and Π_{2}.
Theorem 3.17. Let G be a simple connected graph with n vertices and $m \geq 1$ edges. Then for any $\alpha \geq 0$

$$
\begin{equation*}
H_{\alpha}-\frac{n^{\alpha}}{m^{\alpha-1}}\left(\Pi_{2}\right)^{\frac{\alpha}{m}} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}^{\frac{\alpha}{2}}-\delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} \leq 2^{\alpha} m^{2} \gamma(m)\left(\Delta^{\frac{\alpha}{2}}-\delta^{\frac{\alpha}{2}}\right)^{2} \tag{27}
\end{equation*}
$$

Equality on the left-hand side of (27) holds if and only if $L(G)$ is regular, and on the right-hand side if and only if G is regular.
Proof. According to

$$
n=\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}} \geq m\left(\prod_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}\right)^{\frac{1}{m}}=m \frac{\left(\Pi_{1}^{*}\right)^{\frac{1}{m}}}{\left(\Pi_{2}\right)^{\frac{1}{m}}}
$$

we have that

$$
\begin{equation*}
m\left(\Pi_{1}^{*}\right)^{\frac{1}{m}} \leq n\left(\Pi_{2}\right)^{\frac{1}{m}} \tag{28}
\end{equation*}
$$

If $\alpha \geq 0$ is an arbitrary real number, then

$$
m^{\alpha}\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \leq n^{\alpha}\left(\Pi_{2}\right)^{\frac{\alpha}{m}}
$$

i.e.,

$$
m\left(\Pi_{1}^{*}\right)^{\frac{\alpha}{m}} \leq \frac{n^{\alpha}}{m^{\alpha-1}}\left(\Pi_{2}\right)^{\frac{\alpha}{m}}
$$

From the above and the right-hand side of (22), the left-hand side of inequality (27) follows.
Corollary 3.18. Let G be a simple connected graph with n vertices and $m \geq 1$ edges. Then

$$
\begin{aligned}
& M_{1}-n\left(\Pi_{2}\right)^{\frac{1}{m}} \leq m^{2} \gamma(m)\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2} \leq 2 m^{2} \gamma(m)(\sqrt{\Delta}-\sqrt{\delta})^{2} \\
& F-\frac{n^{2}}{m}\left(\Pi_{2}\right)^{\frac{2}{m}} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}-\delta_{e_{1}}\right)^{2}-2 M_{2} \leq 4 m^{2} \gamma(m)(\Delta-\delta)^{2}-2 M_{2} \\
& 4 M_{2}-\frac{n^{2}}{m}\left(\Pi_{2}\right)^{\frac{2}{m}} \leq m^{2} \gamma(m)\left(\Delta_{e_{1}}-\delta_{e_{1}}\right)^{2} \leq 4 m^{2} \gamma(m)(\Delta-\delta)^{2} .
\end{aligned}
$$

Equalities on the first right-hand sides of the above inequalities are attained if and only if G is regular or biregular. Equalities on the second right-hand sides are attained if and only if G is regular.

In a similar manner as in the case of Theorem 3.17, the following result can be proven.
Theorem 3.19. Let G be a simple connected graph with n vertices and $m \geq 1$ edges. Then for any real $\alpha \leq 0$

$$
\begin{equation*}
H_{\alpha}-\frac{n^{\alpha}}{m^{\alpha-1}}\left(\Pi_{2}\right)^{\frac{\alpha}{m}} \geq\left(\delta_{e_{1}}^{\frac{\alpha}{2}}-\Delta_{e_{1}}^{\frac{\alpha}{2}}\right)^{2} \tag{29}
\end{equation*}
$$

Equality holds if and only if G is a regular or a biregular graph.

For $\alpha=-\frac{1}{2}$ and $\alpha=-1$, we have the following special cases of Theorem 3.19.
Corollary 3.20. Let G be a simple connected graph with n vertices and $m \geq 1$ edges. Then

$$
\begin{aligned}
& \chi-\frac{m \sqrt{m}}{\sqrt{n}}\left(\Pi_{2}\right)^{-\frac{1}{2 m}} \geq \frac{\left(\sqrt[4]{\Delta_{e_{1}}}-\sqrt[4]{\delta_{e_{1}}}\right)^{2}}{\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}} \\
& \frac{1}{2} H-\frac{m^{2}}{n}\left(\Pi_{2}\right)^{-\frac{1}{m}} \geq \frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{1}}}
\end{aligned}
$$

Remark 3.21. It can be easily verified that according to (4) and (28), the following lower bound

$$
M_{2} \geq \frac{m^{2}}{n}\left(\Pi_{1}^{*}\right)^{\frac{1}{m}}
$$

holds for the second Zagreb index M_{2}.

References

[1] M. Azari, A. Iranmanesh, Bounds on multiplicative Zagreb indices of graph operations and subdivision operators, In: Bounds in Chemical Graph Theory - Advances (I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović, eds.), Univ. Kragujevac, Kragujevac, 2017, pp. 187-215.
[2] M. Biernacki, H. Pidek, C. Ryll-Nardzewski, Sur une inequality des integralles definies, Univ. Marie Curie-Sklodowska, A4 (1950) 1-4.
[3] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225-233.
[4] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[5] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and Extremal graphs, In: Bounds in Chemical Graph Theory - Basics (I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović. eds.), Univ. Kragujevac, Kragujevac, 2017, pp. 67-153.
[6] V. Cirtoaje, The best lower bound depended on two fixed variables for Jensen's ineauality with order variables, J. Ineq. Appl. 2010 (2010) \#12858.
[7] P. Dankelmann, A. Hellwig, L. Volkmann, Inverse degree and edge-connectivity, Discr. Math. 309 (2008) $2943-2947$.
[8] P. Dankelmann, H. C. Swart, P. van den Berg, Diameter and inverse degree, Discr. Math. 308 (2008) 670-673.
[9] M. Eliasi, A simple approach to order the multiplicative Zagreb indices of connected graphs, Trans. Comb. 1(4) (2012) 17-24.
[10] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217-230.
[11] S. Fajtlowicz, On conjectures of Graffiti II, Congr. Numer. 60 (1987) 187-197.
[12] F. Falati-Nezhad, M. Azari, Bounds of the hyper-Zagreb index, J. Appl. Math. Infor. 34 (3-4) (2016) 319-330.
[13] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[14] B. Furtula, I. Gutman, Ž. Kovijanić Vukićević, G. Lekishvili, G. Popivoda, On an old/new degree-based topological index, Bull. Acad. Serbe. Sci. Arts. (Cl. Sci. Math. Natur.) 148 (2015) 19-31.
[15] M. Ghorbani, N. Azimi, Note on multiple Zagreb indices, Iran. J. Math. Chem. 3 (2012) 137-143.
[16] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discr. Math. 7 (1994) 221-229.
[17] R. Grone, R. Merris, V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[18] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 13-19.
[19] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe. Sci. Arts. (Cl. Sci. Math. Natur.) 146 (2014) 39-52.
[20] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) $83-92$.
[21] I. Gutman, B. Mohar, The quasi-Wiener index and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985.
[22] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62 (1975) 3399-3405.
[23] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972) 535-538.
[24] A. Iranmanesh, M. A. Hosseinzadeh, I. Gutman, On multiplicative Zagreb indices of graphs, Iran. J. Math. Chem. 3(2) (2012) 145-154.
[25] R. Kazemi, On the multiplicative Zagreb indices of bucket recursive trees, Iran. J. Math. Chem. 8(1) (2017) 37-45.
[26] L. B. Kier, L. H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, Europ. J. Med. Chem. 12 (1977) 307-312.
[27] H. Kober, On the aritmetic and geometric means and on Hölder's inequality, Proc. Am. Math. Soc. 9 (1958) 452-459.
[28] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[29] X. Li, H. Zhao, Trees with the first the smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
[30] J. Liu, Q. Zhang, Sharp upper bounds for multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 231-240.
[31] M. Lu, H. Liu, F. Tian, The connectivity index, MATCH Commun. Math. Comput. Chem. 51 (2004) 149-154.
[32] I. Ž. Milovanović, E. I. Milovanović, I. Gutman, B. Furtula, Some inequalities for the forgotten topological index, Int. J. Appl. Graph Theory 1 (2017) 1-15.
[33] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
[34] B. Mohar, The Laplacian spectrum of graphs, In: Graph Theory, Combinatorics, and Applications (Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, eds.), Wiley, New York, 1991, pp. 871-898.
[35] H. Narumi, New topological indices for finite and infinite systems, MATCH Commun. Math. Chem. 22 (1987) 195-207.
[36] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16 (1984) 209-214.
[37] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[38] J. L. Palacios, Some additional bounds for the Kirchhoff index, MATCH Commun. Math. Comput. Chem. 75 (2016) 365-372.
[39] T. Réti, I. Gutman, Relations between ordinary and multiplicative Zagreb indices, Bull. Int. Math. Virt. Inst. 2 (2012) 133-140.
[40] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, In: Novel Molecular Structure Descriptors - Theory and Applications (I. Gutman, B. Furtula, eds.), Univ. Kragujevac, Kragujevac, 2010, pp. 73-100.
[41] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010) 359-372.
[42] B. Wang, F. Xia, Narumi-Katayama index of fully loaded unicyclic graphs, South Asian J. Math. 2 (2012) 417-422.
[43] C. Wang, J. B. Liu, S. Wang, Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter, Discr. Appl. Math. 227 (2017) 156-165.
[44] H. Wang, H. Bao, A note on multiplicative sum Zagreb index, South Asian J. Math. 2 (2012) 578-583.
[45] S. Wang, C. Wang, L. Chen, J. B. Liu, On extremal multiplicative Zagreb indices of trees with given number of vertices of maximum degree, Discr. Appl. Math. 227 (2017) 166-173.
[46] K. Xu, K. C. Das, Trees, unicyclic and bicyclic graphs extremal with respect to multiplicative sum Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 257-272.
[47] K. Xu, H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 241-256.
[48] B. Zhou, I. Gutman, T. Aleksić, A note on the Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 441-446.
[49] B. Zhou, N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455 (2008) 120-123.
[50] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.
[51] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[52] H. Y. Zhu, D. J. Klein, I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996) 420-428.

[^0]: 2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C50
 Keywords. Multiplicative Zagreb index; multiplicative sum Zagreb index; general first Zagreb index; general sum-connectivity index.

 Received: 20 July 2017; Accepted: 27 September 2017
 Communicated by Dragan S. Djordjević
 Research supported by Serbian Ministry of Education, Science and Technological Development, Grant No TR-32009.
 Email addresses: gutman@kg.ac.rs (Ivan Gutman), igor@elfak.ni.ac.rs (Igor Milovanović), ema@elfak.ni.ac.rs (Emina Milovanović)

