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Abstract. Gear train volume optimization presents a complex problem 
tied to practical application in gear train manufacturing. This paper is 
oriented on the analysis of the problem of gear train volume minimization 
from a shaft axes positioning aspect. An original mathematical model has 
been developed where the objective function gives a minimum volume 
with changed shaft (spur gear) axes positions, while at the same time 
complying with all physical constraints. An original optimization software 
has also been developed using RCGA (Real Coded Genetic Algorithm) 
optimization methods. The general mathematical model was applied to 
three real conceptions of gear train as well as a comparative analysis of 
initial and optimal values. The results show a decrease of volume being 
directly linked to a decrease of not only space but material used to make 
the housing, costs, documentation formulation rate, etc.  

1 Introduction  
Gear train presents a complex technical system due to the complexity of its mathematical 
formulation and large number of variable values. From a research and practical aspect there 
is a need for constant improvement theoretical and practical segments in order to justify 
gear train application. Achieving better operational gear train characteristics, and a lower 
mass, volume and cost are basic objectives when designing a gearbox. Optimization is the 
most effective way of achieving desired gear train characteristics, it allows for advances in 
this field as a current and alternative method of improvement. This paper only considers 
parallel shaft axes gear train.  

The optimization method which has proven itself as significant for solving practical 
problems is the heuristic method of genetic algorithm, which is why it is interesting for this 
field of research. In this specific case the RCGA (Real Coded Genetic Algorithm) was 
developed, dedicated to solving general engineering problems. 

Aside from knowing the construction of gear train, the process, and method of 
optimization, the development of a mathematical model is necessary which can be 
representative of the problem and improve gear train performance. This paper contains 
relevant examples which can present results of performance improvements with gear trains.  
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Chonget al. [1] presented a general methodology for optimizing gear ratios, sizes and 
housing volume for multi-stage gear trains in preliminary design phases. Marjanovic et al. 
[2] developed a practical approach to optimizing gear trains with spur gears based on 
selection matrix, selection of optimal materials, optimal gear ratios and shaft axes positions. 
Golabiet. Al [3] presented gear train volume/weight minimization optimizing single and 
multistage gear trains’ gear ratios. Mendi et al. [4] aimed to optimize gear train component 
dimensions to achieve minimal volume comparing GA results to analytic method parameter 
volume. Savsani et al. [5] described gear train weight optimization comparing various 
optimization methods to genetic algorithm (GA) result values. Gologlu and Zeyveli [6] 
performed preliminary design automation through optimization of gear parameters and 
properties using a GA based approach. Tand and Tseng [7] presented a new mutation 
operator to adaptive direct mutation that focuses on simplicity, robustness, and efficiency 
within the context of RCGAs. Shopova et al. [8] presented an adjustable genetic algorithm 
deigned to deal with engineering optimization problems with both real and integer 
problems. Mushavati and Hamouda [9] implemented cyclic crossover operation to modify 
GA for multiple part manufacturing line optimization. For the manufacturing process 
optimization it is necessary to employ theoretical models as presented in [11]. Such a 
process is practical [12], economical [13], and relatively easy for use [14]. 

There is a real need to explain and mathematically formulate the gear train volume 
optimization problem, to find influential factors, and to find approaches and methods 
through which optimal gear train characteristics are possible.  

Motivation is based on gear train performance; achieving a minimum volume, 
consequently a smaller mass, smaller embedded measurements, less material used, 
decreased expenses and other benefits.  

The results obtained by the here presented method are compared to common concepts 
through specific examples.  

2 Problem definition  

Gear trains with spur gears are most frequently made so their shaft axes are in the same 
plane, which is most frequently the horizontal plane.  
Gears placed in this way take up a large volume which can be reduced through optimizing 
the transmission. An optimal solution defines a new position of gear train shaft axes which 
results in a decreased overall volume of the gear train [15-16]. 

Gear train volume can be defined as a result of multiplying length, height, and width 
based on which a mathematical model can be made. Since width considered as a constant 
due to calculated values of spur gears and other components’ constructive dimensions, the 
optimization problem becomes planar, based on optimizing the area defined by multiplying 
length (L), and width (H) of the transmission. 

Fig. 1 shows the positions of the gears relative to the x and y axes. The position of the 
input shaft is constrained in the origin, while the positions of other shafts is defined by the 
angle, θi which is also shown in Fig.1. Gearbox volume is directly dependent on the change 
of these angles. A constant, c1, is left on all sides as a technical clearance and is included in 
both the initial and optimal models, which is added to form the overall length and height.  
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Fig. 1. Formulation of optimal gear train shaft axes. 

Before optimization, in the initial design phase the following condition must be met for 
paired gears u and v in cases of gear trains with three or more stages: 

��� > ����	

 + �����


          (1) 

This ensures there is no clash between non paired elements placed in the same plane. If 
more than one stage can be placed in the same plane, this will initially give a decrease of 
volume even before optimization (Fig. 2a). 

3 Mathematical model 
Once all initial design conditions are met, and gear dimensions calculated, the typically 
positioned gear train can be optimized. Gear train volume changes when shaft position 
angles are changed. Minimum volume is achieved through achieving a minimal area of the 
profile plane. A difference of the rightmost coordinate of the gear train from the origin 
placed in the first pinion, and the leftmost coordinate from the origin gives the length of the 
gear train for the observed angles. In the same way the topmost, and bottom most 
coordinates subtracted give the height of the gear train. The function to determine the area 
which the gear train occupies is defined as follows:  
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This research presents a gear train optimization approach based on changing positions 
of gear shaft axes in relation to the horizontal plane. The angle between shaft angle 
positions can vary in the range of:  −180° ≤ �� ≤ 180°. The previous equation represents a 
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general mathematical model. The equation includes the addition of 15mm on all sides of the 
gear train area as technical clearance for a housing. This clearance is also included as a 
clearance on all sides in the horizontal plane, as well as being a minimal distance between 
two gears on a single shaft. 

In order to properly constrain the complex mathematical model, so that the result of the 
optimization gives a realistic model, many design factors need to be considered. Multilevel 
gear trains with spur gears can be set up in different ways in the initial design phase 
depending on spur gear dimensions. In case two sets of gears can be placed in the same 
plane and maintain a minimal clearance between non-paired gears, the volume can be 
decreased initially by reducing the overall width of the gear train.  

Optimization constraints, similarly to the initial condition (Fig. 2a), in this case are 
maintaining a minimal clearance between non-paired gears of these stages when the shaft 
axes angles change (Fig.2b). For all stages in separate planes there is an obligatory 
constraint for avoiding clash of shaft and gear, and limiting their distance to a minimal 
possible value of 15 mm, where this clash is possible (Fig.2c).  

 
Fig. 2. Possible clashes between a) non paired gears in initial design phase, b) non paired gears in 
optimized model, c) shaft and gear in optimized model. 

The objective function for all concepts has an addition of a minimum distance between 
gears and housing on all sides. The minimal volume which is achieved through 
optimization includes clearances not only in the observed plane, but also on shaft lengths. 
These technical clearances have constant values.  

Constraints which ensure against clash of any non-paired elements m and n are given as 
a minimal center distance between those elements which must be greater than or equal to 
the sum of their respective radiuses and a constant technical clearance. The general 
equation for this constraint is: 

�/� = 34/�
 + 5/�
 ≥ �/2 + ��2 + �2 ;       �2 = 1599 
 (3) 
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4 Optimization method and software 

Gear train volume optimization is a complex problem and as such is not possible without 
the use of a computer. In order to optimize, it is necessary to use an optimization method 
flexible for complex problems with numerous constraints. In this case, genetic algorithm 
method was chosen due to its favorable characteristics, and an original software has been 
developed for optimization based on this method.  A real coded genetic algorithm (RCGA) 
was used, the algorithm is presented in Fig.3. The software used was developed in C++. 

 
Fig. 3. Genetic algorithm for real coding (RCGA). 

Genetic algorithm (GA) is a heuristic method for optimizing whose operation is based 
on mimicking natural/evolutionary processes [8]. The algorithm contains three basic 
operators: selection, crossover, and mutation. Selection is the process of transferring 
genetic information through generations. Crossover represents the process/operations 
between two parents, where an exchange of genetic information and new generations are 
made. The mutation operator creates a random change in the genetic structure of some 
individuals for overcoming early convergence. Algorithm operation is based on survival of 
the fittest individuals through evolution which exchange genetic material. Selection ranks 
individuals in the population using values from the fitness function, which defines the 
ability/quality of the individual. 

Genetic algorithm, due to its convergence characteristics has a widespread application. 
Researchers are inspired to use this algorithm for scientific purposes, industrial application, 
business applications and to further increase its use. 

Before use the software was tested according to available literature and its operation 
meets all necessary criteria. The original software is intended for all problems formulated 
by a mathematical model. 

5 Test examples 

For the purpose of verifying the mathematical model, in this paper three examples of 
various multistage gear trains were put through the optimization process. As the model can 
be applied to any gear train with two or more stages the examples used are of a two stage 
(Example 1) [2], three stage (Example 2) [2], and four stage (Example 3) [1] gear trains. 
Selected gear trains are representative of real practical examples used in the industry and 
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are comparable to results from literature. The input values for the mathematical model for 
these examples are shown in Table 1. 

Table 1 also gives initial gross dimensions of each example with included technical 
clearances. As the mathematical model aims to find the minimal volume by changing the 
area normal to shaft axes optimized examples are hypothesized to change in some measure 
correlating with the change of shaft position angles. Volumes of test examples in the initial 
concept arrangement are 9 925 631.1mm3 for Example 1, 72 341 883mm3 for Example2, 
and 39 697 456.5mm3 for Example 3. The concept of Example 2 does not have the 1st and 
3rd gear pairs in the same axes due to the initial design conditions not being met. Example 3 
has the 4th gear pair face aligned with the same side face of the 1st gear pair which also 
places it behind the 2nd gear pair due to the width of the 4th gear pair. The initial concept of 
Example 3 therefore has an initially decreased volume than if the gear pairs were all in their 
own respective planes.  

Table 1. Input values for creating a mathematical model for all examples. 

 Example 1(2 stage) Example 2 (3 stage) Example 3 (4 stage) 
Stage 1 2  1 2 3 1 2 3 4 

Module 
(mm) 2 3  2 3 4.5 1.5 2 3 4 

Number 
of teeth in 

pinion 
20 23  24 24 23 14 18 20 25 

Number 
of teeth in 

gear 
83 67  110 84 56 77 79 74 82 

Pitch 
diameter 
of pinion 

(mm) 

40 69  48 72 103.5 21 36 60 100 

Pitch 
diameter 
of gear 
(mm) 

166 201  220 252 252 115.5 158 222 328 

Face 
width 
(mm) 

103 135  134 162 177.75 68.25 97 141 214 

Net 
length, 
height, 
width 

388.5 231 110.6 653.75 282 392.4 724.75 358 153  

6 Results 

The mathematical model is formed based on geometric characteristics of multistage gear 
trains. Optimization of initial concepts was conducted in the aforementioned software using 
RCGA. Input values were inserted into the mathematical model from Table 1. 

As the width of the gear train is unchanged, the mathematical model gives a minimal 
area. Convergence of the area and shaft axes angles are shown in Figures 4, 5, and 6 for a 
smaller number of iteration steps to illustrate rate of convergence. Optima were achieved in 
1500 iteration steps for Example 1, 3000 for Example 2, and 6000 for Example 3. 
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Fig. 4. Example1 convergence of a) minimal area, b) angle values, at iteration step. 

 
Fig. 5. Example 2 convergence of a) minimal area, b) angle values, at iteration step. 

 
Fig. 6. Example 3 convergence of a) minimal area, b) angle values, at iteration step. 

The optimization results shown in Table 2 show an overall decrease in volume for all 
examples. Examples 1 and 2 show an unchanged height and decreased length, while 
Example 3 has an increased height and significantly decreased height. 

Table 2. Optimal values of shaft position angles, overall dimensions, and volume for examples. 

 Example 1 Example 2 Example 3 
θ1 [ °] -55.0359 -61.3595 -154.2624 
θ2 [ °] 7.4482 5.6681 -144.9345 
θ3[ °] - 0 -57.7319 
θ4[ °] - - 14.3393 

L [mm] 347.361 604.958 555.61 
H [mm] 231 282 373.702 
B [mm] 110.6 392.4 153 
V [mm³] 8874585.592 66942709.8 31767763.44 

Initial angles have changed significantly from original concepts with all shaft axes in 
the same plane resulting in optimal concepts with a minimal volume (Fig. 7). 
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Fig. 7. Optimal concept positions for a) Example 1, b) Example 2, and c) Example 3. 

Examples in figure 7 are given as a section view of a simplified housing in order to 
better show the optimal interior volumes and concepts of the gear trains. Example 3 in 
figure 6 is shown with the housing rotated by 90° for better visualization.  

Unlike in [1] constraints for Example 3, as well as for all other examples, do not allow 
for an overlap of shafts and gears. All shafts have an intended clearance to allow for shafts 
to be designed in any desired length without forcing the design of a more complex housing 
to compensate for shaft embedding. 

Example 1 gives an optimal area (volume) for the range of −52.4912° ≤ �� ≤−72.0083°. All concepts also give optimal volumes for completely mirrored or completely 
normal values of all angle optima. 

7 Conclusions 
Optimization of gear trains with spur gears is a complex process. One such practical 
approach is presented in this paper. Presented in the paper is a universal mathematical 
model which can be applied to gear trains with two or more stages. Three examples are 
shown optimized using the presented mathematical model calculated in an original software 
based on a GA method. Real coded genetic algorithm (RCGA) is used for optimization. A 
large number of iterations is necessary to find optima due to the complexity of the 
mathematical model. 

The examples initial volumes are calculated for the common case where all shaft axes 
are in the same plane. Comparison of initial volumes and optimization results for concepts 
of Example 1 show a decrease in volume of 10.589%, for Example 2 a decrease of 7.463%, 
and for Example 3 a decrease of 19.975%. 

Gear trains with 2, 3 and 4 stages are used as test examples to show the influence of the 
number of stages on the percentage of volume decrease. Example 2 is used to show that the 
number of stages does not directly influence volume minimization. In other words the two-
stage gear train (Example 1) has a greater relative decrease in volume from its original 
conception than the three-stage gear train (Example 2) due to a small difference in pinion 
sizes relative to their corresponding gears. If pinion to gear ratios are greater the area, and 
in turn volume is expected to have a greater difference in volume for optimal shaft 
positions.  

Initial conditions and optimization constraints are incorporated to ensure the optimal 
concepts are practically applicable. The achieved minimization of volume in turn results in 
lower costs and weights of the housing for such gear trains. 
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