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Abstract 

We propose a novel method of Mean-Capital Requirement portfolio optimization. The 

optimization is performed using a parallel framework for optimization based on the 

Nondominated Sorting Genetic Algorithm II. Capital requirements for market risk include an 

additional stress component introduced by the recent Basel 2.5 regulation. Our  optimization 

with the Basel 2.5 formula in the objective function produces superior results to those of the 

old (Basel II) formula in stress scenarios in which the correlations of asset returns change 

considerably. These improvements are achieved at the expense of reduced cardinality of 

Pareto-optimal portfolios. This reduced cardinality (and thus portfolio diversification) in 

periods of relatively low market volatility may have unintended consequences for banks’ risk 

exposure.  
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1. Introduction 

1.1.Capital requirements under Basel 2.5 

The Basel II regulatory framework establishes the capital requirements (CR) for banks’ 

exposure to market, credit and operational risks in terms of Value at Risk (VaR) estimations 

(BIS, 2006). VaR is a quantile measure of risk that is defined as an estimate of the maximum 

portfolio loss for a given holding period and a pre-set significance level. Banks are allowed to 

develop their own internal VaR models. These models are subject to supervisory approval 

based on standardized backtesting procedures. In the aftermath of the global financial crisis, 

the Basel Committee on Banking Supervision has identified the undercapitalization of banks’ 

trading books and the pro-cyclicality of capital charges for market risk as the key weaknesses 

of the Basel II regulation. In response to the crisis, the Committee adopted the so-called Basel 

2.5 regulation (BIS, 2009). Pursuant to the  Basel 2.5 regulation, the CR required for market 

risk, calculated at day T to be held on day T+1, is determined as a sum of two components: 

Regulatory VaR (according to BIS, 2006) and Regulatory Stressed VaR (the additional capital 

charge mandated by BIS, 2009): 
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Equation (1) requires that VaR estimates be made for a holding period h of 10 working days at 

a significance level α of 1%. The value of the penalty parameter k in Equation (1) is based on 

the total number of VaR violations in the backtesting sample of the previous 250 days. 

Namely, for each day t, t= T-249, T-248,…, T-1,T, the 1-day-ahead bank trading portfolio 

VaR estimated on day t-1, VaRt, is compared to the realized portfolio return at day t, rt. The 

number of VaR violations corresponds to the number of times that the realized portfolio loss 

(negative return) exceeds the loss predicted by the 1-day-ahead portfolio VaR estimate, that is 

when rt<-VaRt. Regulators use the number of violations as a proxy for the quality of the VaR 

modelling. Based on the number of VaR violations, the penalty parameter k can take discrete 

values between 0 and 1 and is proportional to the number of violations (see Table 1). An 

internal model is rejected if the number of violations is greater than or equal to 10. 

Table 1. Value of the penalty parameter corresponding to the results of the backtesting procedure 

Number of VaR violations 0-4 5 6 7 8 9 ≥ 10 

k 0 0.4 0.5 0.65 0.75 0.85 1 
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From Equation (1) and Table 1, it follows that the lowest possible VaR values might not 

necessarily lead to the lowest possible regulatory capital charge. Specifically, Regulatory VaR 

is determined as the maximum of the current 1-day-ahead VaR estimate and the average of the 

1-day-ahead VaR estimates over the last 60 business days multiplied by the penalty factor 

3+k. Most of the time, the latter term dominates. Thus, a higher number of violations typically 

leads to a higher capital charge.  

The expression for Regulatory Stressed VaR has the same structure as Regulatory VaR except 

that VaR estimates are replaced with their stressed counterparts, SVaR. The estimates for 

SVaR are determined for the same portfolio and in exactly the same way as VaR estimates, but 

assuming that the relevant market factors experienced stress during the most recent 250 days. 

Note that the value of k obtained from the backtesting of the original VaR estimates is also 

used in the Regulatory Stressed VaR expression.  

It is important to note that the regulation requires banks to apply CR formula to a portfolio 

that they hold on the calculation date (the so-called actual portfolio). The actual portfolio 

framework (APF) implies that asset holdings on the date of the CR calculation, not the assets’ 

portfolio weights (i.e., the fractions of portfolio value invested in each individual asset), are 

held fixed over the backtesting period. Therefore, when determining the value of the CR, it is 

crucial that not only all 1-day-ahead VaR estimates but also the penalty factor are based on the 

time series of returns of the actual portfolio. Fixing portfolio weights during the backtesting 

sample of 250 days would simplify calculations but would not be in line with the Basel 

regulation. 

 

1.2. Contribution of the paper 

In this paper, we propose a novel Mean-CR portfolio optimization approach in which the CR 

for market risk is calculated strictly in accordance with the Basel 2.5 regulation (Equation 

(1)). The VaR calculations are based on daily returns and 10-day VaR is obtained as the 1-day 

VaR multiplied by the square root of 10 (this approach is explicitly allowed by the regulation). 

We assume that conditional (time varying) variance of portfolio returns follows a univariate 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH (1, 1)) process (see 

Bollerslev, 1986), whereas portfolio returns, standardized by conditional volatility, follow 

Student’s t distribution. This model is referred to as the univariate GARCH VaR model. The 

univariate model of conditional variance efficiently captures the conditional variance of 
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portfolio returns and allows us to implement the backtesting procedure in accordance with the 

Basel 2.5 regulation.  

 

Mean-CR optimization is subject to two key challenges: i) the use of the APF approach; and 

ii) the fact that the backtesting penalty parameter is a discrete function of VaR violations. As a 

result, the optimization problem that we solve is a highly complex, non-differentiable and 

non-convex. We manage this complexity by employing the Nondominated Sorting Genetic 

Algorithm II (NSGA-II) (Deb et al., 2000; Deb et al., 2002). When univariate GARCH model 

is used to estimate VaR, CR calculation for single portfolio becomes very time consuming. 

Thus, the NSGA-II algorithm cannot be executed on a single processor within a reasonable 

time frame. To address this problem, we employ a parallel framework for optimization based 

on the genetic algorithm developed by Ivanovic et al. (2015). 

 

In the empirical section, we test our approach using an opportunity set of 40 constituents of 

the Standard and Poor’s 100 index (S&P 100). Specifically, we examine two samples 

representing high- and low-volatility market environments and include comparison of four 

stress scenarios. We show that Mean-CR optimal portfolios, presented in the Mean-CR plane, 

outperform Mean-Regulatory VaR optimal portfolios only when the original correlation of 

asset returns significantly differs from the correlations imposed by the stress scenarios. This is 

the case for two of the four stress scenarios that we employ. The improvements are 

particularly pronounced in a low-volatility environment. However, they are achieved at the 

expense of the reduced cardinality of Pareto-optimal portfolios. For this reason, the additional 

capital charge in the Basel 2.5 formula might result in less diversified optimal portfolios, 

especially during periods of relatively low market volatility. We see this as an unintended 

consequence of the current regulation. In addition, we show that although the Mean-VaR 

optimization is much simpler, generally does not lead to near optimal Mean-CR trade-offs.  

1.3. Relation to the literature 

Santos et al. (2012) is the only previous study on portfolio optimization that uses CR as the 

objective function.
 
Those authors propose an analytical model to determine optimal portfolios 

with minimum CR. They convexify CR and impose an ad-hoc (exogenous) limitation on the 

number of VaR violations. In determining CR, the authors use conditional multivariate 

GARCH VaR model. Unlike our univariate GARCH VaR approach, their model implicitly 

assumes that assets’ portfolio weights, rather than asset holdings, are fixed over the observed 
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time period. The two GARCH VaR modelling approaches are compared in detail in Ranković 

et al. (2016). That paper pioneers the use of APF in Mean-VaR portfolio optimization, 

showing that within the APF approach, the use of univariate GARCH VaR outperforms its 

multivariate GARCH VaR counterpart. We significantly extend Ranković et al. (2016) work 

by applying their approach to construct the Mean-CR Pareto-optimal front.  

 

In addition to the three hypothetical scenarios considered in Santos et al. (2012), we also 

consider a historical stress scenario. This historical scenario explores what would have 

happened to our portfolio if adverse historical conditions were to re-occur. The use of the 

historical stress scenario is consistent with regulatory changes suggesting that CR should be 

calibrated to a period of significant market stress in both internal and standard regulatory 

models (BIS, 2009). Both historical and hypothetical stress scenarios are frequently employed 

in banking practice (Alexander, 2008a). The advantage of historical scenarios is that they 

consist of credible assumptions (i.e., events that have actually occurred in the past). In 

contrast, hypothetical scenarios allow us to make our own assumptions about the future based 

on both current market conditions and the specifics of our portfolio. 

 

The real-world optimization problems in finance usually include multiple conflicting 

objectives, non-differentiable objective functions, large and non-convex solution spaces, 

complex constraints etc. which are not solvable using traditional analytical techniques. 

Recently, metaheuristics, such as multi-objective evolutionary algorithms (MOEAs) have 

become very popular in solving complex portfolio optimization problems (e.g. see Branke et 

al., 2009).
1
 MOEAs have the ability to generate the entire Pareto-optimal front in a single run. 

However, they require numerous solution evaluations. An important characteristic of MOEAs 

is that the evaluations of solutions within a single generation are independent and therefore 

suitable for parallel execution. Ivanovic et al. (2015) propose a parallel framework for 

optimization based on a genetic algorithm (WoBinGO). To solve multi-objective problems, 

those authors employ NSGA-II, showing that their framework provides a better execution time 

of two orders of magnitude for solving computationally extensive problems than serial 

execution.  

                                                 

 

1
 A detailed overview of MOEA applications in finance can be found in Schlottmann and Seese (2004), Tapia 

and Coello (2007), Metaxiotis and Liagkouras (2012) and Ponsich et al. (2013). 
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The remainder of this paper proceeds as follows. Section 2 presents the univariate VaR model. 

The portfolio optimization problem is formally introduced in Section 3. In Section 4, we 

discuss the optimization methodology. In Section 5, we present data and sample 

characteristics. Section 6 reports on empirical results and analyses the impact of various stress 

scenarios and robustness checks. We conclude the paper in Section 7. 

 

2. VaR model 

Based on the empirical characteristics, financial asset returns are often presented as a function 

of first two conditional moments of distribution 𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡, where zt is the innovation 

term of the process assumed to be independently and identically distributed. In estimating 

VaR, we assume that the conditional mean of daily returns µt is dominated by the conditional 

volatility of returns σt (𝜇𝑡 ≪ 𝜎𝑡). This implies that daily portfolio returns can be approximated 

as 𝑟𝑡 ≈ 𝜎𝑡𝑧𝑡 (see Alexander, 2008a; Christofferson, 2012; Pritsker, 2006). In addition, we 

assume that innovations zt follow a standardized Student’s t distribution with conditional 

variance following the most popular univariate GARCH (1, 1) model (see Bollerslev, 1986):  

 
1

2 2 2

t ttr   

    (2) 

 

Here, θ, β >0 and θ+β<1. The Student’s t distribution can explain heavy-tailed distributions of 

various degrees (see Christoffersen, 2012; Huisman et al., 1998) thus allowing us as to 

account for conditional nonnormality in portfolio returns. The GARCH model efficiently 

captures the volatility clustering that is often present in empirical returns.
2
 To estimate 

GARCH VaR for the portfolio under consideration, we first fit the univariate GARCH (1, 1) 

model on a time series of 1,000 daily portfolio returns (see Equation (2)). Next, we multiply 

the α-quantile of the fitted standardized return distribution by the current 1-day-ahead 

conditional volatility estimate. Our 1-day-ahead VaR estimate is calculated using the 

following formula: 

  
1/2

2 2 1

1 ( )
tt tVaR r t d
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2
 For more on the superiority of the GARCH model for VaR estimation, see Alexander (2008a), Alexander and 

Sheedy (2008), Berkowitz and O’Brien (2002), Hull and White (1998), and Pritsker (2006), among others.  
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Here, d is the number of degrees of freedom of the estimated Student’s t distribution for the 

given portfolio, and tα
-1

(d) is the α-quantile of the standardized Student’s t distribution with d 

degrees of freedom. Note that in the univariate GARCH VaR model, the distribution of each 

portfolio’s returns has its own number of degrees of freedom. The number of degrees of 

freedom is estimated jointly with the corresponding GARCH (1, 1) parameters. 

 

3. Actual portfolio Mean-CR optimization problem  

A bi-objective portfolio optimization problem typically aims to minimize portfolio risk and 

maximize expected portfolio return. The optimization is subject to constraints that define a set 

of feasible portfolios. In this paper, we minimize CR (given by Equation (1)) and maximize 

the expected return on the portfolio. Specifically, we are attempting to solve the following 

problem: 
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Here, T denotes the optimization date; CRT+1 are the capital requirements for market risk, 

calculated at day T, to be held on day T+1 (Equation (1)); E(r) is the expected return on 

portfolio at day T, defined as the sample mean portfolio return over the observed time horizon 

of 1,000 days; and wT is the vector of portfolio weights wi,T at day T. Decision variables are 

represented by vector wT. Note that the portfolio of assets is typically defined by weights 

because such a representation is independent of budget level. The first constraint (Equation 

(6)) ensures that weights sum up to 1. Expression (7) ensures the non-negativity of each 

investment consistent with the absence of short sales.  

When estimating CR, we follow the APF approach introduced in Rankovic et al. (2016). Let 

ni denote holdings of asset i at date T. We can express ni via corresponding portfolio weights 

wi,T: 
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Here Vp,T and Pi,T are the dollar portfolio value and the price of asset i at time T, respectively. 

To obtain returns on the actual portfolio, we hold fixed asset holdings ni over time. Therefore, 

the return on the actual portfolio at time 𝑡 ≤ 𝑇 is given by the following expression: 
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Substituting expression (8) into (9), return on the actual portfolio at time t can be expressed in 

terms of portfolio weights at time T: 
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 (10) 

 

Equations (8) – (10) imply that in the APF approach portfolio weights change over time while 

holdings remain fixed. For a given actual portfolio (i.e., for a given vector wT), the time series 

of portfolio returns аrе obtained using Equation (10), whereas VaR and SVaR estimations are 

calculated using Equation (3). In the case of Regulatory VaR, in Equation (10) we use realized 

market prices during the backtesting period. In the case of Regulatory Stressed VaR, we use 

the market prices under four alternative stress scenarios. We discuss specification of the 

alternative stress scenarios used in the empirical analysis in Section 6.2. 

 

4. Mean-CR optimization based on evolutionary algorithm (EA) 

EAs start with a set of randomly generated candidate solutions, referred to as a population. In 

each of the iterations (generations), a set of new candidate solutions (offspring solutions) is 

generated by applying the evolutionary processes of: selection, crossover and mutation. As 

these procedures are repeated, their solutions evolve and improve in terms of the chosen 

objectives. To evaluate each candidate solution, we first generate a time series of returns on 

the actual portfolio and stressed time series of realized portfolio returns by applying Equation 

(10). We then calculate Regulatory VaR by performing the backtesting procedure on the time 

series of returns on the actual portfolio and determine the 1-day-ahead VaR, the last 60-day 

VaR average and penalty parameter k. Because we use the univariate GARCH (1, 1) model for 
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VaR estimation, the backtesting procedure for every single candidate portfolio requires an 

estimation of 250 sets of GARCH parameters. We used the ‘rugarch’ package (Ghalanos, 

2014) within the software R (R Core Team, 2014). GARCH model parameters are 

determined, using maximum likelihood (ML) estimation, with ‘ugarchfit’ method. Estimation 

of a single set of GARCH parameters is based on a time series of 1,000 portfolio returns. It is 

worth noting that using the long time series of portfolio returns increases numerical stability 

of ML estimation. For the 1-day-ahead estimation of conditional volatility, we used the 

‘ugarchforecast’ method.  

 

We use a rolling window of 1,000 returns for the backtesting period of 250 days (see Figure 

1). Here, T is the optimization date, whereas t refers to an arbitrary date within the backtesting 

period. Notably, the number of VaR violations is determined endogenously (within the 

backtesting procedure) as a part of the objective function evaluation.  

 

Figure 1. Regulatory VaR calculation 

 

Next, we calculate Regulatory Stressed VaR, which is based on the same penalty parameter k 

obtained in the estimation of Regulatory VaR. Thus, we need to calculate the SVaR average of 

the last 60 days. This requires the estimation of 60 additional sets of GARCH parameters. 

Here, we use a rolling window of 1,000 returns for a period of 60 days. The latest 250 returns 

of the sample ending at the optimization date T are stressed returns (See Figure 2). Here, t is 

an arbitrary date within the period of the last 60 days. In sum, to calculate CR for a single 

candidate portfolio we need 310 ML estimations, 250 estimations for Regulatory VaR and 60 

estimations for Regulatory Stressed VaR. 
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Figure 2. Regulatory Stressed VaR calculation 

 

NSGA-II is executed within WoBinGO parallel framework on a cluster of 100 dedicated 

processors. In the preparatory phase, the main WoBinGO component (master) generates a data 

file (timeSeries.csv) with a time series of assets’ prices, a data file (stressedTimeSeries.csv) 

with a stressed time series of assets’ prices and an R script file (Script.R) containing the 

sequence of commands for CR calculation. The files are then automatically uploaded to a file 

system shared among all cluster nodes.  

 

In the execution phase, the master executes the main evolutionary loop (i.e., the loop over 

generations). For each individual solution within a generation, WoBinGO generates a file with 

portfolio weights (weights.csv) and uploads it to the first available processor. Next, it invokes 

R, which executes Script.R created in the preparatory phase. During the execution of the script 

file, R uses the data file timeSeries.csv, the data file stressedTimeSeries.csv and the solution 

portfolio weights file weights.csv, generating the time series of returns and stressed time series 

of returns on the actual portfolio (applying Equation (8)). The CR is, then, calculated applying 

Equation (1), and the result (CR and Mean) is returned back to the main evolutionary loop and 

assigned to the corresponding solution. When all solutions from a single generation are 

evaluated, the master proceeds with the evolutionary algorithm. 

 

The implementation of NSGA-II requires settings for the solution representation, the 

population size, the crossover and mutation probabilities and the termination condition. 

Driven by the considered optimization problem, we define solution as a non-negative real-

valued vector of portfolio weights. The population size is set to 100. 

 

To breed the offspring population, a uniform crossover operator is employed. Portfolios from 

the current population are randomly selected and recombined with a predefined crossover 
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probability that equals 1. The recombination implies that every allele (i.e., individual asset 

weight) is exchanged between the pair of parent solutions with a certain probability, which is 

known as the swapping probability (see Sastry et al., 2005). In accordance with the previous 

literature, we set the swapping probability to 0.5. 

 

For the mutation process, we apply a uniform mutation operator. The operator implies that 

each allele is selected with a predefined mutation probability and replaced with a realization 

of a random variable, which is uniformly distributed in the range defined by the lower and 

upper domain bounds. We set the mutation probability to 0.05. The selected crossover and 

mutation operators satisfy the constraint defined by Equation (7) for each offspring. However, 

these operators do not ensure satisfaction of the budget constraint (Equation (6)). Thus, we 

normalize each of the offspring solutions. We do that in the standard way by dividing each 

weight by sum of all weights. 

 

To reduce the execution time, we introduce a termination condition based on hypervolume 

measure (see Zitzler et al., 2003). The hypervolume quantifies the volume of the objective 

solution space dominated by an approximation set. For optimization problems with two 

objectives, it quantifies the area of the objective space dominated by the approximation set. 

Here, the area is bounded by a predefined reference point defined by the minimum return and 

maximum CR achieved in the current generation. Therefore, the termination condition is 

defined in terms of the relative increase of the hypervolume.  If the relative increase of the 

hypervolume is not greater than 5×10
-4

 in 10 successive generations, the algorithm stops. The 

maximum number of generations is set to 100.  

 

5. Data and sample characteristics  

For the sake of easier comparison, we use the same data sample as in Ranković et al. (2016). 

Specifically, we use 40 constituent stocks of the S&P 100 with the highest market 

capitalization (as of September 6, 2013) and with daily price observations available from 

January 2007. To determine the maximum and minimum volatility dates, the 1-day-ahead 

daily volatility of the S&P 100 is estimated using the rolling estimation period from January 

4, 2012 to September 6, 2013. Volatilities are estimated using the GARCH (1, 1) model. 

Standardized returns are assumed to have a standardized Student’s t distribution. GARCH 

volatility estimations of the S&P 100 index are based on the rolling window of 1,000 daily 
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returns. Specifically, a maximum volatility of 20.5% in annual terms is found on June 29, 

2012 whereas a minimum volatility of 9.3% is determined on July 31, 2013. We use these 

dates to create two samples of time series with 1,251 daily prices. One thousand, two hundred 

and fifty-one prices give us 1,250 returns (1,000 returns for GARCH parameters estimation 

and 250 returns for backtesting). One sample ends on the maximum volatility date (we refer 

to this sample as the high-volatility sample), whereas the other ends on the minimum 

volatility date (we refer to this sample as the low-volatility sample). 

 

6. Results 

We perform two sets of empirical experiments. First, we apply the proposed NSGA-II 

algorithm to construct two benchmark solution sets based on simpler optimization problems: 

the Mean-VaR and Mean-Regulatory VaR Pareto-optimal sets of portfolios. We present these 

two sets of solutions in the Mean-Regulatory VaR coordinates. When performing the Mean-

Regulatory VaR optimization, we use only the first part of Equation (1) and therefore do not 

address stressed time series. In addition, we use the Mean-VaR Pareto-optimal set as the 

initial population. This reduces (to an extent) the computational complexity but still requires 

parallel computing (note that the APF Mean-VaR optimization can easily be performed on a 

single processor). For these two benchmark sets, we then calculate the corresponding CR 

using the Basel 2.5 formula (Equation (1)), utilizing four proposed stress scenarios. We adopt 

these values as benchmarks for the Mean-CR optimized portfolios. Finally, we generate 

Mean-CR Pareto-optimal fronts and compare the Mean-VaR, Mean-Regulatory VaR and 

Mean-CR Pareto-optimal sets in the Mean-CR coordinates for every stress scenario.  

6.1. Basel II capital requirements: Mean-Regulatory VaR optimization 

In this subsection, we present the results of the Mean-Regulatory VaR optimization and 

compare them, in the Mean-Regulatory VaR plane, with our benchmark Mean–VaR Pareto-

optimal sets for the low- (Figure 3) and high- (Figure 4) volatility samples.
3
  

                                                 

 

3
 We annualize expected return assuming 252 days per annum. 
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Figure 3. Mean-Regulatory VaR performance of optimized portfolios for the low-volatility sample 

 

Figure 4 Mean-Regulatory VaR performance of optimized portfolios for the high-volatility sample 

Differences in the two Pareto-optimal sets are more evident in the high-volatility sample 

(Figure 4), particularly for portfolios with lower expected returns, which are normally more 

diversified portfolios. It is worth recalling here that the cardinality of optimal portfolios 

always increases with a decrease in the expected return. Thus, portfolios with very high 

expected returns consist of only a few assets. By construction, the portfolio with the highest 

return consists of a single asset. 

 

In Table 2, we present the number of VaR violations for Mean-VaR and Mean-Regulatory 

VaR optimized portfolios. Mean-Regulatory VaR optimization provides better trade-offs than 
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Mean-VaR optimization. Notably, the algorithm finds it optimal to always keep the number of 

violations within the no-penalty zone. In contrast, in the high-volatility regime, twenty (out of 

one hundred) Mean-VaR optimized portfolios lead to more than four violations. The 

maximum number of violations was seven. Thus, the lowest possible VaR estimations do not 

necessarily lead to the lowest possible Regulatory VaR because of the penalties associated 

with the number of VaR violations. 

Table 2. Number of violations – Basel II  
Sample Optimization criterion Number of violations 

  Mean Maximum Minimum More than 4 

Low volatility 
VaR 1.03 2 0 0 

Regulatory VaR 1.54 4 0 0 

High volatility 
VaR 3.26 7 2 20 

Regulatory VaR 2.93 4 2 0 

 

As expected, the average number of violations for both the Mean-VaR and the Mean-

Regulatory VaR optimized portfolios is significantly higher in the high-volatility regime. We 

conclude that increased optimization complexity, implied by moving from Mean-VaR to 

Mean-Regulatory VaR is generally warranted. 

6.2. Basel 2.5 capital requirements (CR) in four stress scenarios 

Now we address the central issue of this paper, that is, how to minimize capital charge CR 

(see Equation 1) while maximizing the expected portfolio returns. In doing so, we construct a 

new type of Pareto-optimal front. This is an important practical issue for all institutions that 

follow Basel 2.5 rules. With the addition of the Regulatory Stressed VaR term, the overall 

level of the required regulatory capital charge has been substantially increased with respect to 

the level determined by the original Basel II regulation. In addition, different stress scenarios 

could have different impacts on the optimal Mean-CR trade-off. When performing the Mean-

CR optimization, we use the Mean-Regulatory VaR Pareto-optimal set as the initial 

population. 

We solve the Mean-CR optimization problem and compare the results with the Mean-

Regulatory VaR and Mean-VaR Pareto-optimal sets in the Mean-CR plane. This gives us an 

idea of how close we can get to the Mean-CR Pareto-optimal front when utilizing simpler 

Mean-VaR and Mean-Regulatory VaR optimization procedures. 

When calculating the Regulatory Stressed VaR, we apply one historical stress test and three 

hypothetical tests. Following the regulation, the last 250 prices of the original time series of 
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asset prices must be replaced by stressed prices. Thus, for each stress test we generate stressed 

time series of asset prices so that their last 250 returns correspond to a chosen stress scenario. 

The rest of the time series of prices remains unchanged. Next, we utilize Equation (10) to 

calculate the actual portfolio returns corresponding to such a stressed price series. The results 

for all stressed scenarios are presented for both the low- and high-volatility samples. 

To perform a historical stress test, we begin by calculating the moving standard deviation of 

returns on the S&P100 index (used here as a proxy for the market portfolio) for 60-day time 

intervals for the period between January 16, 2008 and January 4, 2010. We use 60-day time 

intervals for the volatility estimation because Regulatory Stressed VaR is based on average 

VaR for a 60-day period. We find that the maximum volatility of 4.55% is recorded for the 

60-day period that ended on December 8, 2008. For this reason, to obtain the stressed time 

series, we replace the original asset prices for the last 250 days with the prices implied by 

historical returns for the period December 12, 2007 to December 8, 2008.  

In addition, we consider three hypothetical stress scenarios consistent with the three scenarios 

examined in Santos et al. (2012). Under the first scenario (HSS1), we apply a uniform haircut 

of 20% to the last 250 asset returns. For each portfolio asset i, the stressed return is defined as 

follows: 𝑟𝑖,𝑡
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 𝑟𝑖,𝑡 − 0.2𝑀𝑒𝑎𝑛(𝑟𝑖), where t=T-249, T-248,…,T. Here, 𝑟𝑖,𝑡

𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 is a 

stressed return of asset i at time t, ri,t is the original return of asset i at time t and Mean (ri) is 

the mean of the last 250 returns of asset i. We generate stressed time series of assets’ prices by 

adjusting the original time series. Formally, 𝑃𝑖,𝑡
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 𝑃𝑖,𝑡−1

𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑(1 + 𝑟𝑖,𝑡
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑), t=T-249, T-

248,…,T and 𝑃𝑖,𝑇−250
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 𝑃𝑖,𝑇−250. Here, Pi,t and 𝑃𝑖,𝑡

𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑  are the original and stressed prices 

of asset i at time t, respectively.  

Under the second scenario (HSS2), we start with the stressed returns obtained under HSS1 and 

double their volatility. Note that a covariance matrix of asset returns V can be decomposed as 

V=DCD. Here, D is the diagonal matrix of the standard deviations of asset returns and C is 

the corresponding correlation matrix. We construct D
stressed

, a diagonal matrix at date T, by 

placing stressed volatilities σ𝑖,𝑇
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 2σ𝑖,𝑇 on the diagonal. Here σi,T is the sample standard 

deviation of the i-th asset calculated using the last 250 returns. The stressed covariance matrix 

is V
stressed

=D
stressed

CD
stressed

. To obtain stressed returns for n assets from the opportunity set we 

employ Cholesky matrix decomposition. We decompose both the original and stressed 

covariance matrices as follows: V=QQ′ and V
stressed

=Q
stressed 

(Q
stressed

)′, where Q and Q
stressed

 

are lower triangular matrices. If R is the returns matrix of dimensions 250×n (in this matrix 
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columns represent time series of n assets entering the opportunity set), then the matrix of 

stress-adjusted historical returns R
stressed

 is obtained as R
stressed

=R(Q
stressed

Q
-1

)′ (See 

Alexander, 2008b). Stressed time series of asset prices are obtained from matrix R
stressed

 by 

adjusting the original time series of prices in the same fashion as under HSS1. 

In the third scenario (HSS3), we repeat the exercise from the previous scenario. In addition, 

we stress the correlation matrix so that 𝜌𝑖,𝑗
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 𝑚𝑖𝑛(2𝜌𝑖,𝑗, 0.95), i≠j. Here, ρij and 

𝜌𝑖,𝑗
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑are the original and stressed sample correlation coefficients between assets i and j, 

calculated using the last 250 returns. The stressed covariance matrix is now 

V
stressed

=D
stressed

C
stressed

D
stressed

. Here, D
stressed 

is defined as in HSS2. We then generate the 

matrix of stressed historical returns R
stressed

 and the corresponding stressed asset prices 

following the same procedure as in HSS2. In modifying the correlations, we need to ensure 

positive semi-definiteness of the stressed covariance matrix. If the obtained stressed 

covariance matrix is not positive semi-definite, we apply the algorithm for finding the nearest 

positive semi-definite covariance matrix based on the Frobenius norm (see Higham, 2002). To 

implement the algorithm we used the ‘nearPD’ method from ‘Matrix’ package in software R. 

6.2.1. Historical stress scenario 

Here we present the results of Mean-CR optimization for the historical stress scenario. For 

comparison, we also calculate CR for the Mean-VaR and Mean-Regulatory VaR optimized 

portfolios under the historical stress scenario. Mean-CR optimization leads to particularly 

large improvements in low-volatility sample vis-à-vis the benchmarks (Figure 5). In contrast, 

improvement vis-à-vis Mean–Regulatory VaR optimization is less pronounced in the high-

volatility sample (Figure 6).  
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Figure 5. Mean-CR performance for historical stress scenario: low-volatility sample 

 

Figure 6. Mean-CR performance for historical stress scenario: high-volatility sample 

 

Table 3 presents the number of VaR violations in the low- and high-volatility samples. Mean-

CR optimization keeps the number of violations of optimal portfolios within the no-penalty 

zone. Consistent with the benchmarks, the average number of violations is higher in the high-

volatility sample.  
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Table 3. Number of violations: Historical stress scenario 

Sample 
Optimization 

criterion 
Number of violations 

  Mean Maximum Minimum More than 4 

Low 

volatility 

VaR 1.03 2 0 0 

Regulatory 

VaR 
1.54 4 

0 0 

CR 1.92 3 0 0 

High 

volatility 

VaR 3.26 7 2 20 

Regulatory 

VaR 
2.93 4 2 0 

CR 3.03 4 2 0 

 

Mean-VaR optimization, although much simpler, performs remarkably well in the case of 

larger returns, especially for the high-volatility sample (see Figure 6). However, Mean-VaR 

optimization does not lead to the near optimal Mean-CR trade-offs for the entire Pareto front.  

6.2.2. Hypothetical stress scenarios 

Here, we present the results of Mean-CR optimization for the three hypothetical stress 

scenarios. The results presented in Figures 7 and 8 suggest that, under HSS1, Mean-CR 

optimization does not improve Mean-CR trade-offs compared to the Mean–Regulatory VaR 

optimal set. In that situation additional computational complexity is likely not warranted. This 

conclusion is supported by the results for the number of VaR violations in the low- and high-

volatility samples for the three scenarios (see Table 4). The two models exhibited identical 

minimum and maximum numbers of violations for the two optimization dates and very 

similar average numbers of violations. Unsurprisingly, the Mean-VaR optimization solutions 

perform worse, particularly in the high-volatility sample. 

Table 4. Number of violations: Hypothetical stress scenario scenarios HSS1-HSS3 

Sample Optimization criterion Number of violations 

  Mean Maximum Minimum More than 4 

Low volatility 

VaR 1.03 2 0 0 

Regulatory VaR 1.54 4 0 0 

CR-HSS1 1.48 4 0 0 

CR-HSS2 1.48 4 0 0 

CR-HSS3 1.31 2 0 0 

High volatility 

VaR 3.26 7 2 20 

Regulatory VaR 2.93 4 2 0 

CR-HSS1 2.98 4 2 0 

CR-HSS2 2.95 4 2 0 

CR-HSS3 2.88 4 2 0 
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Similarly, we observe no significant differences between the Mean-Regulatory VaR and 

Mean-CR optimized portfolios (Figures 9 and 10) when HSS2 is applied. Here, the Mean-VaR 

benchmark lags behind even more significantly, particularly for the high-volatility sample. 

In HSS3, the Mean-CR optimization provides a significant improvement with respect to the 

Mean–Regulatory VaR benchmark, particularly for the low-volatility sample (Figures 11 and 

12). In that case, the impact of the HSS3 stress scenario is qualitatively similar to the case of 

the historical stress scenario. In contrast to the historical scenario, however, an improvement, 

albeit smaller, is now recorded in the high-volatility sample.  

Note that for the historical and all three hypothetical stress scenarios and in both volatility 

samples, Mean-CR optimization keeps the number of violations within the no-penalty zone 

(i.e., less than or equal to 4). 

 

Figure 7. Mean-CR performance for HSS1 stress scenario: low-volatility sample 
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Figure 8. Mean-CR performance for HSS1 stress scenario: high-volatility sample 

 

Figure 9. Mean-CR performance for HSS2 stress scenario: low-volatility sample 
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Figure 10. Mean-CR performance for HSS2 stress scenario: high-volatility sample 

 

Figure 11. Mean-CR performance for HSS3 stress scenario: low-volatility sample 

 

Figure 12. Mean-CR performance for HSS3 stress scenario: high-volatility sample 

 

6.3. Further analysis and robustness checks 

In this subsection, we perform further analyses and robustness checks. Specifically, we: i) 

examine the relationship between the average change in correlation (imposed by stress tests) 

and corresponding differences in the Mean-CR trade-offs; ii) examine  cardinality of the 

Pareto-optimal portfolios; and iii) repeat our Mean-CR optimization  using an alternative 

opportunity set. 
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6.3.1. Mean-Regulatory VaR vs. Mean-CR optimization 

To quantify differences in correlation matrices between the original and stressed returns, we 

utilize the average (mean) Correlation difference, calculated using the last 250 returns as 

follows:  

 
,

,

1

stressed

i j

i j

Correlation difference Abs




 
   

 

 (11) 

where 𝜌𝑖,𝑗
𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 and 𝜌𝑖,𝑗 denote the stressed and the original correlations between assets i and 

j, 𝑖 ≠ 𝑗, respectively. We also quantify the differences between the Mean-CR and Mean-

Regulatory VaR optimal portfolios in terms of both CR and returns. First, we determine 

portfolios in the Mean-Regulatory VaR solution set that are weakly dominated by at least one 

portfolio in the Mean-CR Pareto-optimal front. We postulate that only those weakly 

dominated Mean-Regulatory VaR portfolios are improved by Mean-CR optimization. For the 

weakly dominated portfolios, we determine the closest dominant portfolio in the Mean-CR 

Pareto-optimal front in terms of the Euclidean distance. In doing so, we consider that CR and 

returns are not of the same order of magnitude. Thus, before calculating the Euclidian 

distance between any two portfolios, we divide each of the portfolio’s objective values by its 

corresponding maximum value. We then calculate the CR and return differences between each 

weakly dominated Mean-Regulatory VaR portfolio and its closest dominant portfolio on the 

Mean-CR Pareto-optimal front. Correlation differences, CR improvements, return 

improvements and number of improved portfolios in different stress scenarios are presented in 

Table 5.  

Table 5. Correlation differences, CR improvements, return improvements and number of improved portfolios 

 
High Volatility Low Volatility 

 Correlation 

differences 
(%) 

CR  

Improvement 
(%) 

Return 

improvements 
(%) 

N Correlation 

differences 
(%) 

CR 

improvements 
(%) 

Return 

improvements 
(%) 

N 

Historical 

Stress 
18.69 1.68 0.28 50 95.20 3.98 0.76 86 

HSS1 0.00 0.32 0.13 18 0.00 0.14 0.12 21 

HSS2 0.00 0.11 0.24 47 0.00 0.14 0.12 19 

HSS3 52.26 6.19 1.06 76 105.04 6.81 1.72 65 

 

The largest differences between the correlation matrices of the original and stressed returns 

are observed for historical and HSS3 scenarios, particularly in the low-volatility sample. It is 
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precisely in these two scenarios that the Mean-CR optimization significantly outperforms the 

Mean-Regulatory VaR benchmark. 

Consistent with the results in Section 7.2, the greatest improvement in CR and returns are 

achieved for the historical and HSS3 stress scenarios. Improvements are more pronounced in 

the low-volatility sample than in the high-volatility sample. Note that the historical stress 

scenario is the same for both high- and low-volatility samples. However, in the low-volatility 

environment, the original correlations are smaller than in the high-volatility environment. This 

leads to greater differences between the original and stressed correlations and, consequently, 

to greater improvements in Mean-CR trade-offs. Under HSS3, correlations are doubled but 

capped at 0.95 independent of the volatility regime. In the low-volatility environment, where 

the original correlations are relatively small, this typically leads to doubling of the original 

correlations. In contrast, in the high-volatility environment, the original correlations are 

higher and thus the cap is reached much more often. As a result, the value of correlation 

differences under the HSS3 scenario in the high-volatility sample is roughly half the value 

reached in the low-volatility sample (52.26% versus 105.04%). However, it is also much 

higher than the value for the historical scenario in the high-volatility sample (18.69%) (see 

Table 5).  

 

For robustness checks, we also compared the Mean-CR and Mean-Regulatory VaR solutions 

subject to the four stress scenarios using the ε-indicator (Zitzler et al., 2003) and generational 

distance (GD) (see Van Veldhuizen and Lamont, 1998; Van Velduizen and Lamont, 2002). 

The results presented in the Appendix are consistent with the results presented in Table 5. 

6.3.2. Cardinality of portfolios 

In Figures 13 and 14 we present cardinality (the number of assets) for portfolios entering 

Mean-CR, Mean-Regulatory VaR and Mean-VaR Pareto-optimal sets in the high- and low-

volatility samples when the historical stress scenario is applied. Here, we consider only assets 

with weights greater than 2%.
4
  

                                                 

 

4
 For robustness checks, we also tried a 1% threshold. The results are consistent with the reported results for the 

higher threshold of 2%. 
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Figure 13. Portfolio cardinality for historical stress scenario: low-volatility sample 

 

Figure 14. Portfolio cardinality for historical stress scenario: high-volatility sample 

 

In Figures 15 and 16, we present the number of assets included in the Mean-CR, Mean-

Regulatory VaR and Mean-VaR Pareto-optimal set, in the high- and low-volatility samples 

when the HSS3 stress scenario is applied. 
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Figure 15. Portfolio cardinality for HSS3 stress scenario: low-volatility sample 

 

Figure 16. Portfolio cardinality for HSS3 stress scenario: high-volatility sample 

The results presented in Figures 13 to 16 suggest that portfolios with low returns (and low 

CR) contain a higher number of assets thus exhibiting higher diversification. The increase in 

returns (and therefore risk) results in a decrease in cardinality of Pareto-optimal portfolios (i.e. 

lower diversification). 

Importantly, Mean-CR optimization is associated with a significant decrease in cardinality in 

the low-volatility sample both for the historical and HSS3 stress scenarios, and for the HSS3 

stress scenario in the high-volatility sample. As stated earlier, these are the cases in which  

Mean-CR optimization outperforms Mean-Regulatory VaR benchmark the most. The greatest 

improvements with respect to that benchmark are therefore associated with a decrease in the 

cardinality of Mean-CR Pareto-optimal portfolios for comparable returns. Note that for the 

HSS1 and HSS2 stress scenarios, we detect neither a significant improvement in the Mean-CR 
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trade-offs nor a reduction in cardinality with respect to the benchmark Mean-Regulatory VaR 

optimization. These are stress scenarios for which correlations are not impacted. 

6.3.3. An alternative opportunity set 

We performed robustness checks using the opportunity set of Morgan Stanley Composite 

indices (MSCI) for 31 countries.
5
 To determine the maximum and minimum volatility dates, 

we apply the same approach as for the S&P100 sample. Specifically, for each day in the 

rolling estimation period of 421 days (from January 4, 2012 to September 6, 2013), we 

estimated the 1-day-ahead daily returns volatility of the MSCI World US dollar-denominated 

price index. This index serves as a market portfolio proxy in this case. A maximum volatility 

of 0.013682 (20.46% in annual terms) is determined on June 29, 2012, whereas a minimum 

volatility of 0.006662 (9.87% in annual terms) is determined on August 14, 2013. The 

unreported results are statistically and economically consistent with the results obtained for 

the S&P 100 stocks.6 

 

7. Conclusions 

We propose a novel method for Mean-CR portfolio optimization that accurately incorporates 

Basel 2.5 regulation for market risk capital requirements in the optimization procedure. In our 

approach, CR is calculated within the actual portfolio framework whereas the corresponding 

VaR estimation is based on the univariate GARCH VaR analytical model. We solve the 

optimization problem by employing the NSGA-II algorithm within WoBinGO, a parallel 

framework for genetic algorithm-based optimization. The method is applied to the 

opportunity set consisting of the 40 largest stocks in the S&P 100 index. Our findings are 

confirmed in unreported robustness tests on the investment universe consisting of the 31 

MSCI country indices. 

We compare the results of Mean-CR optimization with two simpler optimization approaches, 

namely Mean-VaR and Mean-Regulatory VaR. Our results provide several important insights 

for financial institutions and regulators. First, Mean-VaR optimized portfolios are a relatively 

                                                 

 

5
 The 31 market indices are US dollar-denominated price indices that include large and mid-cap securities from 

the following countries: Australia, Brazil, Canada, Chile, Colombia, the Czech Republic, Denmark, Hungary, 

India, Indonesia, Israel, Japan, Korea, Malaysia, Mexico, Morocco, New Zealand, Norway, Peru, the Philippines, 

Poland, Russia, Singapore, South Africa, Sweden, Switzerland, Taiwan, Thailand, Turkey, the United Kingdom 

and the United States. 
6
 The results are available from the authors upon request. 
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poor proxy for the optimal trade-off between portfolio returns and corresponding capital 

charges under both Basel II and Basel 2.5 regulatory frameworks. Second, unlike Mean-VaR 

optimal portfolios, Mean-Regulatory VaR optimization generates optimal portfolios that never 

lead to a non-zero penalty factor k. Furthermore, our optimization approach is successful in 

finding portfolios that keep the number of VaR violations within the no-penalty zone (in 

addition to portfolios which are Mean-Regulatory VaR-efficient) while reducing Regulatory 

Stressed VaR.  

For the stress tests that do not change correlations, adding the Regulatory Stressed VaR term 

to the optimization process does not substantially impact Mean-CR trade-offs. If financial 

institutions were to apply such tests, they could simplify the optimization procedure by 

effectively ignoring the stress term in the optimization problem and consequently, keeping 

their portfolios more diversified. In contrast, Mean-CR optimal portfolios tend to outperform 

Mean-Regulatory VaR counterparts when the stress test substantially impacts correlations. 

These improvements, measured by average CR and return differences, are related to a 

decrease in the cardinality of portfolios with comparable returns. This is particularly evident 

for portfolios with lower expected returns. These results are consistent with anecdotal 

evidence showing the reduced benefits of diversification in the aftermath of the recent 

financial crisis. Namely, if all banks aim to minimize their capital charge, they are likely to 

hold few assets in their portfolios, adversely impacting the liquidity of all other assets. 

Therefore, our study informs the ongoing debate about the implementation of a new 

regulatory framework (Basel III) scheduled for 2019. 
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Appendix  

A.1 ε-indicator 

The ε-indicator determines the minimum value by which a reference set must be multiplied so 

that every solution in the reference set becomes weakly dominated by at least one solution in 

the approximation set (see Zitzler et al., 2003). If the approximation set exactly matches the 

reference set, then the ε-indicator takes a value of one. In Table A1, the ε-indicator refers to 

the Mean-Regulatory VaR Pareto-optimal set presented in the Mean-CR space, whereas the 

Mean-CR Pareto-optimal front is used as the reference set.
 
Mean-Regulatory VaR optimal 

solutions that became dominated in Mean-CR solution space have been discarded. 

Table A1. ε-indicators and average correlation differences  

 
High Volatility Low Volatility 

 
ε  Correlation differences (%) ε Correlation differences (%) 

Historical 

Stress 
1.054 18.69 1.148 95.20 

HSS1 1.021 0.00 1.008 0.00 

HSS2 1.022 0.00 1.009 0.00 

HSS3 1.158 52.26 1.300 105.04 

 

A.2 Generational distance (GD) 

The Generational Distance (GD) proposed by Van Veldhuizen and Lamont (1998) and Van 

Veldhuizen and Lamont (2002) determines the average Euclidian distance between solutions 

that belong to the known Pareto-optimal front and solutions belonging to the true Pareto-

optimal front:  

 

1/2

2

1

n

i

i

d

GD
n



 
 
 


 (12) 

where di denotes Euclidian distance between i-th solution of the known Pareto-optimal front 

and the closest solution of the true Pareto-optimal solution and,  n denotes the number of 

solutions in the known Pareto-optimal front. Lower GD values suggest greater proximity 

between the known and true Pareto-optimal front. 

Here, for the known Pareto-optimal front, we adopt the Mean-Regulatory VaR Pareto-optimal 

set presented in the Mean-CR space, whereas for the true Pareto-optimal front, we use the 

Mean-CR Pareto-optimal front. Again, Mean-Regulatory VaR optimal solutions that became 
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dominated in Mean-CR solution space have been discarded. We normalize the portfolios’ CR 

and return values by dividing them by the corresponding maximum values. In Table A2, we 

present GD values and average correlation differences in alternative scenarios. 

 

Table A2. GD values and average correlation differences 

 
High Volatility Low Volatility 

 
GD Correlation differences (%) GD Correlation differences (%) 

Historical 

Stress 
9.38E-4 18.69 3.40E-3 95.20 

HSS1 4.82E-4 0.00 3.53E-4 0.00 

HSS2 6.54E-4 0.00 3.52E-4 0.00 

HSS3 5.35E-3 52.26 6.97E-3 105.04 
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