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Abstract: 

In this study the characterization of FeCo-2V alloys toroidal samples produced by 
PIM/MIM technology was presented. The feedstock for metal injection molding (MIM) was 
prepared by mixing starting FeCoV powder with a low viscosity binder. Green samples were 
subjected to solvent debinding and subsequent thermal debinding followed by sintering. 
Sintering was performed during 3.5 hours from 1370 oC to 1460 oC in hydrogen atmosphere 
in order to attain the appropriate mechanical and magnetic properties. 

Microstructure, hardness HV10 and magnetic hysteresis B(H) were investigated as a 
function of sintering temperature. Optimum combination of functional properties was 
observed after sintering at temperature of 1370 oC. In addition, magnetic properties were 
analyzed as frequency dependent and successfully simulated in operating frequency range 
from 5 Hz to 60 Hz.  
Keywords: Powder injection moulding technology; FeCoV alloy; Structural properties; 
Mechanical properties; Magnetic properties.  
 
 
 
1. Introduction 
 

Powder injection moulding (acronym PIM) is technology that can offer very efficient 
manufacturing of ceramic or metallic parts with complex geometries [1-4]. Materials that 
contain metal elements were produced by variation of PIM technology named metal injection 
molding (MIM). MIM as well as direct laser metal sintering (DLMS) process (where mixed 
metal powders are consolidated by laser in a single production step [5, 6]) are today very 
useful technologies for commercial production plenty of magnetic elements. Due to 
combinations of powders mixture, binders, molding techniques, debinding parameters and 
sintering temperature/time profiles, PIM technology is more suitable for magnetic materials 
industry as it enables easier production of complex cores compared to the classical routes [7-
9]. Mechanochemical processing of nanostructured Fe49Co49V2 alloy [10, 11] as well as 
different composite preparation [12-13] resulted in very specific magnetic properties. 

Silva et all [8] investigated equiatomic Fe50Co50 alloy produced by PIM without V 
addition and concluded that the elimination of vanadium can improve magnetic properties (an 
increase in relative magnetic permeability at f=0.05 Hz) and contribute to substantial decrease 
in sintering temperature (980 oC instead of common sintering temperature of 1330 oC). 
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Microstructure of the V added alloy exhibits smaller grain size with increased porosity as a 
main obstacles for magnetic domains movement resulting in the magnetic hardening. 
However, there is no data about mechanical characterization of the PIM samples without 
vanadium, as the FeCo alloys are very brittle [14]. The vanadium addition up to 2 % wt. 
improves strength and ductility. In order to successfully prepare functional material for 
applications it is necessary to perform both mechanical and magnetic characterization. 

Advanced soft magnetic materials should exhibit a high saturation magnetic induction 
BBS and relative magnetic permeability μr as well as low core losses and coercive force HC. 
High Curie temperature TC, corrosion resistance and good mechanical properties are also very 
important for some applications. Iron-cobalt based alloys exhibit unique combination of high 
BSB  and TC as well as high corrosion resistance [14-16]. The semi-hard magnetic alloy FeCo-
2V is widely used in electronics and automation and many of these parts are with complex 
shapes. Therefore, ferromagnetic parts for high temperature applications can be cost-
effectively produced as FeCoV alloys by PIM/MIM route.  
 
 
2. Experimental 
 

In this work the feedstock was prepared by mixing the starting powder with a Solvent 
system. The powder was originally prepared for the pressing technology. The feedstock was 
prepared from very fine powder and binder system that is easily removable by solvent and 
thermal debinding. 

The investigated samples were produced by a Battenfeld HM 600/130 hydraulic drive 
injection moulding machine. A green cylindrical component with a central hole was prepared 
in the following dimensions: 10 mm internal diameter, 18 mm external diameter and 28 mm 
length. The powder injection moulding parameters applied during preparation are given in 
Table I. 
 
Tab. I Metal injection moulding parameters. 
 

PIM parameter  
Injection temperature                    [OC] 150 
Tool temperature                           [OC] 35 
Back pressure                             [MPa] 6 
Flow rate                                   [cm3/s] 5 
Injection pressure                       [MPa] 90 
Holding pressure                        [MPa] 70 
Holding time                                    [s] 4 
Filling time                                       [s] 2 
Cooling time                                    [s] 40 

 
The injected green samples of toroidal shape were first subjected to solvent debinding 

and subsequent thermal debinding followed by sintering. The applied sintering procedure and 
atmosphere were taken from the classical procedure with pressed samples with a small 
modification of the initial stage of sintering to include thermal debinding. Secondary thermal 
debinding at optimized temperatures (up to 800 oC) and sintering in the temperature range 
1370 oC - 1460 oC were performed in a hydrogen atmosphere with a holding time of 3.5 h.  

After these thermal processing the obtained samples had internal diameter of 8.5 mm 
and external diameter of 16 mm. Samples about 7.5 mm high were cut from the centre section 
of the sintered piece, in order to achieve better measurement accuracy. Magnetic properties on 
toroidal core samples were measured at room temperature by hysteresis graph Brockhaus 
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Tester MPG 100 D for soft magnetic materials. The main properties such as remanent 
induction Br, coercive force Hc, saturation induction BBs, and relative magnetic permeability µr 
were determined from B-H loops. Maximum excitation was Hm=10 kA/m and frequency f = 
60 Hz. Intrinsic coercivity HcJ was measured by Foerster Koerzimat. 

X-ray diffraction patterns of the samples after sintering were obtained using a Philips 
PW 1050 diffractometer with λCuKα radiation (0.154 nm) and a step/time scan mode of 
0.05o/1s. Vickers hardness tests HV10 (F = 98,1 N) were performed on Reichert measurement 
equipment. Scaning electron microscopy SEM JSM-6390 LV JEOL was used for 
microstructural characterization of the investigated samples after sintering process.  
 
 
3. Results and discussion 
 

The XRD patterns of FeCo-2V alloy samples sintered from 1370 oC to 1460 oC in 
hydrogen atmosphere are given in Fig. 1. One can see clear evidence of the α-FeCo crystalline 
phase by main diffraction peak around 2θ = 45o that is found for all investigated samples. An 
increase of sintering temperature is also folowed by more intensive diffraction peaks that is 
especially evidenced on patterns 1.c and 1.d for samples sintered at 1430 oC and 1460 oC, 
respectively. 

 
 

Fig. 1. The XRD patterns of FeCo-2V alloy samples sintered at  
a) 1370 oC b) 1400 oC, c) 1430 oC and d) 1460 oC in hydrogen atmosphere. 

 
The SEM micrographs obtained from the surface of sintered samples are shown in 

Fig. 2. It can be seen that the powder particles were melted proportionaly to the sintering 
temperature in the range from 1370 oC to 1430 oC (Figs. 2.a, 2.b and 2.c).  
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Fig. 2. Microstructures of FeCo-2V alloy samples sintered at  
a) 1370 oC, b) 1400 oC, c) 1430 oC and d) 1460 oC in hydrogen atmosphere. 

 
The picture of the sample sintered at the highest temperature 1460 oC clearly shows that the 
particles were completely melted. This is in good correlation with XRD pattern in Fig 1d 
which exhibits the most intensive crystallization. 

Fig. 3 presents the results of the hardness HV10 measurements of the investigated 
sintered samples. The lowest hardness HV10 was observed for sample sintered at 1400 oC with 
value of 262. The substantial increase in sintering temperature is followed by constant 
increase in hardness, until to the value of 348 for sample sintered at 1460 oC.  

      
 

      
 

Fig. 3. Hardness HV10 of FeCo-2V alloy samples sintered at 
a) 1370 oC b) 1400 oC, c) 1430 oC and d) 1460 oC in hydrogen atmosphere. 
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In Fig.4 the mechanical hardness is plotted in correlation with intrinsic coercivity HcJ 
as a function of the sintering temperature. It is observed that the mechanical hardness does not 
coincide with the magnetic hardness, i.e. the material with the highest HV10 shows the lowest 
coercive force HcJ (about 18.4 Oe). This result can be explained as follows. 

Magnetic softness is associated with the easy movement of the Bloch walls, i.e. in the 
structure of the materials there are no plenty of magnetic obstacles that prevent easy 
movement of magnetic domain walls (“pinning” effect). However, for mechanical hardness 
the movement of dislocations, i.e. the prevention of this movement, is crucial [17]. That 
means, the elements in microstructure are highly efficient in blocking the movement of 
dislocations (associated with the increase in HV10), but not that of the Bloch walls (leading to 
the decrease in HcJ).  

 

 
Fig. 4. Hardness HV10 and intrinsic coercivity HcJ of FeCo-2V sintered samples as a function 

of the sintering temperature. 
 

Similar observation between magnetic and mechanical properties was observed with 
sintered Fe-Co-Mo/W precipitation hardened alloys and explained with the dislocation 
dimensions [18]. This result is excellent, as the application of this magnetic material is usually 
associated with hard mechanical exploitation conditions in magnetic devices like magnetic 
valves and some magnetic sensors.  

Finally, the results of the magnetic measurements are as follows. Fig. 5 presents the 
families of B(H) hysteresis loops for FeCo-2V alloy sample sintered at different temperatures 
for the most common exploitation frequency of 50 Hz. It can be noticed clear decrease in the 
value of magnetic induction  B10 (attained at the maximum excitation of Hm = 10 kA/m) with 
an increase of sintering temperature due to the harder rotation of magnetization vector inside 
the magnetic domains as a result of high crystal anisotropy [19]. XRD patterns in Fig. 1 
reveals more intensive crystallization with an increase of sintering temperature, and therefore 
one can expect the increase in crystal anisotropy. 
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Fig. 5. The families of B(H) hysteresis loops for FeCo-2V alloy samples sintered  
at different temperatures and at frequency of 50 Hz up to Hm = 10 kA/m. 

 

It is well known that an increase in frequency leads to an increase in power losses of 
magnetic materials [20, 21]. In that sense experiments with the decrease in frequency down to 
5 Hz were performed. The families of B(H) hysteresis loops for FeCo-2V alloy sample 
sintered at 1370 oC and 5 Hz were shown in Fig. 6a, representing the classical R-shape of 
hysteresis curve for major loop at maximum excitation of Hm = 10 kA/m. Similar experiments 
were performed for all investigated samples at frequencies of 5 Hz, 20 Hz and 50 Hz with the 
following analysis. Hysteresis loops obtained by increasing excitation were used for 
estimation dependence of relative permeability μr vs. magnetic field H. For the sample 
sintered at 1370 oC and frequency f = 5 Hz it can be observed that the maximum of about μr ≈ 
210 at excitation of 3 kA/m is followed by a constant decrease up to μr ≈ 110 at excitation of 
10 kA/m (see Fig. 6b). Operating frequency of 50 Hz almost halves the maximum of relative 
permeability to μr ≈ 130 and shift optimum excitation to the 6 kA/m. The constant increase in 
sintering temperature is followed by substantial decrease in relative permeability μr, until the 
maximum value of only about 65 was registered for the sample sintered at 1460 oC as it is 
shown in Fig. 6c.  

Nowadays it is necessary to simulate electronic circuits by computer software with 
option to model magnetic components prepared by variety of soft, semi-hard as well as hard 
magnetic materials. Programs should also have the capability to simulate frequency dependent 
hysteresis loops of magnetic materials due to very high operating frequencies in some 
applications [22]. The most widespread simulation computer software for electronic circuit 
analysis – PSPICE program uses the Jiles-Atherton model for ferromagnetic hysteresis [23]. 
This model successfully simulates effects of thermally dependent characteristics of magnetic 
cores [24]. However, it is approved that the Jiles-Atherton theory of anhysteretic and 
hysteretic magnetization didn’t give correct frequency dependent modelling [25]. Recently, 
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dynamic loss inclusion in the Jiles–Atherton hysteresis model using the field separation 
approach has been published [26]. 

 

 

   
 

Fig. 6. a) The families of B(H) hysteresis loops for FeCo-2V alloy sample sintered at 1370 oC 
and 5 Hz, and relative magnetic permeability µŗ vs. magnetic field H, b) for sample sintered at 

1370 oC for frequencies 5 Hz, 20 Hz and 50 Hz.; c) for samples sintered at different 
temperatures for the same frequency of 5 Hz. 

 
In order to model frequency dependent hysteresis loops correctly it is necessary to 

have real loops obtained by measurements performed on toroidal magnetic core of the 
investigated material. After modelling numerical data of particular real loops one can have 
analytical i.e. simulated curves that can be usable for synthesis and testing of electronic 
devices.  

Therefore, in this study mathematical modelling of the FeCo-2V measured hysteresis 
loops was done by LabVIEW program. Considering that the hysteresis loop has sigmoid 
shape it is convenient to use arctangent function for its modelling. A new mathematical model 
for representing ascending and descending branch of hysteresis curve was exploited [27]. Fig. 
7 shows measured and modeled families of B(H) hysteresis loops for the sample sintered at 
1370 oC obtained at frequency of 5 Hz.  
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Fig. 7. The families of B(H) hysteresis loops for FeCo-2V sample sintered at 1370 oC 

obtained at frequency of 5 Hz, measured (line) and modelled (dotted) curves. 
 

It is clear that all minor curves as well as major curve have excellent correlation between the 
measured and simulated waveforms. The simulation correctly follows hysteresis loops 
broadening due to the increase in operating frequency from 5 Hz to 60 Hz, as well as 
anomalous shapes of these dynamic loops (see Fig. 8). 

      
Fig. 8. The B(H) hysteresis loops broadening for FeCo-2V sample sintered at 1370 oC 

obtained at frequencies of 5 Hz, 10 Hz, 20 Hz, 40 Hz, 50 Hz and 60 Hz (Hm = 10 kA/m), 
measured (line) and modelled (dotted) curves. 

 
 
4. Conclusion 
 

In this study it was systematically characterized near-equiatomic FeCo-based alloy 
with addition of 2 wt.% vanadium produced by PIM/MIM technology. Only α-FeCo 
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crystalline phase is found for all investigated FeCo-2V alloy samples sintered from 1370 oC to 
1460 oC in hydrogen atmosphere. Powder particles sintered at the highest temperature 1460 
oC were completely melted. 

The magnetic hardness and mechanical hardness are in the opposite, i.e. the material 
with the highest Vickers hardness exhibits the lowest intrinsic coercive force, due to 
dislocation dimensions. Devices prepared from FeCo-2V alloy are usually exploited under 
extreme conditions and their functionality is associated with the unique combination of 
magnetic and mechanical properties. In that sense magnetic measurements were performed in 
the operating frequency range from 5 Hz to 60 Hz with observed maximum of permeability 
for sample sintered at 1370 oC (f = 5 Hz, Hex = 3 kA/m). New mathematical model for 
simulation of measured dynamic hysteresis loops was successfully applied by LabVIEW 
software package. 
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Садржај: У раду су испитивани торусни узорци легуре FeCo-2V добијени технологијом 
бризгања композита праха са растопљеним везивом. Бризгање смеше металних 
прахова са ниско вискозним полимерним везивом омогућава добијање магнетних 
језгара и у комплексним геометријским облицима. Полазни бризгани узорци су најпре 
третирани хемијским растварачем а затим и термички третирани ради 
одстрањивања везива. Високотемпературско синтеровање је спроведено у атмосфери 
водоника током 3.5 сата у распону температура од 1370 oC до 1460 oC. Испитивање 
еволуције микроструктуре, микротврдоће и магнетног хистерезиса у функцији 
температуре синтеровања показало је да најбољу комбинацију функционалних 
својстава поседује узорак синтерован на температури од 1370 oC. Применом новог 
математичког модела успешно су спроведене симулације кривих магнетног 
хистсрезиса испитиване у опсегу радних фреквенција од 5 Hz до 60 Hz. 
Кључне речи: Технологија бризгања композита праха са растопљеним везивом; легура 
FeCo-2V; микроструктура; механичка својства; магнетна својства. 
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