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Abstract. In all practical problems associated with the selection and assessment, almost always criteria
have different importance. The priorities of criteria are expressed by weighted coefficients. Every decision
maker has to establish criteria priority scale. This can be done directly - degrees of criteria importance
defined by judgment of experts, or indirectly - degrees of criteria importance calculated by alternatives
themselves. Many multi-criteria decision methods allow some kind of compensatory between criteria. The
low performance on an important criterion can be redeemed in overall aggregation by good performance
on few other less important criteria. In this paper, we present the method which provides that such an
important piece of information must be preserved: If an alternative does not satisfy a dominant criterion,
then its overall aggregation value is zero.

1. Introduction

During the previous decades, many multi-criteria decision methods and techniques have been proposed
and elaborated within the scientific disciplines, such as operations research, management science, computer
science and statistics [1, 2, 5, 7, 14, 17, 18, 23]. Nowadays, many of these methods have an extensive
software support. Multi-criteria decision analysis has been used in a wide variety of fields such as energy
management, environmental planning, public services, healthcare, transportation, logistics, marketing,
human resources management and finance [6, 9, 10, 12, 15, 16, 19–21, 24, 26, 27, 30, 31, 34, 35]. Multi-criteria
decision analysis approaches have been widely used by public entities, firms and organisations [25]. For
an overview of the available methods for solving multi-criteria decision problems we refer to Figueira et
al. [8], Hwang and Yoon [11], Radojičić and Žižović [22], Triantaphyllou [28] and Zeleny [32].

Although multi-criteria decision problems could be very different in context, they share the following
common features.

All criteria can be classified into two categories. Criteria that are to be maximized - the profit criteria
category, and criteria that are to be minimized - the cost criteria category. In a natural way, any criterion of
the second type can be transferred into a criterion of the first type.
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Almost always criteria have different importance. The priorities of criteria are expressed by weighted
coefficients in normalized form (sum of all weights is 1). So, every decision maker has to establish criteria
priority scale. This can be done directly - degrees of criteria importance defined by judgment of experts, or
indirectly - degrees of criteria importance calculated by alternatives themselves.

One of the most important steps in many multi-criteria methods is normalization. Namely, different
(quantitative) criteria can be expressed in different dimensions, i.e., in different measurement scales, and if
we apply normalization process, all of them will be transformed into the same scale (usually [0,1]). Several
normalization procedures are available in literature to eliminate computation problems caused by different
measurement units (for example, see [3, 13]).

The crucial problem arises when we need to express performance value of alternatives in terms of
qualitative criteria. This problem may become very difficult one (maybe even impossible). Every qual-
itative information need to be transformed into absolute quantitative value. The objectivity of this step
always depends on decision-maker, i.e., on his subjective interpretation of numbers, and thus, it is always
questionable. Can we notice low change in sensation? How many different qualitative objects can we dis-
tinguish? These questions are widely elaborated within psychological theories (see Milner, 1956) and some
well known multi-criteria methods (such as AHP-method) are based on these researches (see Saaty [24]
and Triantaphyllou [29]). All multi-criteria methods dealing with qualitative data information, eventually
express them by using quantitative scale.

Further, using appropriate mathematical calculus, each alternative is assessed and the final rank of
alternatives is obtained. Different multi-criteria methods are based on different utility functions used for
calculation of overall values of alternatives. Selection of the method always depends on the type of problem
that is to be solved, the knowledge and experience of the decision maker in the field of multi-criteria analysis,
as well as technology issues under consideration.

2. Preliminaries

Our focus will be on the typical multi-criteria decision problem. Let there are m alternatives A1,A2, . . . ,Am
to be assessed based on n criteria C1,C2, . . . ,Cn. A decision matrix is a m × n-matrix with each element ai j
being the j-th criteria performance value of the i-th alternative.

Table 1: Decision matrix
C1 C2 · · · Cn

A1 a11 a12 · · · a1n
A2 a21 a22 · · · a2n
...

...
...

...
Am am1 am2 · · · amn

Let w1,w2, . . . ,wn denote the weights assigned to criteria C1,C2, . . . ,Cn. Each w j reflects importance of
C j relative to the other criteria. The natural assumption is that the weights are normalized, i.e., they sum
up to 1:

w1 + w2 + · · · + wn = 1.

The criteria weights are set either in a direct or an indirect way. In the direct approach, weights are
given by the user, while in an indirect method, preference information is collected through a pair-wise
comparison of the previously selected alternatives. The outcome of the decision making process greatly
depends on the objectivity of criteria weights. For an overview on various weighting methods we refer to
[33].

In a multi-criteria value model, the overall value of alternative Ai is given by the utility function V(Ai)
which is the result of the aggregation of the value functions V j(Ai) assigned to each criterion C j, i.e.

V(Ai) = M(V1(Ai),V2(Ai), . . . ,Vn(Ai)).
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The most commonly used aggregation function is the weighted sum V(Ai) =
n∑

j=1
w j·V j(Ai) which is attractive

due to its low complexity, but other aggregation functions can also be applied (see Hwang and Yoon
[11]). For instance, very popular are non-additive approaches where aggregation function is not a linear
combination of partial preferences (such as Chouqet integral [4]).

Notice that in case that the decision matrix is normalized according to some normalization methods,
then the overall value of an alternative can be obtained by summing up its criteria performance values
multiplied with the corresponding criteria weights, i. e.

V(Ai) =

n∑
j=1

w j·ai j. (1)

Once the aggregation function V is defined, the alternatives are automatically rank ordered by the partial
order relation �A on the set of alternatives A = {A1,A2, . . . ,Am} defined by

Ap�AAq ⇔ V(Ap) > V(Aq), for all Ap,Aq ∈ A.

3. Dominant Criteria

Let C j be the criterion which is the most dominant for the solution of multi-criteria problem, meaning
that if its performance values of all alternatives are extremely low then problem should not be treated (it
has no solution), or obtained solution of the problem has weak significance.

3.1. Model 1
Let Ai be an alternative from starting set of alternatives A1,A2, . . . ,Am, and let w1,w2, . . . ,wn be the

weighted coefficients associated to criteria C1,C2, . . . ,Cn (they are given by judgement of decision maker or
calculated by some of multi-criteria procedures, for example AHP method).

If the alternative Ai satisfies the most dominant criterion C j with the degree ai j, then we put

W j j(Ai) = 1 − ai j + w jai j,

W jk(Ai) = wkai j, for all k = 1, 2, . . . ,n such that k , j.

In this way, each alternative Ai is associated with the set
{
W j1(Ai),W j2(Ai), . . . ,W jn(Ai)

}
of new weighted

coefficients which correspond to dominant criterion C j.

Figure 1: Graphical representation of weights by Model 1
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Theorem 3.1. For each alternative Ai, i = 1, 2, . . . ,m, the set of new weighted coefficients
{
W j1(Ai),W j2(Ai), . . . ,W jn(Ai)

}
is normalized and it sums up to 1, i.e.

n∑
k=1

W jk(Ai) = 1.

Proof. Let alternative Ai satisfies the most dominant criterion C j with the degree ai j. Then we have

n∑
k=1

W jk(Ai) = w1ai j + · · · + w j−1ai j +
(
1 − ai j + w jai j

)
+ w j+1ai j + · · · + wnai j =

= 1 − ai j + ai j

 n∑
k=1

wk

 = 1 − ai j + ai j = 1,

and thus every coefficient W jk(Ai) is normalized, i.e. W jk(Ai) ∈ [0, 1], and clearly they sum up to 1.

Theorem 3.2. For i1, i2 ∈ {1, 2, . . . ,m}, let the alternatives Ai1 and Ai2 be such that ai1 j < ai2 j and let C j be the most
dominant criterion. Then

W j j(Ai1 ) >W j j(Ai2 ) and W jk(Ai1) <W jk(Ai2), for k , j, k = 1, 2, . . . ,n.

Proof. If ai1 j < ai2 j, then holds

W j j(Ai1 ) = 1 − ai1 j + w jai1 j = 1 − ai1 j

(
1 − w j

)
> 1 − ai2 j

(
1 − w j

)
= 1 − ai2 j + w jai2 j = W j j(Ai2 ),

and for k , j, k = 1, 2, . . . ,n it holds that W jk(Ai1) = wkai1 j < wkai2 j = W jk(Ai2).

Theorem 3.3. Let C j be the most dominant criterion with weight w j < 1. Then, for each alternative Ai, i = 1, 2, . . . ,m,
such that ai j < 1 holds

W j j(Ai) > w j and W jk(Ai) < wk, for k , j, k = 1, 2, . . . ,n.

Proof. If ai j < 1, then

W j j(Ai) − w j = 1 − ai j + w jai j − w j =
(
1 − ai j

) (
1 − w j

)
.

Since ai j,w j ∈ [0, 1), we have that W j j(Ai) − w j > 0 and thus W j j(Ai) > w j. Also, if ai j < 1, than for k , j we
have W jk(Ai) = wkai j < wk.

By Theorems 3.2 and 3.3, we have that decreasing performance value of an alternative by the most
dominant criterion linearly increase the weight of that dominant criterion and proportionally decrease the
weights of other criteria.

Theorem 3.4. The following holds for an alternative Ai, i = 1, 2, . . . ,m and the most dominant criterion C j:

(i) If the alternative Ai completely satisfy the most dominant criterion C j, then

W jk(Ai) = wk, for all k = 1, 2, . . . ,n.

(ii) If the alternative Ai does not satisfy the most dominant criterion C j, then

W j j(Ai) = 1 and W jk(Ai) = 0, for all k , j, k = 1, 2, . . . ,n.
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Proof. (i) If the alternative Ai completely satisfies the most dominant criterion C j, i.e. ai j = 1, then by
definition of new weighted coefficients we have W j j(Ai) = 1−ai j+w jai j = w j and for k , j, W jk(Ai) = wkai j =wk.

(ii) If alternative Ai does not satisfy the most dominant criterion C j, then clearly ai j = 0. By definition of
new weighted coefficients we have W j j(Ai) = 1 − ai j + w jai j = 1 and W jk(Ai) = wkai j = 0, for k , j.

The aggregation function, defined by

Ṽ(Ai) =

n∑
k=1

W jk(Ai)·aik, (2)

has the following property.

Theorem 3.5. If an alternative Ai, for some i ∈ {1, 2, . . . ,m}, does not satisfy the most dominant criterion C j, then
the overall value of Ai is equal to zero, i.e.

Ṽ (Ai) = 0.

Proof. By Theorem 3.4, we have W j j(Ai) = 1 and W jk(Ai) = 0, for k , j, and thus

Ṽ(Ai) =

n∑
k=1

W jk(Ai)·aik =

n∑
k=1,k, j

W jk(Ai)·aik + W j j(Ai) · ai j = 0,

which completes proof of the theorem.

As a consequence of the previous observation, we have that non-dominant criteria have no influence
on alternative scoring in the case that this alternative does not satisfy the most dominant criterion.

3.2. Model 2
Here we will modify the procedure presented in Model 1 to obtain the following property: If perfor-

mance value of an alternative by the most dominant criterion is lower than a given value a, then all other
criteria are disregarded and overall value of that alternative is equal to zero.

Let C j be the most dominant criterion, and let a be a real number such that 0 < a < 1. If an alternative
Ai satisfies the most dominant criterion C j with the degree ai j < a, then we put

Q j j(Ai) = 1 and Q jk(Ai) = 0 for all k = 1, 2, . . . ,n such that k , j,

otherwise, if ai j > a, we put

Q j j(Ai) = 1 + (w j − 1)((ai j − a)/(1 − a)),
Q jk(Ai) = wk((ai j − a)/(1 − a)), for all k = 1, 2, . . . ,n such that k , j.
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Figure 2: Graphical representation of weights by Model 2

Theorem 3.6. The set of new weighted coefficients
{
Q j1(Ai),Q j2(Ai), . . . ,Q jn(Ai)

}
is normalized for each alternative

Ai, i = 1, 2, . . . ,m, and it sums up to 1, i.e.

n∑
k=1

Q jk(Ai) = 1.

Proof. Similar to the proof of Theorem 1.

Let the aggregation function be defined by

˜̃V(Ai) =

n∑
k=1

Q jk(Ai)·aik. (3)

Then, for ˜̃V, we can obtain the analogies of Theorems 2-5 if we replace W by Q and Ṽ by ˜̃V.

Theorem 3.7. Let 0 < a < 1 be the minimal suitable value of the most dominant criterion C j. If an alternative Ai,
i = 1, 2, . . . ,m, satisfies the criterion C j with the degree ai j < a, then the overall value of Ai is equal to zero, i.e.

˜̃V (Ai) = 0.

Proof. By analogue of Theorem 3.4, we have Q j j(Ai) = 1 and Q jk(Ai) = 0, for all k , j, k = 1, 2, . . . ,n, and

thus ˜̃V (Ai) = 0.

By the constructions, Model 1 and Model 2 have the following common property.

Theorem 3.8. The rank of alternatives from the set {A1,A2, . . . ,Am} remains the same in the case that the starting
set of alternatives is expanded by a set of new alternatives {B1,B2, . . . ,Bs}.

Proof. Let
[
ai j

]m,n

i=1, j=1
and

[
bkj

]s,n

k=1, j=1
be two normalized decision matrices and let

[
ci j

]m+s,n

i=1, j=1
be a decision

matrix such that, for all j = 1, 2, . . . ,n, holdsci j = ai j, for all i = 1, 2, . . . ,m,
ci j = bkj, for all i = m + k, k = 1, 2, . . . , s.
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Let A =
{
Ai = (ai j), i = 1, 2, . . . ,m

}
and C =

{
Ci = (ci j), i = 1, 2, . . . ,m + s

}
be two set of alternatives and let �A

denote the partial order on the set A induced by the function ṼA (respectively ˜̃VA), and let �C denote the

partial order relation on the expanded set C induced by the function ṼC (respectively ˜̃VC). If Ap and Aq are
two alternatives from the starting set of alternatives A, then ṼA(Ap) = ṼC(Ap), so Ap �A Aq if and only if
Ap �C Aq.

It is well known that most of the multi-criteria decision methods suffer from a structuring problem in
the sense that it is possible to obtain a reverse rank of alternatives by the introduction of new alternative
options. By Theorem 3.8, the multi-criteria decision method presented by models 1 and 2 preserve that rank
so that there are no possibilities of favoring or manipulating alternative ranking by taking new alternatives
into account.

Corollary 3.9. No alternative can be favored by adding new alternatives into multi-criteria model.

Proof. By Theorem 3, adding new alternatives to the multi-criteria model does not rearrange the rank of
previously introduced alternative choices, so no alternative can be favored.

Example 3.10. It can be noticed that many multi-criteria decision methods which are based on an additive
aggregation function allow some kind of compensation between criteria. The low performance of an
important criterion can be redeemed in the overall aggregation by the good performance of a few other less
important criteria which will be shown in this example.

Let two alternatives A1 and A2 evaluated by the bases on five criteria C1,C2, . . . ,C5 induce decision
matrix presented by Table 2. Clearly, for the alternatives A1 and A2, incomparability holds for all pair-wise
comparisons.

Table 2: Decision matrix of Example 3.10
C1 C2 C3 C4 C5

A1 0.40 0.60 0.50 0.60 0.50
A2 0.10 0.80 0.90 0.80 0.80

If C1 is the most dominant criterion with the weight w1 = 0.4 and C2,C3,C4 and C5 are less important
criteria associated with weights w2 = w3 = w4 = w5 = 0, 15, then using weighted sum as overall values of
A1 and A2 we obtain V(A1) = 0.49 and V(A2) = 0.55. Therefore, alternative A2 is preferred over alternative
A1, but alternative A2 barely meets the most dominant criterion C1, so the question arises whether obtained
order of alternatives is correct.

On the other hand, new weighted coefficients (according to Model 1) for the alternative A1 are W1(A1) =

0.76 and W2(A1) = W3(A1) = W4(A1) = W5(A1) = 0.06, and therefore Ṽ(A1) = 0.448. Similarly, new weighted
coefficients (according to Model 1) for the alternative A2 are W1(A2) = 0.94 and W2(A2) = W3(A2) = W4(A2) =

W5(A2) = 0.015, and therefore Ṽ(A2) = 0.145. Thus, the alternative A1 is preferred over the alternative A2.
If the minimal suitable value for the dominant criterion is a = 0.3, than according to Model 2 we have that˜̃V(A1) = 0.41 and ˜̃V(A1) = 0.1, so alternative A1 is preferred over the alternative A2.

Example 3.11. Here we will observe one hypothetical example to demonstrate how a small change in
alternative performance by dominant criterion result in changes of weighted coefficients and overall values.
We will consider ten alternatives A1,A2, . . . ,A10 evaluated by five criteria C1,C2, . . . ,C5. The degrees in which
alternatives satisfy criteria are presented in Table 3.
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Table 3: Decision matrix of the Example 3.11
C1 C2 C3 C4 C5

A1 1.0 0.8 0.6 0.7 0.5
A2 0.9 0.8 0.6 0.7 0.5
A3 0.8 0.8 0.6 0.7 0.5
A4 0.7 0.8 0.6 0.7 0.5
A5 0.6 0.8 0.6 0.7 0.5
A6 0.5 0.8 0.6 0.7 0.5
A7 0.4 0.8 0.6 0.7 0.5
A8 0.3 0.8 0.6 0.7 0.5
A9 0.2 0.8 0.6 0.7 0.5
A10 0.1 0.8 0.6 0.7 0.5

Let C1 be the most dominant criterion and let w1 = 0.40, w2 = w3 = 0.20, w4 = 0.15 and w5 = 0.05. Then
overall values calculated by aggregation functions (1) and (2) are given in Table 4. It can be noticed that
min{V(Ai), Ṽ(Ai)} = V(Ai), for i = 1, 2, 3, 4, and min{V(Ai), Ṽ(Ai)} = Ṽ(Ai), for i = 5, 6, . . . , 10.

In the case that the minimal suitable value for the dominant criterion C1 is a = 0.3, then by Model 2, we
obtain the overall values of aggregation function (3) which are presented in Table 4.

Table 4: Overall values of alternatives in Example 3.11
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

V(·) 0, 81 0, 77 0, 73 0, 69 0, 65 0, 61 0, 57 0, 53 0, 49 0, 45
Ṽ(·) 0, 81 0, 783 0, 744 0, 693 0, 63 0, 555 0, 468 0, 369 0, 2364 0, 135˜̃V(·) 0, 81 0, 789 0, 75 0, 694 0, 61 0, 531 0, 42 0, 3 0, 2 0, 1

4. Conclusion

In this paper we observed multi-criteria models in which one criterion dominates the others. We
presented two multi-criteria methods for identifying the most preferred alternative choice (or for ranking
the alternatives), which gives fruitful and more accurate information on the observed alternatives and
corresponding preference of the most dominant criterion.

Note that the weighted coefficients and the aggregation function discussed in this paper will be studied
from a more general point of view in our further research.
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Čačak, Serbia, 1998 (Monograph in Serbian).
[23] B. Roy, Multicriteria methodology for decision aiding, Dordecht: Kluwer Academic Publishers, 1996.
[24] T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill International, New York, NY, U.S.A., 1980.
[25] T. L. Saaty, Decision Making for Leaders; The Analytical Hierarchy Process for Decisions in a Complex World, Belmont, CA:

Wadsworth, 1982.
[26] T. L. Saaty, L. G. Vargas, Decision Making with the Analytic Network Process Economic, Political, Social and Technological

Applications with Benefits, Opportunities, Costs and Risks, Springer, USA, 2006.
[27] M. T. Tabucanon, Multiple Criteria Decision Making in Industry, Elsevier, Amsterdam, 1988.
[28] E. Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative Study, Kluwer Academic Publishers, Dordrecht,

2000.
[29] E. Triantaphyllou, F. A. Lootsma, P. M. Pardalos, and S. H. Mann, On the Evaluation and Application of Different Scales For

Quantifying Pairwise Comparisons in Fuzzy Sets, Multi-Criteria Decision Analysis 3 (1994), 1-23.
[30] O. S. Vaidya, S. Kumar, Analytic hierarchy process: An overview of applications, European Journal of Operational Research 169

(2006), 1-29.
[31] D. Von Winterfeldt, W. Edwards, Decision analysis and behavioral research, Cambridge, UK: Cambrigde University Press, 1986.
[32] M. Zeleny, Multiple Criteria Decision Making, McGrawHill, New York, 1982.
[33] N. H. Zardari, K. A. Sharif, M. Shirazi, Z. B. Yusop, Weighting Methods and their Effects on Multi-Criteria Decision Making

Model Outcomes in Water Resources Management, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2015.
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