
Weighted Moore–Penrose generalized matrix inverse: MySQL vs.
Cassandra database storage system

DANIJELA MILOŠEVIĆ1, SELVER PEPIĆ2, MUZAFER SARAČEVIĆ3,* and MILAN TASIĆ4

1Faculty of Technical Sciences Čačak, University of Kragujevac, 32000 Čačak, Serbia
2Information Technology in Engineering, The School of Mechanical Engineering of Applied Study,

37240 Trstenik, Serbia
3Department of Computer Science, University of Novi Pazar, 36300 Novi Pazar, Serbia
4Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia

e-mail: danijela.milosevic@ftn.kg.ac.rs; p_selver@yahoo.com; muzafers@uninp.edu.rs; milan1t@ptt.rs

MS received 4 November 2015; revised 10 March 2016; accepted 15 March 2016

Abstract. The research in this paper refers to two areas: programming and data storage (data base) for

computing the weighted Moore–Penrose inverse. The main aim of this paper analysis of the execution speed of

computing using PHP programming language and data store. The research shows that the speed of execution

gives considerable difference between the Procedural programming and Object Oriented PHP language, on the

middle layer in the three tier of the web architecture. Also, the research concerning the comparison of relation

database system, MySQL and NoSQL, key value store system, ApacheCassandra, on the database layer. The

CPU times are compared and discussed.

Keywords. Generalized inverse; weighted Moore–Penrose inverse; PHP programming; MySQL database;

NoSQL Cassandra database storage system.

1. Introduction

The main aim and motivation is to achieve improved results

concerning the speed of computing weighted Moore–Pen-

rose (MP) inverse, and in particular its storage. In our

previous paper [1] developed a client/server-based model

for computing the weighted Moore–Penrose inverse (MP

inverse) using the partitioning method as well as for storage

of generated results. The web application is developed in

the Procedural programming PHP and MySQL

environment.

The research in this paper shows that the speed of exe-

cution gives considerable difference between the Object-

oriented and Procedural programming PHP language for

computing the weighted Moore–Penrose inverse, on the

middle layer in the three tier of the web architecture. Also,

the research concerning the comparison of relation database

system, MySQL and key value store system, Cassandra, on

the database layer. In our article [2] we have stated the

conditions which characterize the weighted Moore–Penrose

inverse.

The Cassandra system was designed to run on cheap

commodity hardware and handle high write throughput

while not sacrificing read efficiency. Cassandra does not

support a full relational data model, but instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format. The Cas-

sandra system indexes all data based on primary key. The

data file on disk is divided into a sequence of blocks. Each

block contains at most 128 keys and is demarcated by a

block index. The block index captures the relative offset

of a key within the block and the size of its data. When an

in-memory data structure is dumped to disk a block index

is generated and their offsets are written out to disk as

indices.

A typical read operation always looks up for data first in

the in-memory data structure. If found the data is returned

to the application since the in-memory data structure con-

tains the latest data for each key. If it is not found then we

perform disk I/O against all the data files on disk in reverse

time order. This scenario with read operation in-memory

data structure we consider with PHP/MySQL in ALDF

approach. By applying Cassandra system we have all that at

one place in the most efficient way.

The Cassandra used development by some of the biggest

properties on the Web, including Facebook, Twitter, Cisco,

Rackspace, Digg, Cloudkick, Reddit, and more. The huge

difference between MySQL and Cassandra is in writes/

reads (R/W) time frames, and it will be discussed in

section 4.

SQL is the standard language used for query and analysis

of data in relational DBMS [3]. Unfortunately, SQL has no*For correspondence

837

Sādhanā Vol. 41, No. 8, August 2016, pp. 837–846 � Indian Academy of Sciences

DOI 10.1007/s12046-016-0523-6

vector and matrix computation capabilities that are essen-

tial in multidimensional (multivariate) statistics, machine

learning and data mining. The SQL constructions and the

SQL primitives for data mining are proposed in [4, 5], but

such constructions do not offer adequate and flexible matrix

manipulation capabilities. Implementation of certain vector

and matrix operators based on programming User-Defined

Functions (UDFs) are further studied in [6]. UDFs repre-

sent a C programming interface that allows the definition of

scalar and aggregate functions which can be used in SQL.

UDFs have several advantages and limitations. An UDF

allows fast evaluation of arithmetic expressions, memory

manipulation, using multidimensional arrays and exploiting

all C language control statements.

In this paper we presented UDF defined in [1] in object-

oriented approach. The object-oriented programming

(OOP) is a kind of programming added to php5 which

makes building complex, modular and reusable web

applications much easier. With the release of php5, PHP

programmers finally had the power to code. Like Java and

C#, PHP finally had a complete OOP infrastructure. PHP

provides the basics to support object-oriented program-

ming. Among other things, the OOP syntax in PHP allows

for programmer-defined classes with member variables and

member data and offers single inheritance, constructor

functions, object serialization, and functions for introspec-

tion. The OOP extension is usable, fairly mature, pretty

stable, and widely used. It provides an extra layer of

organization that can be helpful when maintaining complex

code and offers a nice way to package code for distribution

and reuse.

The matrix operations underlie a lot of linear equations

and statistics. They are used extensively in games pro-

gramming, and bitmap manipulation. We have implemented

various matrix operations by using SQL. We created a

table to store two-dimensional arrays containing the real

number. We can also create any number of matrices in this

array, which cuts down on the chore of creating tables. It

also means that functions and procedures can be hardwired

to a common matrix table. Interesting code for matrix SQL

operations can be found in [7]. A graphical SQL query

generator and query operators are disclosed in [8]. The query

tool embeds matrix objects that are used for building and

transforming SQL based queries, views, data cubes and other

relations including ‘‘virtual’’ or calculated relations.

The structure of the paper is as follows. The paper

proposes two new approaches. The object-oriented

approach of the matrix computation is described in the

second section, with classes, variables and methods. In

section 3 is presented OOP and MySQL approach of

weighted MP inverse, while in section 4 is presented OOP

and NoSQL Cassandra approach of weighted MP inverse.

In the third section we presented different string data

types in relational-MySQL database. The power of the

PHP to develop a free web based application is used in the

pseudo-inverses computation. The Cassandra data model

is presented in section 4, with Keyspace, column families

and appropriate procedures. A few illustrative examples

and comparative studies are presented in the last section

followed with discussion.

2. The object-oriented programming approach

The use of object-oriented (OO) technology remains a

challenge. Systems with embedded OO technology require

high execution speed and significant high memory con-

straints. Object-oriented model severely conflicts with the

highly static model that is required in high integrity systems

to meet the goals of time- and memory-boundedness

assurance, and of determinism in data transformation due to

code operation.

Because of demand for improved OOP support, the

entire object model was completely redesigned for PHP5,

adding a large amount of features and changing the

behavior of the base ‘‘object’’ itself. OOP turns out to be a

very simple idea, which leads to all sorts of more compli-

cated elaborations. OOP approach rather than creating data

structures on the one hand and code on the other, suppose

we reorganize everything so that associated pieces of code

and data are bundled together [9].

In order to store functions in our data, OOP approach

lets us define these combinations as genuinely new data-

types that the language supports like any other type. In

our case we defined the class named matrix (which

specifies the different kinds of data and functions that

every self-respecting matrix should have). The object (or

instance) refers to any individual instance of the type.

After we define class matrix, we can make a number of

matrix objects.

In this section we cover the PHP matrix computation, for

OOP approach, from the ground up, with the example of

weighted Moore–Penrose inverse. In the Appendix part we

presented the classes that we used in the application (see

Class 1, 2 and 3 in Appendix). The next procedure, method

of the class Matrix, present OOP approach of the weighted

Moore–Penrose inverse. During the execution of an

object’s method, a special variable called $this is auto-

matically defined, which denotes a reference to the object

itself. See Procedure 1 in Appendix.

In general, the way to refer to a member variable from an

object is to follow a variable containing the object with !
and then the name of the member. After we have a class

definition, the default way to make an instance of that class

is by using the new operator. When creating an object

(using the new keyword), the returned value is a handle to

an object or, in other words, the id number of the object.

See Procedure 2 in Appendix. Arguments, in Procedure 2,

$matrix1, $matrix2 and $matrix3 are presented in the view

of two-dimensional array, as given in [1].

838 Danijela Milošević et al

3. MySQL data model of weighted MP inverse

Nowadays, relational databases are the most frequently

used type of database. SQL database is based on the very

simple logical structure. Each database contains a number

of tables, made up of carefully defined columns, and every

entry can be thought of as an added record or row.

Four data manipulation statements are supported by

every SQL server: select, insert, update, and delete. They

constitute an extremely high percentage of all operations

within a relational database. These four SQL statements

manipulate only with database values, not with the structure

of the database itself.

The actual PHP functions used to create MySQL data-

bases are trivial compared to the MySQL data structure

statements that are passed in those functions. The general

rule is to use data type that will adequately meet the needs

of particular column in database. MySQL is known for

having compact types that are good for things like 0/1

values or very large types that can store up to 4GB of data

in one field [9].

There are three buckets of MySQL data types: numeric

types, date and time types, and string (or character) types.

In our application we compare string data types: blob,

varchar and text. Blob is the string data type used for binary

data. Any queries on a blob type result in a case-sensitive

return. This is opposite to the behavior of the text type. Text

is the string data type used for character data. It works

much like the blob data type, so queries upon the text type

will return case insensitive values. The varchar data type

works like the char type except for its data-storage method.

The varchar type removes all trailing whitespace from

inserted data. Designated by varchar(M) where M desig-

nates the field length, the maximum length of the varchar

type is 255 characters [9]. For some systems, in considering

space requirements, the varchar type should be used as

opposed to the char type.

Table 1 shows the three enumerated MySQL data types

and their possible values. M stands for the maximum

number of digits displayed, and it is optional. It should be

noted that the CPU time for insert and searching data is

much shorter when matrix stored in the database in the

R format [1], because we use it in that form.

The description of different ways of accessing data stored

in MySQL database is further presented. Procedure 3 and

Procedure 5 are showing the insert and select of data when

using blobMySQL data type, while Procedure 4 and Proce-

dure 6 are related to char and text MySQL types of data.

Analysis of the execution speed of insert and read for dif-

ferent MySQL data types is presented in detail in section 5

(see Procedures 3, 4, 5 and 6 in Appendix). Aside from

testing different types of MySQL data, our research is also

considering OOPþMySQL and OOPþ Cassandra

approach of Weighted Moore–Penrose inverse computation.

We provided certain procedures, applicable to dense

matrices, that are used in our implementation. Testing

results together with the best possible combination of

matrix presentation (procedural or object oriented), on the

middle tier, as well as the storage system (MySQL or

Cassandra), on the database tier, are presented in section 5.

Implementation of an arbitrary matrix operation using

OOPþMySQL approach can be described by the following

algorithm, while algorithm for OOPþ Cassandra approach

is presented in the next section.

4. NoSql Cassandra model of weighted MP inverse

Apache Cassandra is a free, open source, distributed data

storage system that differs sharply from relational database

management systems. Science and web affine companies

were engaged in the research database which has led to the

Table 1. MySQL data types.

MySQL data types

Name Storage size Using

varchar(M) Up to M bytes Variable in length. M must be � 255

blob Up to 64KB blob is case-sensitive for sorting and comparison

text Up to 64KB text is case-insensitive

longblob Up to 4GB longblob is case-sensitive for sorting and comparison

longtext Up to 4GB longtext is case-insensitive

Weighted Moore–Penrose generalized matrix inverse 839

emergence of a great variety of alternative databases. That

leads phenomenon new datastores known as NoSQL data-

bases (key-value-stores, document databases, column-ori-

ented databases), ‘‘used to describe the increasing usage of

non-relational databases among Web developers’’ [10]. The

emergence of key - value stores has been heavily influenced

by Amazon’s Dynamo, although key-value-stores have

existed for a long time.

Model of relation database, such as MySQL, was difficult

at first for all but the most advanced computer scientists to

understand, until broader adoption helped to make the con-

cepts much clearer. Using the database built around this

model required learning new terms and thinking about data

storage in a different way. Themassive use by businesses and

government agencies, is the result of fast capability for pro-

cessing thousands of operations per second. The new model

for database was threatening, chiefly for two reasons. First,

the new model was very different from the old one, which it

pointedly controverted. Also, it was threatening because it

can be hard to understand something different and new.

Cassandra is very powerful system in Facebook’s inbox

search. It has become ‘‘the hands down winner for trans-

action processing performance,’’ with a deserved reputation

for reliability and performance at scale [11]. The Cassandra

is the cluster or the ring that assigns data to nodes in the

cluster by arranging them in a ring. Typically, an instance

of Cassandra presents distributed multidimensional map

indexed by a key [12]. A table is structured by the fol-

lowing dimensions:

• Rows which are identified by a string-key of arbitrary

length.

• Column Families which can occur in arbitrary number

per row. As in Bigtable, column-families have to be

defined in advance. The number of column-families

per table is not limited; however, it is expected that

only a few of them are specified. A column family

consists of columns and supercolumns which can be

added dynamically to column-families and are not

restricted in number.

• Columns have a name and store a number of values per

row that are identified by a timestamp (like in

Bigtable). A table cannot be thought of as a rectangle,

because each row in a table can have a different

number of columns.

• Supercolumns have a name and an arbitrary number of

columns associated with them. Also, the number of

columns per super-column may differ per row.

A cluster is a container for keyspaces. A keyspace is the

outermost container for data in Cassandra, corresponding

closely to a relational database. Like a relational database, a

keyspace has a name and a set of attributes that define key-

space-wide behavior. A good idea is to create a single key-

space per application. It is certainly an acceptable practice,

but it is perfectly fine to create as many keyspaces.

A column family is a container for an ordered collection

of rows, each of which is itself an ordered collection of

columns. In the relational databases we have physically

creating database from a model. Database has the name of

the database (keyspace), the names of the tables (similar to

column families), and then we define the names of the

columns that will be in each table. For several good reasons

a column family is not like a relational table. First of all, the

Cassandra is considered schema-free because although the

column families are defined, while the columns are not.

Also, we can freely add any column to any column family

at any time. Second, a column family has two attributes: a

name and a comparator. The comparator value indicates

how columns will be sorted: byte, UTF8, or other ordering.

The Cassandra, API, exposed to client-applications, con-

sists of the three simple methods: insert(table; key; rowMu-

tation); get(table; key; columnName) and delete(table; key;

columnName) where the columnName argument of the get

and delete operation identifies either a column family, or a

supercolumn within a column family, or column family as a

whole. Connection between PHP and API of Cassandra is

exposed via API Thrift. The programming language libraries

for PHP, Java, Ruby, Pyhton, C#... are available for inter-

actionwith Cassandra. Implementation of an arbitrarymatrix

operation using OOP approach and Cassandra database can

be described by the following algorithm.

The basic unit of data structure in the Cassandra data

model is a column. A column is a triplet that contains a

name, a value, and a clock. First of all, when designing a

relational database, you specify the structure of the

tables up front by assigning all of the columns in the table a

name; later, when you write data, you are simply supplying

values for the predefined structure [11].

5. Experimental results

In order to compare two different programming for matrices

computation (procedural and OOP approach), we were using

the precise implementation of the weighted Moore–Penrose

algorithm. Details concerning the implementation of the par-

titioning algorithm corresponding to the weighted Moore–

840 Danijela Milošević et al

Penrose inverse in the view procedural programming can be

found in [1], while OOP approach is presented in section 2.

Testing was performed on the local machine and from

a client in a wireless network. We had an access to the

web server using the infrastructure mode wireless net-

working with an access point. Testing was executed on

the server machine with the following specification:

Windows edition: Windows VistaðTMÞUltimate; Proces-

sor: IntelðRÞPentiumðRÞDual CPU T3200@ 2 : 00GHz;
Memory ðRAMÞ: 2940MB; System type: 32-bit Operating

System; Free Softwares: WampServer version 2.2 which

contains PHP 5:3:8, MySQL 5:5:16 and phpMyAdmin

3:4:5, Apache Cassandra 1:0:6.

5.1 Object-oriented vs. procedural approach

of weighted MP inverse

The paper reports the specific approach of matrix calcu-

lating in the form of classes and objects. In the next table,

we compare the CPU executing times for computing

weighted Moore–Penrose inverse using procedural and

object oriented programming approach. The efficiency

comparison on the set of randomly generated test matrices

is given in table 2.

This testing is performed for dense matrices with ran-

domly chosen elements, and Test matrices (A 30 3,

A 50 4, F 15 2, F 30 3, F 50 4, S 50 4, S 80 5)

from [13]. In our application the CPU executing time, for

AL computation, is slightly shorter when we have OOP

approach (figure 1).

5.2 Compare the time for different MySQL data

types

We obtain positive results compared to the results presented

in [1], because we create instance of classMatrix - object,

only once, and we read all the necessary information

without additional calculations. In the next table, we

compare the time for insert of data when we have different

MySQL data types (table 3; figure 2).

We compare searching of data time in the MySQL with

different data types (table 4; figure 3).

This testing is performed for densematriceswith randomly

chosen elements. The best executing CPU time we have

achieved during the insert and searching data operations in

MySQL database with blob data type. We note that matrices

are in the database in the R format, such as presented in [1].

Table 2. CPU time for computation of the weighted MP inverse

using procedural and OO programming.

Arithmetic - Logic unit

m� n PP approach OOP approach

A 30 3 0.897 s 0.790 s

A 50 4 6.199 s 5.140 s

F 15 2 0.166 s 0.120 s

F 30 3 0.880 s 0.750 s

F 50 4 6.077 s 5.100 s

S 50 4 6.070 s 5.058 s

S 80 5 40.75 s 34.459 s

50� 50 6.203 s 5.870 s

15� 15 0.160 s 0.116 s

50� 35 1.997 s 1.602 s

45� 70 19.920 s 17.549 s

60� 60 12.627 s 10.722 s

Figure 1. Computation of the weighted MP inverse using

procedural and OO programming.

Table 3. The CPU time for insert matrices in the MySQL data-

base with different data types.

MySQL 2D array (R format): INSERT

m 9 n longtext blob varchar

30� 30 0.151 s 0.078 s 0.106 s

50� 50 0.162 s 0.079 s 0.117 s

60� 60 0.156 s 0.075 s 0.119 s

70� 70 0.162 s 0.079 s 0.122 s

80� 80 0.165 s 0.068 s 0.140 s

Figure 2. Insert data in different MySQL data types.

Weighted Moore–Penrose generalized matrix inverse 841

5.3 MySql vs. NoSqlCassandra data model

of weighted MP inverse

We compare the time durations for insert matrices when

they are stored in the database with two completely dif-

ferent approaches: relation database MySQL and key-value

storing system, Apache Cassandra (table 5).

This testing is performed for dense matrices with ran-

domly chosen elements, presented in the R format. The

CPU executing time, in table 6, indicates the much better

results in the case key value store system Cassandra.

In table 6 comparison of the searching time duration

when matrices are stored in the relation database, MySQL

[1], and noSQL database, Cassandra is shown.

Now we can define Keyspace named ‘‘MatrixComputa-

tion’’ and in Keyspace we define a Column Families named

‘‘Matrix’’ and define secondary index ‘‘dimidx’’ on field ‘‘di-

mension’’, and ‘‘opidx’’ on field ‘‘operation’’ (see Proce-

dure 7, 8, 9, 10, 11, 12, and 13 in Appendix).

This testing is performed for dense matrices with ran-

domly chosen elements and matrices from [13]. The CPU

time for searching is much shorter when a matrix is stored

in the key value storage system Cassandra (figures 4, 5).

Table 4. The CPU time for read data from MySQL database

when we have different data types.

MySQL 2D array (R format): SELECT

m 9 n longtext blob varchar

30� 30 0.0089 s 0.0010 s 0.0085 s

50� 50 0.0104 s 0.0017 s 0.0087 s

60� 60 0.0145 s 0.0024 s 0.0104 s

70� 70 0.0293 s 0.0025 s 0.0204 s

80� 80 0.0444 s 0.0026 s 0.0324 s

Figure 3. Read data of different MySQL data types.

Table 5. The CPU time for insert matrices in MySQL and Cas-

sandra, when they are stored in the R format.

INSERT data

m 9 n Number of records DB MySQL CASSANDRA

80� 80 50 4.517 s 0.422 s

80� 80 100 8.018 s 0.849 s

80� 80 500 41.081 s 4.291 s

80� 80 1000 84.889 s 8.126 s

80� 80 5000 496.038 s 40.053 s

Table 6. The CPU time for searching matrices, dimension 80�
80 in the R format, from structural different type of databases.

Search of stored matrices (SELECT data)

Number of

matrices

R

format?MySQL

R

format?CASSANDRA

50 0.102 s 0.0293 s

100 0.166 s 0.0308 s

500 0.791 s 0.0276 s

1000 1.901 s 0.0267 s

Figure 4. Insert matrices in Cassandra and MySQL.

Figure 5. Reading matrices from Cassandra and MySQL.

842 Danijela Milošević et al

6. Discussion and conclusion

Many studies from other fields of applied mathematics

and computer sciences have shown that the OOP approach

for effective implementation of similar algorithms is bet-

ter. In our previous article we presented the implementa-

tion of the weighted Moore–Penrose inverse by procedural

programming approach in PHP and MySQL database [1].

Previously, we have also stated the conditions which

characterize the weighted Moore–Penrose inverse in our

article [2].

Our main motivation was to provide better access com-

pared to our previous work, as well as other studies, pri-

marily in the field of matrix calculations. In this study, we

propose better way to matrix computation on the middle

tier in the three layer web architecture, along with the

implementation and experimental support. Specifically, we

provide a new approach for calculating generalized

weighted Moore–Penrose matrix based on object-oriented

programming (OOP) with the technique of storing with

CassandraNoSQL database approach.

We have tested and compared the speed of insert and

search data operations in relation database and key value

store and draw conclusions that much better results were

obtained with key value store Cassandra. We have built,

implemented, and operated a storage system providing

scalability, high performance, and wide applicability.

This segment of experimental results proved that the

implementation of the OOP approach gives significantly

better results compared to the results of previous work

where the PP approach was applied. We have presented

the several test matrix for the process of entering and

searching data with experimental results and comparative

analysis.

Overall, the work provides new approaches dealing with

matrix computations that are widely used. Emphasis is

placed on finding the best approach in the implementation

of such problems in order to achieve maximum execution

speed. In addition, the research is performed on issues for

storing the results and the most efficient ways for storing

applying popular database systems are determined and

described in detail. Our research is aiming to propose better

solution for calculating matrix operation that could be

applied in various domains, both in mathematics and in

other areas (Game theory, Economics, Data mining and

Text mining).

For our future work we plan to develop mechanisms to

decrease memory management, the enhancement of

matrix operations, matrix type and minimal speed of the

search storage systems, thereby enhancing the DBMS

data mining functionality. Also, realization of the matrix

library will be based on the principle of

Mobile Programming. Future work also involves adding

compression, ability to support atomicity across keys and

secondary index support.

Appendix: Classes and procedures for algorithms
of weighted Moore–Penrose inverse

Class 1. The class UploadFile(), the constructor and list all

the methods and properties for upload txt file which con-

tains matrix.

Class 2. The class DataManipulation(), the constructor and

list all the methods and properties for database connect and

data manipulating (search, insert, read...)

Class 3. Central class in our client/server application is a

classMatrixðÞ with variables declaration, the constructor

and the list of all the methods and properties.

Weighted Moore–Penrose generalized matrix inverse 843

Procedure 1. OOP approach of the weighted Moore–

Penrose inverse.

Procedure 2. A new instance of the Matrix class using:

Procedure 3. Insert matrix file in MySQL database with

blob data type.

Procedure 4. Function for insert the file, witch contains

matrix, on MySQL varchar and longtext data type.

Procedure 5. Function for the search data from MySQL

database with blob data type.

Procedure 6. Function for the search data from MySQL

database with varchar and longtext data type.

844 Danijela Milošević et al

Procedure 7. Code for create the Keyspace in Cassandra. Procedure 8. Function getConnection(), connecting to

localhost test server.

We use this new keyspace with:

Procedure 9. Insert data in the Cassandra column family

matrices in.

Procedure 10. Searching for data from the Cassandra

column family matrices in.

Procedure 11. Insert data in the Cassandra column family

matrices out.

Weighted Moore–Penrose generalized matrix inverse 845

Procedure 12. Searching for data from the Cassandra

column family matrices out.

Procedure 13. Display result from the Cassandra column

family matrices out.

References

[1] Tasić M, Stanimirović P and Pepić S 2011 Computation of

generalized inverses using Php/MySql environment. Int.

J. Comput. Math. 88(11): 2429–2446

[2] Tasić M, Stanimirović P and Pepić S 2010 About the gen-

eralized LM-inverse and the Weighted Moore–Penrose

inverse. Appl. Math. Comput. 216: 114–124

[3] Elmasri R and Navathe SB 2003 Fundamentals of database

systems: 4th edition. Addison-Wesley

[4] Clear J, Dunn D, Harvey B, Heytens L, and Lohman P 1999

Non-stop SQL/MX primitives for knowledge discovery. In:

ACM KDD Conference, pp. 425–429

[5] Sattler K and Dunemann O 2001 SQL database primitives for

decision tree classifiers. In: ACM CIKM Conference,

pp. 379–386

[6] Ordonez C and Garca J 2006 Vector and matrix operations

programmed with UDFs in a relational DBMS. In: Pro-

ceedings of the 15th ACM international conference on

information and knowledge management, Arlington, Vir-

ginia, USA, 503–512

[7] Page R and Factor P 2008 SQL Server Matrix Workbench.

In: http://www.simple-talk.com/sql/t-sql-programming/sql-

server-matrix-workbench/, visited: September 2015

[8] Egilsson S, Gudbjartsson H and Sigurjnsson S 2003 SQL

query generator utilizing matrix structures. U.S. Patent

6,578,028

[9] Suehring S 2002 MySQL bible. Wiley Publishing, USA

[10] Obasanjo D 2009 Building scalable databases: Denormal-

ization, the NoSQL movement and Digg. In: http://www.

25hoursaday.com/weblog/2009/09/10/BuildingScala

bleDatabases-DenormalizationTheNoSQLMove

mentAndDigg.aspx, visited: sept 2015

[11] Hewit E 2011 Cassandra: The definitive guide. O’Reilly

Media, USA

[12] Lakshman A and Malik P 2010 Cassandra: A decentralized

structured storage system. SIGOPS Oper. Syst. Rev. 44:

35–40

[13] Zielke G 1986 Report on test matrices for generalized

inverses. Computing 36: 105–162

846 Danijela Milošević et al

