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Abstract This paper presents IRoSim: Industrial Robotics Simulation Design Planning and Optimization platform 
which we developed based on SolidWorks API. The main objective is to integrate features from mechanical and 
robotics CAD software into the same platform in order to facilitate the development process through a friendly 
interaction interface. The platform provides important steps to develop a given robotized task such as: defining a 
given task, CAD learning of the end-effectors' trajectory, checking the manipulator's reach-ability to perform a task, 
simulating the motion and preventing the trajectory from possible collisions. To assess the usability of the proposed 
platform, a car's doors painting task using a 6 Degree Of Freedom industrial manipulator has been developed. 

1 Introduction 
Nowadays, programming of industrial robots is of 
importance to many manufacturing industries, because 
changing and reinventing their production systems 
continuously appear within the manufacturing 
environment [1, 2]. However, industrial robots 
programming generally is a tedious and time-consuming 
task that demands significant technical expertise, and 
require a tremendous amount of programming to make 
them useful. Also, in order to accomplish such task 
skilled and experienced programmers are often a scarce 
resource. Nevertheless, new and effective programming 
approaches that are easier, faster and advanced with low 
cost are constantly sought such as conventional teaching 
pendant [3] and Off-Line Programming (OLP) 
environments. Usually, such environments are based on 
graphical simulation platforms, where programmers need 
only to learn the simulation language and not any of the 
robot programming languages. Moreover, OLP 
environments include various libraries such as tools for 
the simulation scenarios and some predefined 
applications of robotics tasks like spot-welding and 
painting. And the most important is that it can allow the 
kinematics control to enable users to plan collision-free 
trajectories. The simulation may also be used to 
determine the cycle time of execution of the robotics task. 

In the last decades, OLP coupled with Computer 
Aided Design (CAD) leaded to learning trajectory 
through teach pendant [3, 4]. As a result of combining 
these technologies make it possible to reduce both the 

time and the cost of development process, and improve 
the quality of the product. Therefore, CAD systems have 
been in use for several industry process including, 
automobile, aircraft manufacture and shipbuilding. These 
fields, employ in their systems CAD and embedded 
knowledge to design the robot mechanism and to 
simulate its motion [5]. However, many of these systems 
do not rely on standard CAD packages such as 
SolidWorks and CATIA, which presents supplementary 
difficulties for novice users to model and to export their 
3D models to simulate a given task. Whereas, standard 
CAD systems that are used for design do not provide 
non-free packages that can be used for robotics task 
simulation. Thus, our objective in this approach is to 
provide an easier process, to define a robotized task, 
integrated into a 3D CAD system. 

In this paper, we present a novel Industrial Robotics 
Simulation (IRoSim) CAD robotics system that has been 
realized to assist users in designing and developing 
industrial robotized tasks. IRoSim is accessible to anyone 
with basic knowledge of CAD and robotics. As shown in 
Figure 1, the system offers users to simulate several steps 
to fulfill the desired objectives.  

IRoSim is integrated into SolidWorks and can easily 
be upgraded to future versions. Unlike programming 
packages [3, 6], IRoSim provides several features such as 
3D design of the robotic manipulator, definition of the 
task to be accomplished, accessibility verification, 
optimization of the task time execution [7], graphical 
simulation, detection of the eventual collisions and 
generation of a collision-free trajectory to be directly 
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mapped to the real cell. In order to show the effectiveness 
of the proposed software we implemented a robotized 
task which is the painting (by dipping) using a 6-DOF 
robot manipulator.  

Figure 1. Offline-CAD programming schema of IRoSim. 

2 CAD based approach  
Nowadays, the CAD model databases are widely used in 
the industry to design, model and programming robotics 
products [3, 6] such us AutoCAD, Ideas, Cimatron, 
CATIA and SolidWorks API (Application Programming 
Interface). We used this last to offer the feature to 
calculate the robotics task parameters based on a virtual 
3D model of the real robotics cell. Moreover, the 
modification and the redefinition of these parameters are 
easily possible with the developed user-friendly 
integration.  

2.1 Data Acquisition

In order to evaluate the robot control through an OLP,
data acquisition systems must be built into the control 
program. In our approach, it consists of the 3D virtual 
representation of the physical model of the robotized cell, 
followed by the application of several algorithms based 
on CAD learning to extract useful information from the 
virtual environments. This gives definition of the task and 
delimits some kinematics constraints between the robotic 
manipulator and the task. Figure 2 summarizes the 
process of data acquisition. 

Figure 2. Schema of the data acquisition process. 

2.2 3D Modelling of Robot and Environment 

2.2.1 3D modeling 

3D modeling of the robot cell [8] can be contacted based 
on a volume and/or surface. This can include the robots' 
libraries, End-EFfectors (EEF), the 3D model where the 
task is to be performed and the remaining additional parts. 
For instance, a robot's WorkSpace (WS) can be modeled 

only by volume. This allows having more geometrical 
information that can be used during the simulation 
process. However, other 3D objects can be modeled by 
surface if no need to a volume representation. Figure 3 
shows some parts of a robotics cell which contains a 
robot manipulator, gripper, two conveyors and drying 
machine. The manipulator was designed in a way that 
allows possible kinematic joints representation of the 
corresponding links subject to certain numerical 
constraints (e.g., DH: Denavit–Hartenberg parameters).  

Figure 3. IRoSim development environment with 3D models of 
robot manipulator, conveyors, etc.

2.2.2 Task definition 

Robotic task can be represented as a 2D/3D set of points 
to be visited by the manipulator [9]. We distinguish two 
kinds of trajectories: Point-to-Points (P2P) and 
Continuous. P2P trajectories may include spot welding 
and drilling tasks while arc-welding, laser cutting, 
painting, polishing [10] etc. are modeled using 
continuous trajectories where we used a 3D spline.  
Figure 4 presents critical points of grasping, painting and 
releasing car's doors. 

Figure 4. An example of asks defined in SolidWorks, 3D points 
are the picking-up, painting and releasing locations.

2.2.3 Robotics library 

IRoSim platform includes a set of robot manipulators 
such as Staubli and KUKA KR6-2. 3D models of these 
manipulators can be integrated and assembled easily into 
SolidWorks; and the platform is open to integrate new 
manipulator models. Moreover, the library contains 
several other 3D tools that are needed for the simulation. 

3 CAD programming stages  
IRoSim platform is integrated as a plug-in with 
SolidWorks software based on Microsoft Visual Basic 
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Application (VBA). As shown in Figure 5, we present it 
as Product Lifecycle Management (PLM) software that 
develop a set of stages (Figure 5) in order to allow the 
user to define, simulate and validate a given industrial 
robotics task, without exporting all models from the 
design environment to the simulation software.

Figure 5. IRoSim offline-CAD programming steps.

3.1 CAD learning 

The proposed learning process is provided by GUI of 
IRoSim platform. We select first: a 3D CAD model of the 
task (e.g., Figure 3 and 4) and a realistic 3D model of the 
EEF whose dimensions are specified in the main GUI of 
the IRoSim. User can move the 3D model of the EEF in 
the graphical area by translations and rotations around X, 
Y and Z axes using IRoSim's GUI. Then, we need to get 
the critical information that is helpful for learning more 
complex information from the graphical area. Figure 6 
presents steps and pseudo-code to involve this process. 
Considering a P2P trajectory, we first get coordinates of 
the task points. From these point's coordinates we can 
extract the orientation at each point as the normal of the 
surface holding the point (i.e., a coincidence constraint 
between the surface and the point). So, we have 4-DOF 
(1 orientation and 3 positions) which will help in the next 
stage of learning. 

The second step (Figure 7) involves tuning of the EEF 
3D model in the virtual environment. The designed GUI 
of IRoSim platform offers features to displace and rotate 
the EEF around all possible axes. In case of a task 
involving a P2P trajectory e.g. grasping, this process is 
executed for two locations; the pre-grasping and the 
grasping itself.

3.2 Task accessibility checking 

In order to accomplish the robotics task accurately and 
precisely, the robot should be able to reach all task points 
defined by the user. The task's accessibility check, in our 
platform, is based on: generating the 3D model of WS, 
representation of the task points and finally checking the 
interference between them.  

The shape of 3D WS of a robotic manipulator is a 
function of its mechanism that includes DH parameters, 
link lengths, joints' range of motion etc. Since several 
industrial manipulators have the first three joints used for 
positioning, while the last three are mainly for orientation 
[11], we considered, in our approach, only the first three 
joints to generate the 3D model of the WS from DH 

parameters. Generally, we used the second and the third 
joint to generate a sketch in a vertical plane (parallel to 
the z axis of the first joint). So this joint is used for 
creating the volume function (e.g., revolution or extrusion 
according to the joint type revolute or prismatic, 
respectively). The algorithm that depicts the main 
sequence involved in this step is given in [5]. A set of 
different mechanisms for a manipulator and their 
corresponding 2D sketches and 3D WS are also given in 
[5] based on this algorithm. 

Figure 6. CAD learning of the critical task points with some  
pseudo-codes. 

Figure 7. CAD learning of the critical transformation at each 
task point with some pseudo-codes, the objective here is to 
define the homogenous transformation matrix at each point. 

In the proposed platform, tasks accessibility 
verification process is based on fully graphical. Using 
Oriented Programming Objects (OPO) of SolidWorks's 
API, we use geometrical features of the task points and 
the 3D WS model of the manipulator to check the 
interference between them. The interference is checked 
between parallelogram-shaped temporary 3D bodies that 
we create around each task points and the WS body of the 
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manipulator. In case the task points are not reachable, the 
IRoSim GUI offers possibility to redefine the task or to 
load another manipulator with different DH parameters if 
necessary to accomplish the task.  

3.3 Placement and orientation zones  

We developed platform that offers the possibility to 
optimize the best time of the task execution. In order to 
achieve this we need to find the shortest distance 
travelled by the manipulator in the coordinate space. It is 
reported previously in [12] that the placement and the 
orientation of the robotic manipulator are of the most 
importance in time optimization. In other words, the 
manipulator can be displaced on three axis coordinate 
system and can also rotate around these axes to obtain the 
suitable placement and orientation relative to the task by 
ensuring the task reachability.  

3.4 Time optimization 

The main motivation to have an industrial framework 
providing all necessary stages needed by a robotics task 
lead us to include time optimization algorithm in our 
IRoSim platform. This optimization depends, in the first 
case, on the distance traversed by the manipulator’s joints, 
which is related to the sequence of the task-points visited 
by the EEF. Also, the manipulator executes a specific 
task in the operational space and performs the motion in 
the coordinate space, which makes the travelled distance 
a function of manipulator’s IKM. In that sense, the 
optimization problem is concerned with finding the 
minimum distance between each two consecutive 
trajectory-points. Moreover, any solution of a IKM joint 
is strongly affected by the placement and the orientation 
of manipulator. Thus, in order to have a complete 
optimization method which performs the strategies 
presented by authors in [12, 7] we proposed an 
optimization method based on Genetic Algorithms (GAs) 
that incorporates the best cycle time of task execution as 
objective function, while the chromosome is composed of: 
order of achievement of the task-points, IKM at each 
task-point, relative placement and orientation between the 
manipulator and the task-points. The cycle time has been 
computed based on joints’ displacement between each 
successive pair of points and the average velocity of the 
corresponding joint. 

4 Graphical simulation 
All graphical objects, modeled as 3D model can be
displaced or moved by acting on its transform. During the 
motion of the 3D objects we solicit API futures to detect 
the collision with the surrounding. Figure 8, bellow, 
shows a simplified algorithm of motion of the robot 
manipulator's joint from one configuration to another. It 
start by adding the corresponding joints that are 
considered to be moved, gets the current joints axes (Z), 
creates an axis object, transforms and finally moves the 
joints by updating the 3D graphical area, in the main time 
obstacle avoidance algorithm is running on the fly. 

Figure 8. Algorithm of 6-DOF robot manipulator motion. 

5 Case of study 
Based on IRoSim, we present a simulation case study that 
involves an industrial task which is painting of a car's
doors (by dipping).

5.1 Task definition, accessibility and CAD 
trajectory learning 

As shown in Figure 4 each point of the task is constrained 
on the given surface of the corresponding car's door. 
Figure 9 shows snapshot of CAD trajectory learning GUI.

In details Figure 9a shows the IRoSim main GUI and 
the corresponding CAD learning trajectory. It is worth to 
note that Euler angles between the initial EEF 
configuration Conf_0 and the first configuration Conf_1

are given in [11]. As shown in Figure 9c user must rotate 
the EEF using the GUI to reach the grasping 
configuration Conf_g,. When this is done, user translates 
backward following Z axis to reach the pre-grasping 
configuration Conf_p. At the mean time he/she mast save 
the two matrices of Conf_g and Conf_p (Figure 9d) and 
finally he/she checks the task accessibility (Figure 9e) by 
moving the workspace manually around the task and 
checking if all the points are reachable, or automatically 
by running the corresponding algorithm.

Figure 9. Snapshots of CAD learning trajectory and 
accessibility verification process. 
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5.2 Simulation 

After optimizing the task's time, the last step is the 
graphical simulation and validation of the task trajectory.  

Figure 10. Snapshots of the painting simulation process. 

It is worth to mention that the order of visiting points 
is fixed because of the highly constrained task, where we 
have only one sequence. For instance, the manipulator 
must grasps the support from the first conveyor and puts 
it on the second one, then starts transporting the first door 
(Figure 10a) and paints it in the basin (Figure 10b) and 
then dropping it on the second support posed, earlier, on 
the second (big) conveyor (green color model). Such 
operation is repeated till the last door (Figure 10c to 
Figure 10f). Finally, and after doors arrive to the drying 
machine the manipulator transports the last support to 
prepare for the next a round of the task. It is worth to note 
that collision avoidance is resolved by adding 
intermediate points in the trajectory of the robotic 
manipulator. A video can be found in this link: 
https://www.youtube.com/watch?v=im5qGO7Ky5Y  

6 Conclusion 
A novel CAD-based OLP platform IRoSim for industrial 
robots has been presented. A platform that is able to 
define, optimize, simulate and validate an industrial task 
and then map it into a real site. The proposed GUI of this 
platform is fully integrated with SolidWorks API and it 
provides many utilities that can cope with several 
industrial tasks including but not limited to; drilling, 
painting, spot welding, pick and place and other object 
manipulation tasks. Since the creation of the CAD 
models and robot programming task are performed in the 
same software the entire robot programming process 

becomes faster, easier and cheaper. In addition, the case 
of study of the painting task showed that the proposed 
platform is intuitive to novice use in industrial 
environments. In near future, we are looking forward to 
integrate some feedback control via cameras, sensors and 
other embedded systems. 
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