
2

Industrial Robotics Platform for Simulation Design, Planning and
Optimization based on Off-line CAD Programming

Khelifa Baizid1, 2 , Amal Meddahi3, Ali Yousnadj4, Saša Ćuković5 and Ryad Chellali6
1Mines Douai, IA, F-59508, Douai, France
2Univ. Lille, F-59000 Lille, France
3DIEI, University of Cassino and Southern Lazio, Cassino, Italy
4DGRSDT, Advanced Technology Development Center, Algeria
5FE, University of Kragujevac, Kragujevac, Serbia
6CEECS, Nanjing Robotics Institute, China

Abstract This paper presents IRoSim: Industrial Robotics Simulation Design Planning and Optimization platform
which we developed based on SolidWorks API. The main objective is to integrate features from mechanical and
robotics CAD software into the same platform in order to facilitate the development process through a friendly
interaction interface. The platform provides important steps to develop a given robotized task such as: defining a
given task, CAD learning of the end-effectors' trajectory, checking the manipulator's reach-ability to perform a task,
simulating the motion and preventing the trajectory from possible collisions. To assess the usability of the proposed
platform, a car's doors painting task using a 6 Degree Of Freedom industrial manipulator has been developed.

1 Introduction
Nowadays, programming of industrial robots is of
importance to many manufacturing industries, because
changing and reinventing their production systems
continuously appear within the manufacturing
environment [1, 2]. However, industrial robots
programming generally is a tedious and time-consuming
task that demands significant technical expertise, and
require a tremendous amount of programming to make
them useful. Also, in order to accomplish such task
skilled and experienced programmers are often a scarce
resource. Nevertheless, new and effective programming
approaches that are easier, faster and advanced with low
cost are constantly sought such as conventional teaching
pendant [3] and Off-Line Programming (OLP)
environments. Usually, such environments are based on
graphical simulation platforms, where programmers need
only to learn the simulation language and not any of the
robot programming languages. Moreover, OLP
environments include various libraries such as tools for
the simulation scenarios and some predefined
applications of robotics tasks like spot-welding and
painting. And the most important is that it can allow the
kinematics control to enable users to plan collision-free
trajectories. The simulation may also be used to
determine the cycle time of execution of the robotics task.

In the last decades, OLP coupled with Computer
Aided Design (CAD) leaded to learning trajectory
through teach pendant [3, 4]. As a result of combining
these technologies make it possible to reduce both the

time and the cost of development process, and improve
the quality of the product. Therefore, CAD systems have
been in use for several industry process including,
automobile, aircraft manufacture and shipbuilding. These
fields, employ in their systems CAD and embedded
knowledge to design the robot mechanism and to
simulate its motion [5]. However, many of these systems
do not rely on standard CAD packages such as
SolidWorks and CATIA, which presents supplementary
difficulties for novice users to model and to export their
3D models to simulate a given task. Whereas, standard
CAD systems that are used for design do not provide
non-free packages that can be used for robotics task
simulation. Thus, our objective in this approach is to
provide an easier process, to define a robotized task,
integrated into a 3D CAD system.

In this paper, we present a novel Industrial Robotics
Simulation (IRoSim) CAD robotics system that has been
realized to assist users in designing and developing
industrial robotized tasks. IRoSim is accessible to anyone
with basic knowledge of CAD and robotics. As shown in
Figure 1, the system offers users to simulate several steps
to fulfill the desired objectives.

IRoSim is integrated into SolidWorks and can easily
be upgraded to future versions. Unlike programming
packages [3, 6], IRoSim provides several features such as
3D design of the robotic manipulator, definition of the
task to be accomplished, accessibility verification,
optimization of the task time execution [7], graphical
simulation, detection of the eventual collisions and
generation of a collision-free trajectory to be directly

DOI: 10.1051/03002 (2016), matecconf/2016MATEC Web of Conferences 66

ICIEA 2016

8 803002

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

mapped to the real cell. In order to show the effectiveness
of the proposed software we implemented a robotized
task which is the painting (by dipping) using a 6-DOF
robot manipulator.

Figure 1. Offline-CAD programming schema of IRoSim.

2 CAD based approach
Nowadays, the CAD model databases are widely used in
the industry to design, model and programming robotics
products [3, 6] such us AutoCAD, Ideas, Cimatron,
CATIA and SolidWorks API (Application Programming
Interface). We used this last to offer the feature to
calculate the robotics task parameters based on a virtual
3D model of the real robotics cell. Moreover, the
modification and the redefinition of these parameters are
easily possible with the developed user-friendly
integration.

2.1 Data Acquisition

In order to evaluate the robot control through an OLP,
data acquisition systems must be built into the control
program. In our approach, it consists of the 3D virtual
representation of the physical model of the robotized cell,
followed by the application of several algorithms based
on CAD learning to extract useful information from the
virtual environments. This gives definition of the task and
delimits some kinematics constraints between the robotic
manipulator and the task. Figure 2 summarizes the
process of data acquisition.

Figure 2. Schema of the data acquisition process.

2.2 3D Modelling of Robot and Environment

2.2.1 3D modeling

3D modeling of the robot cell [8] can be contacted based
on a volume and/or surface. This can include the robots'
libraries, End-EFfectors (EEF), the 3D model where the
task is to be performed and the remaining additional parts.
For instance, a robot's WorkSpace (WS) can be modeled

only by volume. This allows having more geometrical
information that can be used during the simulation
process. However, other 3D objects can be modeled by
surface if no need to a volume representation. Figure 3
shows some parts of a robotics cell which contains a
robot manipulator, gripper, two conveyors and drying
machine. The manipulator was designed in a way that
allows possible kinematic joints representation of the
corresponding links subject to certain numerical
constraints (e.g., DH: Denavit–Hartenberg parameters).

Figure 3. IRoSim development environment with 3D models of
robot manipulator, conveyors, etc.

2.2.2 Task definition

Robotic task can be represented as a 2D/3D set of points
to be visited by the manipulator [9]. We distinguish two
kinds of trajectories: Point-to-Points (P2P) and
Continuous. P2P trajectories may include spot welding
and drilling tasks while arc-welding, laser cutting,
painting, polishing [10] etc. are modeled using
continuous trajectories where we used a 3D spline.
Figure 4 presents critical points of grasping, painting and
releasing car's doors.

Figure 4. An example of asks defined in SolidWorks, 3D points
are the picking-up, painting and releasing locations.

2.2.3 Robotics library

IRoSim platform includes a set of robot manipulators
such as Staubli and KUKA KR6-2. 3D models of these
manipulators can be integrated and assembled easily into
SolidWorks; and the platform is open to integrate new
manipulator models. Moreover, the library contains
several other 3D tools that are needed for the simulation.

3 CAD programming stages
IRoSim platform is integrated as a plug-in with
SolidWorks software based on Microsoft Visual Basic

DOI: 10.1051/03002 (2016), matecconf/2016MATEC Web of Conferences 66

ICIEA 2016

8 803002

2

Application (VBA). As shown in Figure 5, we present it
as Product Lifecycle Management (PLM) software that
develop a set of stages (Figure 5) in order to allow the
user to define, simulate and validate a given industrial
robotics task, without exporting all models from the
design environment to the simulation software.

Figure 5. IRoSim offline-CAD programming steps.

3.1 CAD learning

The proposed learning process is provided by GUI of
IRoSim platform. We select first: a 3D CAD model of the
task (e.g., Figure 3 and 4) and a realistic 3D model of the
EEF whose dimensions are specified in the main GUI of
the IRoSim. User can move the 3D model of the EEF in
the graphical area by translations and rotations around X,
Y and Z axes using IRoSim's GUI. Then, we need to get
the critical information that is helpful for learning more
complex information from the graphical area. Figure 6
presents steps and pseudo-code to involve this process.
Considering a P2P trajectory, we first get coordinates of
the task points. From these point's coordinates we can
extract the orientation at each point as the normal of the
surface holding the point (i.e., a coincidence constraint
between the surface and the point). So, we have 4-DOF
(1 orientation and 3 positions) which will help in the next
stage of learning.

The second step (Figure 7) involves tuning of the EEF
3D model in the virtual environment. The designed GUI
of IRoSim platform offers features to displace and rotate
the EEF around all possible axes. In case of a task
involving a P2P trajectory e.g. grasping, this process is
executed for two locations; the pre-grasping and the
grasping itself.

3.2 Task accessibility checking

In order to accomplish the robotics task accurately and
precisely, the robot should be able to reach all task points
defined by the user. The task's accessibility check, in our
platform, is based on: generating the 3D model of WS,
representation of the task points and finally checking the
interference between them.

The shape of 3D WS of a robotic manipulator is a
function of its mechanism that includes DH parameters,
link lengths, joints' range of motion etc. Since several
industrial manipulators have the first three joints used for
positioning, while the last three are mainly for orientation
[11], we considered, in our approach, only the first three
joints to generate the 3D model of the WS from DH

parameters. Generally, we used the second and the third
joint to generate a sketch in a vertical plane (parallel to
the z axis of the first joint). So this joint is used for
creating the volume function (e.g., revolution or extrusion
according to the joint type revolute or prismatic,
respectively). The algorithm that depicts the main
sequence involved in this step is given in [5]. A set of
different mechanisms for a manipulator and their
corresponding 2D sketches and 3D WS are also given in
[5] based on this algorithm.

Figure 6. CAD learning of the critical task points with some
pseudo-codes.

Figure 7. CAD learning of the critical transformation at each
task point with some pseudo-codes, the objective here is to
define the homogenous transformation matrix at each point.

In the proposed platform, tasks accessibility
verification process is based on fully graphical. Using
Oriented Programming Objects (OPO) of SolidWorks's
API, we use geometrical features of the task points and
the 3D WS model of the manipulator to check the
interference between them. The interference is checked
between parallelogram-shaped temporary 3D bodies that
we create around each task points and the WS body of the

DOI: 10.1051/03002 (2016), matecconf/2016MATEC Web of Conferences 66

ICIEA 2016

8 803002

3

manipulator. In case the task points are not reachable, the
IRoSim GUI offers possibility to redefine the task or to
load another manipulator with different DH parameters if
necessary to accomplish the task.

3.3 Placement and orientation zones

We developed platform that offers the possibility to
optimize the best time of the task execution. In order to
achieve this we need to find the shortest distance
travelled by the manipulator in the coordinate space. It is
reported previously in [12] that the placement and the
orientation of the robotic manipulator are of the most
importance in time optimization. In other words, the
manipulator can be displaced on three axis coordinate
system and can also rotate around these axes to obtain the
suitable placement and orientation relative to the task by
ensuring the task reachability.

3.4 Time optimization

The main motivation to have an industrial framework
providing all necessary stages needed by a robotics task
lead us to include time optimization algorithm in our
IRoSim platform. This optimization depends, in the first
case, on the distance traversed by the manipulator’s joints,
which is related to the sequence of the task-points visited
by the EEF. Also, the manipulator executes a specific
task in the operational space and performs the motion in
the coordinate space, which makes the travelled distance
a function of manipulator’s IKM. In that sense, the
optimization problem is concerned with finding the
minimum distance between each two consecutive
trajectory-points. Moreover, any solution of a IKM joint
is strongly affected by the placement and the orientation
of manipulator. Thus, in order to have a complete
optimization method which performs the strategies
presented by authors in [12, 7] we proposed an
optimization method based on Genetic Algorithms (GAs)
that incorporates the best cycle time of task execution as
objective function, while the chromosome is composed of:
order of achievement of the task-points, IKM at each
task-point, relative placement and orientation between the
manipulator and the task-points. The cycle time has been
computed based on joints’ displacement between each
successive pair of points and the average velocity of the
corresponding joint.

4 Graphical simulation
All graphical objects, modeled as 3D model can be
displaced or moved by acting on its transform. During the
motion of the 3D objects we solicit API futures to detect
the collision with the surrounding. Figure 8, bellow,
shows a simplified algorithm of motion of the robot
manipulator's joint from one configuration to another. It
start by adding the corresponding joints that are
considered to be moved, gets the current joints axes (Z),
creates an axis object, transforms and finally moves the
joints by updating the 3D graphical area, in the main time
obstacle avoidance algorithm is running on the fly.

Figure 8. Algorithm of 6-DOF robot manipulator motion.

5 Case of study
Based on IRoSim, we present a simulation case study that
involves an industrial task which is painting of a car's
doors (by dipping).

5.1 Task definition, accessibility and CAD
trajectory learning

As shown in Figure 4 each point of the task is constrained
on the given surface of the corresponding car's door.
Figure 9 shows snapshot of CAD trajectory learning GUI.

In details Figure 9a shows the IRoSim main GUI and
the corresponding CAD learning trajectory. It is worth to
note that Euler angles between the initial EEF
configuration Conf_0 and the first configuration Conf_1

are given in [11]. As shown in Figure 9c user must rotate
the EEF using the GUI to reach the grasping
configuration Conf_g,. When this is done, user translates
backward following Z axis to reach the pre-grasping
configuration Conf_p. At the mean time he/she mast save
the two matrices of Conf_g and Conf_p (Figure 9d) and
finally he/she checks the task accessibility (Figure 9e) by
moving the workspace manually around the task and
checking if all the points are reachable, or automatically
by running the corresponding algorithm.

Figure 9. Snapshots of CAD learning trajectory and
accessibility verification process.

DOI: 10.1051/03002 (2016), matecconf/2016MATEC Web of Conferences 66

ICIEA 2016

8 803002

4

5.2 Simulation

After optimizing the task's time, the last step is the
graphical simulation and validation of the task trajectory.

Figure 10. Snapshots of the painting simulation process.

It is worth to mention that the order of visiting points
is fixed because of the highly constrained task, where we
have only one sequence. For instance, the manipulator
must grasps the support from the first conveyor and puts
it on the second one, then starts transporting the first door
(Figure 10a) and paints it in the basin (Figure 10b) and
then dropping it on the second support posed, earlier, on
the second (big) conveyor (green color model). Such
operation is repeated till the last door (Figure 10c to
Figure 10f). Finally, and after doors arrive to the drying
machine the manipulator transports the last support to
prepare for the next a round of the task. It is worth to note
that collision avoidance is resolved by adding
intermediate points in the trajectory of the robotic
manipulator. A video can be found in this link:
https://www.youtube.com/watch?v=im5qGO7Ky5Y

6 Conclusion
A novel CAD-based OLP platform IRoSim for industrial
robots has been presented. A platform that is able to
define, optimize, simulate and validate an industrial task
and then map it into a real site. The proposed GUI of this
platform is fully integrated with SolidWorks API and it
provides many utilities that can cope with several
industrial tasks including but not limited to; drilling,
painting, spot welding, pick and place and other object
manipulation tasks. Since the creation of the CAD
models and robot programming task are performed in the
same software the entire robot programming process

becomes faster, easier and cheaper. In addition, the case
of study of the painting task showed that the proposed
platform is intuitive to novice use in industrial
environments. In near future, we are looking forward to
integrate some feedback control via cameras, sensors and
other embedded systems.

References
1. P. Zengxi, Recent Progress on Programming

Methods for Industrial Robots, Robotics and

Computer Integrated Manufacturing, 28(2), 87-94
(2012)

2. B. Hein, M. Hensel, H. Wrn, Intuitive and model-
based on-line programming of industrial robots: a
modular on-line programming environment, IEEE

International Conference on Robotics and

Automation, pp. 3952-3957 (2008)
3. P. Neto, N. Mendes, Direct off-line robot

programming via a common CAD package, Robotics

and Autonomous Systems, 61, 896-910 (2013)
4. S. Mitsi, K. D. Bouzakis, G. Mansour, D. Sagris, G.

Maliaris, Off-line programming of an industrial robot
for manufacturing, The International Journal of

Advanced Manufacturing Technology, 26(3), 262-
267 (2004)

5. A. Meddahi, K. Baizid, A. Yousnadj, J. Iqbal, API
based graphical simulation of robotized sites, 14th

IASTED Robotics and Applications Conference, 458-
492 (2009

6. H. Chen, W. Sheng, N. Xi, M. Song, Y. Chen, CAD-
based automated robot trajectory planning for spray
painting of free-form surfaces, Industrial Robot: An

International Journal, 29(5), 426-433 (2002)
7. K. Baizid, R. Chellali, A. Yousnadj, A. Meddahi, B.

Toufik, Genetic Algorithms Based Method for Time
Optimization in Robotized Site, IEEE/RSJ

International Conference on Intelligent Robots and

System (IROS), 1359-1364 (2010)
8. Zeghloul, B. Blanchard, M. Ayrault, SMAR: A

Robot Modeling and Simulation System, Cambridge

journal, 15(1), 63-73 (1997)
9. P. Th. Zacharia, N. A. Aspragathos, Optimal Robot

Task Scheduling based on Genetic Algorithms,
Robotics and Computer-Integrated Manufacturing

journal, 21(1), 67-79 (2005)
10. P. Neto, N. Mendes, R. Arajo, J.N. Pires, A.P.

Moreira, High-level robot programming based on
CAD: Dealing with unpredictable environments,
Industrial Robot, 39(3), 294-303(2012)

11. W. Khalil, E. Dombre, Modlisation identification et
commande des robots, HERMES Science

Publications 75004, (1999)
12. K. Baizid, A. Yousnadj, A. Meddahi, R. Chellali, J.

Iqbal, Time scheduling and optimization of industrial
robotized tasks based on genetic algorithms,
Robotics and Computer-Integrated Manufacturing

Journal, 34, 140-150 (2015)

 (a) (b)

 (c) (d)

 (e) (f)

DOI: 10.1051/03002 (2016), matecconf/2016MATEC Web of Conferences 66

ICIEA 2016

8 803002

5

