

Supporting Information for DOI: 10.1055/s-0035-1561285 © Georg Thieme Verlag KG Stuttgart • New York 2015

Supporting information

Synthesis of Angularly Fused (Homo)triquinane Type Hydantoins as Precursors of Bicyclic α-Prolines

Biljana Šmit^{*a}, Marko Rodić^b, and Radoslav Z. Pavlović^{*c}

[†]Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia [‡]Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia [§]Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia ^{*}E-mail: <u>biljam@kg.ac.rs; radechem@gmail.com</u>

Table of Contents

1.	TABLE S1. Crucial Correlations Observed in NOESY and HMBC Spectra	S1
2.	NMR spectra of all new compounds	S2
3.	Table S2. Crystallographic data, experimental and refinement details for 2c and 3b	S73
4.	ORTEP diagrams for 2c and 3b.	S74

			Compound		
	rac-(5R,6aS,9aS)- 3a	rac- (5S,6aS,9aS)- 3a	rac- (5R,6aS,9aS)- 3b	rac-(5R,6aS,9aS)- 3c	rac-(5S,6aS,9aS)-30
	$H(9)\alpha \leftrightarrow H(5)\alpha$	$H(9)\alpha \leftrightarrow CH_2^{Se}$	$H(8)\alpha \leftrightarrow H(5)\alpha$	$H(6a)\beta \leftrightarrow CH_2^{Se}$	$H(8)\alpha \leftrightarrow H(10)\alpha$
	H(6a)β↔H(8)β	$H(6)\alpha \leftrightarrow CH_2^{Se}$	$H(8)\alpha \leftrightarrow H(6)\alpha$	H(6a)β↔H(9)β	$H(8)\alpha \leftrightarrow H(6)\alpha$
NOE		H(6a)β↔H(8)β	$H(10)\alpha \leftrightarrow H(5)\alpha$	$CH_3 \leftrightarrow CH_2^{Se}$	$CH_3 \leftrightarrow CH_2^{Se}$
NUE		$H(6a)\beta \leftrightarrow H(5)\beta$	$H(6)\beta \leftrightarrow CH_2^{Se}$	$CH_3 \leftrightarrow H(10)\alpha$	$H(6)\beta \leftrightarrow CH_2^{Se}$
oneiations			H(6a)β↔CH ₂ ^{Se}	$H(6)\beta \leftrightarrow CH_2^{Se}$	H(6a)β↔H(9)β
				$H(8)\alpha \leftrightarrow H(10)\alpha$	$H(6a)β↔CH_3$
				$H(8)\alpha \leftrightarrow H(6)\alpha$	
	$CH_2^{Se} \leftrightarrow C(6)$	$CH_2^{Se} \leftrightarrow C(6)$	$CH_2^{Se} \leftrightarrow C(6)$	$CH_2^{Se} \leftrightarrow C(6)$	$CH_2^{Se} \leftrightarrow C(6)$
	$CH_2^{Se} \leftrightarrow C(5)$	$CH_2^{Se} \leftrightarrow C(5)$	$CH_2^{Se} \leftrightarrow C(5)$	$CH_2^{Se} \leftrightarrow C(5)$	$CH_2^{Se} \leftrightarrow C(5)$
	$H(5) \leftrightarrow CH_2^{Se}$	$H(5) \leftrightarrow CH_2^{Se}$	H(5)↔C(6)	$CH_2^{Se} \leftrightarrow CH_3$	$CH_2^{Se} \leftrightarrow CH_3$
	$H(5) \leftrightarrow C(3)$	H(5)↔C(6)	H(6)↔C(5)	$CH_3 \leftrightarrow C(6)$	$CH_3 \leftrightarrow CH_2^{Se}$
	H(6)↔C(9)	H(5)↔C(6a)	H(6)↔C(6a)	$CH_3 \leftrightarrow C(5)$	$CH_3 \leftrightarrow C(6)$
	H(6)↔C(9a)	H(5)↔C(9a)	H(6)↔CH ₂ ^{Se}	$CH_3 \leftrightarrow CH_2^{Se}$	$CH_3 \leftrightarrow C(5)$
	H(6)↔C(6a)	$H(5) \leftrightarrow C(3)$	H(6)↔C(10)	H(6)↔C(6a)	$H(6) \leftrightarrow C(5)$
	H(6a)↔C(1)	$H(6) \leftrightarrow C(7)$	H(6)↔C(10a)	$H(6) \leftrightarrow CH_3$	H(6)↔C(6a)
	H(6a)↔C(5)	$H(6) \leftrightarrow CH_2^{Se}$	H(6)↔C(10)	$H(6) \leftrightarrow C(7)$	$H(6) \leftrightarrow C(5)$
	H(6a)↔C(8)	H(6)↔C(6a)	H(6a)↔C(5)	$H(6) \leftrightarrow CH_2^{Se}$	H(6a)↔C(1)
	$H(7)\leftrightarrow C(8)$	$H(6) \leftrightarrow C(5)$	$H(6a) \leftrightarrow C(6)$	$H(6) \leftrightarrow C(5)$	$H(6a) \leftrightarrow C(5)$
	H(7)↔C(9)	H(6)↔C(9a)	$H(6a) \leftrightarrow CH_2^{Se}$	H(6)↔C(10a)	H(6a)↔C(6)
	H(7)↔C(6a)	H(6a)↔C(8)	H(6a)↔C(10a)	H(6a)↔C(8)	H(6a)↔C(7)
HMBC	H(7)↔C(9a)	$H(6a)\leftrightarrow C(1)$	H(7)↔C(8)	H(6a)↔C(7)	H(9)↔C(10a)
correlations	$H(7) \leftrightarrow C(1)$	$H(7) \leftrightarrow C(5)$	H(7)↔C(6a)	H(6a)↔C(6)	$H(10)\leftrightarrow C(9)$
	$H(8)\leftrightarrow C(1)$	$H(7) \leftrightarrow C(8)$	H(7)↔C(10a)	H(6a)↔C(10a)	H(10)↔C(10a)
	H(8)↔C(6a)	H(7)↔C(6)	H(7)↔C(1)	H(6a)↔C(1)	
	H(8)↔C(7)	H(7)↔C(6a)	H(8)↔C(9)	H(7)↔C(6)	
	H(8)↔C(9a)	H(7)↔C(9a)	H(9)↔C(8)	$H(7)\leftrightarrow C(8)$	
	$H(9) \leftrightarrow C(8)$	H(8)↔C(6)	H(9)↔C(10a)	$H(9) \leftrightarrow C(8)$	
	H(9)↔C(7)	$H(8) \leftrightarrow C(7)$	H(9)↔C(1)	H(9)↔C(10a)	
	H(9)↔C(6a)	$H(8) \leftrightarrow C(9)$	$H(10)\leftrightarrow C(1)$	H(9)↔C(1)	
	H(9)↔C(6)	$H(8) \leftrightarrow C(1)$	H(10)↔C(6a)	H(9)↔C(10)	
	H(9)↔C(9a)	$H(9) \leftrightarrow C(1)$	H(10)↔C(10a)	$H(10) \leftrightarrow C(1)$	
		H(9)↔C(8)		H(10)↔C(6a)	
		$H(9) \leftrightarrow C(7)$		H(10)↔C(10a)	
		$H(9) \leftrightarrow C(6a)$		$H(10) \leftrightarrow C(8)$	
		H(9)↔C(9a)			

 Table S1. Crucial Correlations Observed in NOESY and HMBC Spectra

1 9.0 8.5 1.5 0.5 0.0 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0

00'0---

f1 (ppm)

-157.42

¹³C NMR (125 MHz, CDCl₃)

	<u>t</u>			1	1
			i i		
	1				
 والمراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم		and and the state of the state			Re-Richeller and the second

		1											, ,								
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																				S43	

-	๛๚๛๛๚๚๛๛๛๚๚๛๛๛๛๛๛๛๛๚๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	handrene	 	ساساسي	

-									· · ·											· · ·
:00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																			S55	

~74.28 ~73.01

58.29 57.58

 ^{13}C NMR (50 MHz, D₂O + 2 drops of DCl 36%)

RP-230C RP-230 + DCl $<^{177.07}_{176.47}$

S71

S72

	(2c)	(3b)
Crystal data		
Chemical formula	$C_{12}H_{18}N_2O_2 \cdot H_2O$	$C_{17}H_{20}N_2O_2Se$
$M_{ m r}$	480.6	363.31
Crystal system, space group	Monoclinic, <i>I</i> 2/ <i>a</i>	Monoclinic, $P2_1/n$
Temperature (K)	294	294
a, b, c (Å)	12.7811 (4), 6.2674 (2), 33.3511 (9)	6.7697 (4), 18.4108 (9), 13.0431 (10)
β (°)	93.650 (3)	99.042 (7)
$V(\text{\AA}^3)$	2666.15 (14)	1605.43 (18)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09	2.35
Crystal size (mm)	0.49 imes 0.44 imes 0.04	$0.59 \times 0.15 \times 0.06$
Data collection		
Diffractometer	Gemini S (Oxford Diffraction)	Gemini S (Oxford Diffraction)
Absorption correction	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.852, 1	0.650, 1
No. of measured, independent and	11300, 3164, 2773	7207, 3665, 2432
observed $[I > 2\sigma(I)]$ reflections	0.010	0.000
$R_{\rm int}$	0.018	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm A}^{-1})$	0.685	0.683
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.067, 0.172, 1.14	0.066, 0.227, 1.07
No. of reflections	3164	3665
No. of parameters	167	203
No. of restraints	4	1
H-atom treatment	Mixture of independent and	Mixture of independent and
	constrained refinement	constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.35, -0.18	1.29, -0.93

Table S2 Crystallographic data, experimental and refinement details for 2c and 3b

Figure S1. Molecular structure of 2c. Ellipsoids are drawn at 40% probability level, whereas hydrogen atoms are depicted as spheres of arbitrary radii

Figure S2. Molecular structure of 3b. Ellipsoids are drawn at 40% probability level, whereas hydrogen atoms are depicted as spheres of arbitrary radii