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COMPLETENESS THEOREM FOR CONTINUOUS

FUNCTIONS AND PRODUCT CLASS-TOPOLOGIES

Radosav Djordjević, Vladimir Ristić, and

Nebojša Ikodinović

Abstract. We introduce an infinitary logic LA(On, Cn)n∈ω which is an ex-
tension of LA obtained by adding new quantifiers On and Cn, for every n ∈ ω.
The corresponding models are topological class-spaces. An axiomatization is
given and the completeness theorem is proved.

1. Introduction

In [7] a topological class logic LA(O,C) appropriate for the study of topologies
on proper classes was developed. The logic LA(O,C) is an infinitary logic with new
quantifiers O and C. The corresponding semantics consists of a classical first-order
structure K whose domain K is a class, with addition of two classes T and C of
subsets of K such that (K,T,C) is a topological class-space introduced in [2] (see
Definition 2.1). The intended meaning of Oxϕ(x) (Cxϕ(x)) is that the set defined
by ϕ(x) belongs to the class T (C). The logic LA(O,C) is analogous to the logics
Lωω(O) and Lω1ω(O) developed in [14] for ordinary topological spaces. In [13],
the author investigated the logics Lωω(On)n∈ω and Lω1ω(On)n∈ω with quantifiers
On for each n ∈ ω in order to give a formal treatment of continuous functions on
product topologies.

In this paper, following the ideas from [7] and [13], we continue the study
of topological class logics and introduce the logic LA(On, Cn)n∈ω appropriate for
continuous functions and product class-topologies.

All above mentioned logics are of the form LA(Q1, Q2, . . .), i.e., they are exten-
sions of an admissible fragment LA of Lω1ω with new quantifiers Q1, Q2, . . . Here,
we give some general remarks and a short (mainly informal) overview of the notions
relevant to our consideration.

The original purpose of admissible sets was to generalize classical computability
theory from natural numbers to ordinals. The Kripke–Platek set theory, KP for
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short, is considered as a minimal subsystem of ZF necessary for a good notion of
computation. KP arises from ZF by omitting the Power Set Axiom and restricting
Separation and Collection to ∆0-formulas. An admissible set is a transitive set A

such that (A,∈) is a model of KP. The smallest example of an admissible set is
the set of hereditarily finite sets HF which corresponds to classical computability
theory. Another example of an admissible set, important in this paper, is the set
HC of hereditarily countable sets. To emphasize the analogy with computability
theory, for an arbitrary admissible set A, the elements of A are called A-finite, a
subset of A that is definable in (A,∈) by Σ-formula, with parameters in A, is called
A-computable enumerable (A-c.e.), and a set X ⊆ A is called A-computable if both
X and A rX are A-c.e.

If L is a countable first-order language and A is an admissible set such that
A ⊆ HC and ω ∈ A, the admissible fragment LA is the set of all Lω1ω formulas
that belongs to A. LA is an A-computable set, and is closed under basic syntactical
operations. The Barwise compactness theorem is one of the most significant results
related to admissible fragments: If A is a countable admissible set, and Γ is an
A-c.e. subset of LA such that every A-finite subset of Γ has a model, then Γ has
a model.

Barwise compactness is in the heart of a techniques developed by Rašković
in [11]. After that paper, the technique has been applied for proving completeness
theorems for many infinitary logics with generalized quantifiers [4–7,12]. Roughly
speaking, adding new quantifiers to infinitary logics is one of the most frequent
and high acceptable ways to incorporate into the realm of logic those structures
whose related concepts are left out of the first-order logic (such as: probability
spaces, topological spaces, etc.). Here, our attention is focussed only on n-ary
quantifiers (n > 1) which can be applied to a single formula and bind an n-tuple
of variables. More precisely, if L is a first-order language (a vocabulary) and Q
is an n-ary quantifier, then the set of formulas Lω1ω(Q) is built in the standard
way with the additional formation rule: if ϕ is a formula and ~x is an n-tuple of
variables, then Q~xϕ is a formula. A weak-model for Lω1ω(Q) is a structure of the
form (A, q), where A is an L structure and q is a set of subsets of the universe A.
The truthfulness of an Lω1ω(Q)-formula in such models is defined inductively in
the usual way with the new clause:

(A, q) |= Q~xϕ iff {~a ∈ An | (A, q) |= ϕ[~a]} ∈ q.

Of course, there are many concrete interpretations of Q (Q∞ “there exist infinitely
many"”, Qℵ1

“there exists uncountable many” [10], Q>r “to have probability at
least r” [9,12], Qopen “to be open” [14], etc.).

Combining a consistency property argument and the Henkin construction yields
an Lω1ω(Q)-version of the weak completeness theorem (see [6,11]). In order to
obtain stronger completeness theorems, we have to carry out more interesting model
constructions according to the intended meaning of a new quantifier. The key step
of Rašković’s technique is the construction of a middle model whose all subsets
satisfy some desirable conditions being true in a weak model only for Lω1ω(Q)-
definable subsets. If K = L ∪C is introduced in the construction of a weak model
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(C is a set of new constant symbols and C ∈ A), then a desirable middle model is
obtained by Barwise Compactness applied on a theory of many sorted logic whose
language contains (at least) two kinds of variables: X,Y, Z, . . ., variables for sets,
and x, y, z, . . . variables for urelements. Predicates are En(x1, . . . , xn, X), n > 1,
with canonical meaning (x1, . . . , xn) ∈ X , and Q(X). Constant symbols are Aϕ
for each KA(Q)-formula ϕ. Finally, when a middle model is properly constructed,
it have to be transformed to a strong model. This strategy will be applied in the
proof of Completeness theorem for LA(On, Cn)n∈ω.

The rest of the paper is organized as follows. Section 2 contains a short overview
of topological class-spaces. In Section 3, the syntax and the corresponding seman-
tics of the logic LA(On, Cn)n∈ω are described. A sound and complete axiomatic
system is given in Section 4. This section contains the main result of the paper,
i.e., the completeness theorem for LA(On, Cn)n∈ω. We conclude in Section 5.

2. Preliminaries

The notion of topological class-space was introduced in [2], and further devel-
oped in [3]. The metatheory is NBG class theory.

Definition 2.1. [2] Let K be a class and T and C classes of subsets of K.
We call the triple (K,T,C) a topological class-space if the following axioms are
satisfied:

(KT1) if u, v ∈ T, then u ∩ v ∈ T;
(KT2) for any i, if uj ∈ T, j ∈ i, then

⋃

j∈i uj ∈ T;

(KT3) for any x ∈ K there exists u ∈ T such that x ∈ u;
(KT4) if u ∈ T and a ∈ C, then ur a ∈ T;

(KC1) if a, b ∈ C, then a ∪ b ∈ C;
(KC2) for any i, if aj ∈ C, j ∈ i, then

⋂

j∈i aj ∈ C;

(KC3) for any subset x of K there exists a ∈ C such that x ⊆ a;
(KC4) if u ∈ T and a ∈ C, then ar u ∈ C.

Elements of T are open subsets, while elements of C are closed subsets of K.

Many examples of topological class spaces can be found in [2,3]. The following
theorem is an answer to the question when an ordered pair (BT ,BC) of classes of
subsets of a class K defines a class-space over K.

Theorem 2.1. [3] Let K be a proper class and BT and BC be classes of subsets

of K such that

(1) ∀x ∈ K ∃s ∈ BT x ∈ s.
(2) for every subset m ⊆ K there is f ∈ BC such that m ⊆ f .

(3) ∀s ∈ BT ∀f ∈ BC (sr f ∈ BT ∧ f r s ∈ BC).

Then there is the least class-topology (K,T,C) such that BT ⊆ T and BC ⊆ C.

If K and L are classes, recall that a map from K into L is every class F ⊆ K×L

such that ∀x ∈ K ∃1y ∈ L (x, y) ∈ F.
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Definition 2.2. [2] Let (K,TK,CK) and (L,TL,CL) be class-spaces. A map
F : K → L is continuous iff the restriction F ↾ u to every u ∈ TK is a continuous
function.

Theorem 2.2. [3] Let (K,TK,CK) and (L,TL,CL) be class-spaces and let

F : K → L be a map. Then the following are equivalent:

(1) F is continuous.

(2) For all u ∈ TK, and all w ∈ TL, u ∩ F−1(w) ∈ TK.

(3) For all v ∈ CK, and all w ∈ CL, v ∩ F−1(w) ∈ CK.

The product of two class-spaces (K1,T1,C1) and (K2,T2,C2) is the class-space
(K,T,C), where K = K1 × K2 and the basis for T and C are the classes T0 =
{

π−1
1 (u) ∩ π−1

2 (v) | u ∈ T1, v ∈ T2
}

and C0 =
{

π−1
1 (u) ∩ π−1

2 (v) | u ∈ C1, v ∈ C2
}

,
where π1 : K → K1 and π2 : K → K2 are projection maps. The classes T0 and
C0 do not satisfy the conditions of Theorem 2.1, so let T

′ be the class of all finite
unions of the elements of the class T0, and C′ be the class of all finite unions of
the elements of the class C0. It is obvious that the classes T′ and C′ are closed
under finite intersections. In fact, the classes T′ and C′ form the base of the
topological class-space (K,T,C). Note that T0 ⊆ T′ and C0 ⊆ C′ and the classes
T′ and C′ satisfy the conditions of Theorem 2.1, and there is the least class-space
(K,T,C) such that T′ ⊆ T and C′ ⊆ C. It is not difficult to see that the class
T = {∪x | x is a finite intersection of members of T′} is exactly the class T of the
open sets. Similarly, the class C = {∩x | x is a finite union of members of C′} is
the class C of closed sets. Furthermore, each open set O ∈ T is a union of sets of
the form O1 ×O2, where O1 ∈ T1 and O2 ∈ T2. This fact is of the great importance
for our axiomatization given here.

3. Syntax and semantics of the logic LA(On, Cn)n∈ω

We assume that A is a countable admissible set such that A ⊆ HC and ω ∈ A.
We refer the reader to [1, 8] for a detailed treatment of admissible sets and the
infinitary logic LA. Briefly, we note that the set of formulas of LA is the set of
all expressions in A that are built from atomic formulas using negation, finite or
infinite conjunction, and the quantifier ∀.

Let L be a Σ-definable set which contains a set of finitary relation symbols.
The infinitary logic LA(On, Cn)n∈ω is an extension of LA obtained by adding new
quantifiers Onx1, . . . , xn and Cnx1, . . . , xn, for every n ∈ ω, where x1, . . . , xn is a
tuple of pairwise distinct variables.

Definition 3.1. The set of formulas of LA(On, Cn)n∈ω is the least set such that:

(1) Each atomic formula of first-order logic is a formula of LA(On, Cn)n∈ω ;
(2) If ϕ is a formula of LA(On, Cn)n∈ω then ¬ϕ is a formula of LA(On, Cn)n∈ω;
(3) If ϕ is a formula of LA(On, Cn)n∈ω then ∀xϕ, ∃xϕ, Onx1, . . . , xnϕ and

Cnx1, . . . , xnϕ are formulas of LA(On, Cn)n∈ω ; occasionally, we use the
abbreviation Qn~x for Qx1 . . . Qxn, Q ∈ {∀, ∃};

(4) If Φ ∈ A is a set of formulas of LA(On, Cn)n∈ω with only finitely many
free variables, then

∧

Φ is a formula of LA(On, Cn)n∈ω.
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Three types of models are relevant for our logic.

Definition 3.2. A weak model for LA(On, Cn)n∈ω is a structure (K,Tn,Cn)n∈ω,
such that K is a first-order structure of a language L whose universe K is a class,
and Tn, Cn are classes of subsets of Kn.

A middle model for LA(On, Cn)n∈ω is a weak model (K,Tn,Cn)n∈ω, such that:

(a) For each (x1, . . . , xn) ∈ K
n there is U ∈ Tn such that (x1, . . . , xn) ∈ U ;

(b) For every subset X ⊆ Kn there is F ∈ Cn such that X ⊆ F ;
(c) For all U ∈ Tn and F ∈ Cn, U r F ∈ Tn and F r U ∈ Cn.

A complete topological class model for LA(On, Cn)n∈ω is a weak model (K,Tn,Cn)n∈ω

such that for each n ∈ ω, (Kn,Tn,Cn) is a topological class-space, Tn is the n-th
topological product of T1 on K and Cn is the n-th topological product of C1 on K.

The satisfaction relation |= is defined inductively in the usual way with the
new clauses:

(K,Tn,Cn)n∈ω |= Okx1, . . . , xkϕ[x1, . . . , xk, b1, . . . , bl] iff

{(a1, . . . , ak) | (K,Tn,Cn)n∈ω |= ϕ[a1, . . . , ak, b1, . . . , bl]} ∈ Tk

for (b1, . . . , bl) ∈ Kl;

(K,Tn,Cn)n∈ω |= Ckx1, . . . , xkϕ[x1, . . . , xk, b1, . . . , bl] iff

{(a1, . . . , ak) | (K,Tn,Cn)n∈ω |= ϕ[a1, . . . , ak, b1, . . . , bl]} ∈ Ck

for (b1, . . . , bl) ∈ Kl.

4. A complete axiomatization

LA(On, Cn)n∈ω has the following set of axioms, where Φ =
⋃

n∈ω Φn,
Φn= {ϕ ∈ Φ | ϕ is a formula of LA(O,C) with n+1 free variables}, and Φ,Φn∈ A,
n ∈ ω:

(1) All axioms schemas for LA;
(2) ∀x1, . . . , xn(ϕ ↔ ψ) → (Onx1, . . . , xnϕ ↔ Onx1, . . . , xnψ);

∀x1, . . . , xn(ϕ ↔ ψ) → (Cnx1, . . . , xnϕ ↔ Cnx1, . . . , xnψ);
(3) Onx1, . . . , xnϕ(x1, . . . , xn) → Ony1, . . . , ynϕ(y1, . . . , yn);

Cnx1, . . . , xnϕ(x1, . . . , xn) → Cny1, . . . , ynϕ(y1, . . . , yn);
(4) Onx1, . . . , xn(x1 6= x1);

Cnx1, . . . , xn(x1 6= x1);
(5) Onx1, . . . , xnϕ ∧Onx1, . . . , xnψ → Onx1, . . . , xn(ϕ ∧ ψ);

Cnx1, . . . , xnϕ ∧Cnx1, . . . , xnψ → Cnx1, . . . , xn(ϕ ∨ ψ);
(6) Onx1, . . . , xnϕ ∧ Cnx1, . . . , xnψ → Onx1, . . . , xn(ϕ ∧ ¬ψ);

Onx1, . . . , xnϕ ∧ Cnx1, . . . , xnψ → Cnx1, . . . , xn(¬ϕ ∧ ψ);
(7) ∀yOnx1, . . . , xnϕ(x1, . . . , xn, y) → Onx1, . . . , xn∃yϕ(x1, . . . , xn, y);

∀yCnx1, . . . , xnϕ(x1, . . . , xn, y) → Cnx1, . . . , xn∀yϕ(x1, . . . , xn, y);
(8)

∧

ϕ∈Φ
Onx1, . . . , xnϕ → Onx1, . . . , xn

∨

Φ;
∧

ϕ∈Φ
Cnx1, . . . , xnϕ → Cnx1, . . . , xn

∧

Φ;
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(9) Onx1, . . . , xnϕ ∧Omxn+1, . . . , xn+mψ → On+mx1, . . . , xm+n(ϕ ∧ ψ);
Cnx1, . . . , xnϕ ∧Cmxn+1, . . . , xn+mψ → Cn+mx1, . . . , xn+m(ϕ ∧ ψ);

(10) Onx1, . . . , xnϕ(x1, . . . , xn) → Okxi1 , . . . , xikϕ(xσ(1), . . . , xσ(n));

Cnx1, . . . , xnϕ(x1, . . . , xn) → Ckxi1 , . . . , xikϕ(xσ(1), . . . , xσ(n)),
where σ : n → n, |σ[n]| = k and σ = {i1 < · · · < ik};
[Informal meaning: The permutation, projection, or consolidation of an
open set is open (see [13])]

(11) Onx1, . . . , xnϕ(x1, . . . , xn) → ∀x1, . . . , xkO
n−kxk+1, . . . , xnϕ(x1, . . . , xn);

[Informal meaning: Any projection of an open set is open.]
(12) ∀n~x

∨

m

∨

ϕ∈Φm+n−1

∃m~y
(

On~zϕ(~z, ~y) ∧ ϕ(~x, ~y)
)

;

[Axiom corresponds to the condition (KT3).]
(13)

∧

n

∧

ϕ∈Φn+k−1

∀n~x
∨

m

∨

ψ∈Φm+k−1

∃m~y
(

Ck~zψ(~z, ~y) ∧ ∀k~u
(

ϕ(~u, ~x) → ψ(~u, ~y)
))

;

[Axiom corresponds to the condition (KC3).]
(14) Om~yψ(~y) →

∧

l

∧

θ∈Φn+l−1

∀l~v
(

On~xθ(~x,~v) →

→ Om+n−k~z, yk+1, . . . , ym
(

∃y1, . . . , yk
(

ψ(~y) ∧ ϕ(~z, ~y)
)

∧ θ(~z,~v)
))

;
[Informal meaning: ϕ(z1, . . . , zn, y1, . . . , yk) defines an (n, k)-ary continu-
ous relation, i.e., under the restriction to any open set, the inverse image
of a slice of an open set is open.]

(15)
∧

n

∧

ϕ∈Φn−1

∀n~u
∨

k∈ωn

∨

(ϕ1,...,ϕn)∈Φk1
×...×Φkn

∃x11 . . . x1k1
. . . ∃xn1 . . . xnkn

(

On~xϕ(~x) ∧ ϕ(~u) →
( n

∧

i=1

(

Oxϕi(x, xi1, . . . , xiki
) ∧ ϕi(ui, xi1, . . . , xiki

)
)

∧

∧∀y1, . . . , yn
(

n
∧

i=1
ϕi(yi, xi1, . . . , xiki

) → ϕ(y1, . . . , yn)
)

))

,

(for simplicity the formula ϕ is written without parameters);
[Informal meaning: Every open set is the union of open boxes, i.e., if
(x1, . . . , xn) ∈ U ∈ Tn, then there exist V1, . . . , Vn ∈ T1 such that
(x1, . . . , xn) ∈ V1 × · · · × Vn ⊆ U .]

(16) ∀n~y
∧

k

∧

ϕ∈Φk+n−1

∨

l∈ωn

∨

(ϕ1,...,ϕn)∈Φl1
×...×Φln

∃x11 . . . x1l1 . . . ∃xn1 . . . xnln

(

Cn~xϕ(~x) ∧ ¬ϕ(~y) →
( n

∧

i=1
Oxϕi(x, xi1, . . . , xili) ∧ ϕi(yi, xi1, . . . , xili )

)

∧

∧∀x1, . . . , xn

( n
∧

i=1
ϕi(xi, xi1, . . . , xili) → ¬ϕ(x1, . . . , xn)

))

;

(for simplicity the formula ϕ is written without parameters);
[Informal meaning: If (x1, . . . , xn) 6∈ F ∈ Cn, then there exist V1, . . . , Vn ∈
T1 such that (x1, . . . , xn) ∈ V1 × · · · × Vn and (V1 × · · · × Vn) ∩ F = ∅
(see [2,3]).]

and the rules of inferences:

(R1) From ϕ and ϕ → ψ, infer ψ.
(R2) From ϕ → ψ, for all ψ ∈ Ψ, infer ϕ →

∧

ψ∈Ψ
ψ.
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(R3) From ϕ, infer ∀xϕ.

Axioms (2)–(8), (12) and (13) formalize our notion of topologies on classes and
they are analogue to the axioms of the LA(O,C). Axioms (9), (10) and (11) describe
products of topological class-spaces. Axiom (14) enforces the constraint that an
(n, k)-ary relation defined by a formula ϕ(z1, . . . , zn, y1, . . . , yk) is continuous (see
Theorem 2.2, and [13]). Axioms (15) and (16) capture the fact that for each n ∈ ω,
Tn is the n-th topological product of T1 on K, and Cn is n-th topological product
of C1 on K.

The soundness theorem for LA(On, Cn)n∈ω holds since all the axioms represent
properties of the topological class-spaces. We prove that the axiomatization is
complete with respect to the class of complete topological class models. In the proof
we combine Keisler’s construction for the weak completeness theorem in [10], with
Sgro’s construction from [14] and Rašković’s middle-strong construction from [11].
Two simple statements will be used in the middle-strong construction:

(1) If Y ⊆ K and Y is not open, then there is c ∈ Y such that if U is open
and U ⊆ Y then c /∈ U .

(2) If Y ⊆ K and Y is not closed, then there is c /∈ Y such that if F is closed
and Y ⊆ F then c ∈ F .

Let T be a set of sentences of LA(On, Cn)n∈ω such that T is Σ1-definable over A

and consistent with the axioms of LA(On, Cn)n∈ω. Let θO
k

and θC
k

, k ∈ ω, be the
sentences of LA(On, Cn)n∈ω introduced for each formula θ(x1, . . . , xk, y1, . . . , yn) as
follows:

(O) θO
k

is ∀n~y∃k~x(¬Ok~zθ(~z, ~y) →
∧

m

∧

χ∈Φm+k−1

θO
k

χ (~x, ~y)),

where θO
k

χ (~x, ~y) is

∀m~z
(

(Ok~uχ(~u, ~z) ∧ ∀k~v(χ(~v, ~z) → θ(~v, ~y))) → (θ(~x, ~y) ∧ ¬χ(~x, ~z))
)

.

(C) θC
k

is ∀n~y∃k~x(¬Ck~zθ(~z, ~y) →
∧

m

∧

χ∈Φm+k−1

θC
k

χ (~x, ~y)),

where θC
k

χ (~x, ~y) is

∀m~z
(

(Ck~uχ(~u, ~z) ∧ ∀k~v(θ(~v, ~y) → χ(~v, ~z))) → (¬θ(~x, ~y) ∧ χ(~x, ~z))
)

.

Note that θO
k

χ (x1, . . . , xk, y1, . . . , yn) is the set of k-typles (x1, . . . , xk) wich are

in θ, but not in any open subset of θ defined by χ using parameters, and θO
k

means
that for any parameters, if θ is not open then it is not equal to any union of open

sets definable in LA(On, Cn)n∈ω. Similarly, θC
k

χ (x1, . . . , xk, y1, . . . , yn) is the set
of k-typles (x1, . . . , xk) which are in any closed superset of θ defined by χ using

parameters, and θC
k

means that for any parameters, if θ is not closed then it is
not equal to any intersection of closed sets definable in LA(On, Cn)n∈ω. It can be

shown (as in [7]) that Γ = T ∪ {θO
k

, θC
k

| θ is a formula in , k ∈ ω} is consistent
in LA(On, Cn)n∈ω. By Keisler’s construction of weak models, we get a set model
with the properties of topological class-spaces (see [7] for more details). In the
weak model (K,Tn,Cn)n∈ω of the theory Γ, the condition (KC3) holds, by Axiom
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(13), only for LA(On, Cn)n∈ω-definable sets. The construction of the middle model
extends (KC3) to all subsets of Kn, n ∈ ω.

Theorem 4.1 (Middle Completeness Theorem for LA(On, Cn)n∈ω). Let T be a

set of sentences of LA(On, Cn)n∈ω such that T is Σ1-definable over A and consistent

with the axioms of LA(On, Cn)n∈ω. Then there is a middle model of T .

Proof. Let K = L∪C be the language introduced in the Keisler construction
of a weak model of Γ where C is a set of new constant symbols and C ∈ A. Let M be
a language with two kinds of variables: X,Y, Z, . . . variables for sets and x, y, z, . . .
variables for urelements. Predicates of our language are En(x1, . . . , xn, X), On(X)
and Cn(X), n ∈ ω, with canonical meaning (x1, . . . , xn) ∈ X , X is an open set of
n-typles and X closed set of n-typles. Constant symbols are Cϕ for each formula
ϕ of LA(On, Cn)n∈ω. Let S be the following theory of MA:

(1) Axiom of well-definedness
∀X

∧

n<m

¬∃x1, . . . , xn, yn+1, . . . , ym(Em(x1, . . . , xn, yn+1, . . . , ym, X)∧

∧En(x1, . . . , xn, X)),
where {x1, . . . , xn} ∩ {yn+1, . . . , ym} = ∅;

(2) Axiom of extensionality
∀x1, . . . , xn (En(x1, . . . , xn, X) ↔ En(x1, . . . , xn, Y )) ↔ X = Y ;

(3) Axiom of specification
(a) ∀n~x (∀m~yy1, . . . , ymEn+m(~x, ~y, CR) ↔ En+m(~x,~c, CR))

for each atomic formula R(x1, . . . , xn, c1, . . . , cm) of KA;
(b) ∀n~x (En(~x,C¬ϕ) ↔ ¬En(~x,Cϕ));
(c) ∀n~x (En(~x,C∧Φ) ↔

∧

ϕ∈Φ
En(~x,Cϕ));

(d) ∀n~x (En(~x,C∀xϕ) ↔ ∀xE1+n(x, ~x, Cϕ));
(e) ∀n~x (En(~x,C∃xϕ) ↔ ∃xE1+n(x, ~x, Cϕ));
(f) ∀m~x

(

Em(~x,COn~y ϕ) ↔ ∃X(On(X) ∧

∧ ∀n~y(En(~y,X) ↔ En+m(~y, ~x, Cϕ)))
)

;

(g) ∀m~x
(

Em(~x,CCn~y ϕ) ↔ ∃X(Cn(X) ∧

∧ ∀~y(En(~y,X) ↔ En+m(~y, ~x, Cϕ)))
)

;
(4) Axiom of subbases

(a) ∀n~x ∃X
(

On(X) ∧ En(~x,X));
[ see LA(On, Cn)n∈ω-axiom (12)]

(b) ∀X ∃Y
(

∃n~xEn(~x,X) → Cn(Y ) ∧ ∀n~x(En(~x,X) → En(~x, Y ))
)

;
[ see LA(On, Cn)n∈ω-axiom (13)]

(c) ∀X ∀Y ∀Z
(

On(X) ∧ Cn(Y ) →
(

(∀n~x (En(~x, Z) ↔

↔ ¬En(~x, Y ) ∧ En(~x,X)) → On(Z))
))

;
[ see LA(On, Cn)n∈ω-axiom (6)]

(d) ∀X ∀Y ∀Z
(

On(X) ∧ Cn(Y ) →
((

∀n~x
(

En(~x, Z) ↔

↔ ¬En(~x,X) ∧ En(~x, Y )
)

→ Cn(Z)
)))

;
[ see LA(On, Cn)n∈ω-axiom (6)]

(5) Axioms of complete topological product and continuity
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(a) ∀X ∀Y ∀Z
(

On(X) ∧Om(Y ) ∧ ∀n+1~x
(

En+m(~x, Z) ↔

↔ En(x1, . . . , xn, X) ∧Em(xn+1, . . . , xn+m, Y )
)

→ On+m(Z)
)

;
[ see LA(On, Cn)n∈ω-axiom (9)]

(b) ∀X ∀Y
(

On(X) ∧ ∀xi1 , . . . , xik
(

Ek(xi1 , . . . , xik , Y ) ↔

↔ En(xσ(1), . . . , xσ(n), X)
)

→ Ok(Y )
)

,
σ : {1, . . . , n} → {1, . . . , n} and the range of σ is {i1 < i2 < · · · < ik};
Similarly for the predicates Cn;
[ see LA(On, Cn)n∈ω-axiom (10)]

(c) ∀X ∀Y
(

On(X) ∧ ∀k~x
(

∃yk+1, . . . , yn En(~x, yk+1, . . . , yn, X) →

→ ∀xk+1, . . . , xn
(

En−k(xk+1, . . . , xn, Y ) ↔

↔ En(x1, . . . , xn, X)
))

→ On−k(Y )
)

;
[ see LA(On, Cn)n∈ω-axiom (11)]

(d) ∀X∀n~x
(

On(X)∧En(~x,X) → ∃Y1 . . . ∃Yn
( n

∧

i=1

(

O(Yi)∧E1(xi, Yi)
)

∧

∧ ∀n~y
( n

∧

i=1
E1(yi, Yi) → En(~y,X)

)))

;

[ see LA(On, Cn)n∈ω-axiom (15)]

(e) ∀X∀n~x
(

Cn(X)∧¬En(~x,X) → ∃Y1 . . .∃Yn
( n

∧

i=1

(

O(Yi)∧E1(xi, Yi)
)

∧

∧ ∀n~y
( n

∧

i=1
E1(yi, Yi) → ¬En(~y,X)

)))

;

[ see LA(On, Cn)n∈ω-axiom (16)]
(f) ∀X ∀Y ∀Z

(

Om(X) ∧On(Z) →

→
(

∀z1, . . . , zn, yk+1, . . . , ym
((

∃y1, . . . , yk(Em(y1, . . . , ym, X) ∧
∧ En+k(z1, . . . , zn, y1, . . . , yk, Cϕ)) ∧ En(z1, . . . , zn, Z) ↔

↔ Em+n−k(z1, . . . , zn, yk+1, . . . , ym, Y )
)

→ Om+n−k(Y )
)))

,
for each (n, k)-ary relation ϕ;
[ see LA(On, Cn)n∈ω-axiom (14)]

(6) Axioms which are transformations of all axioms ϕ of KA(On, Cn)n∈ω

∀x1, . . . , xn En(x1, . . . , xn, Cϕ);
(7) Axioms of realizability of all sentences ϕ in Γ

∀x E1(x,Cϕ).

The theory S is Σ-definable over A and each S0 ⊆ S, S0 ∈ A has a standard
model since the axiom

∧

n

∧

ϕ∈(S′

0
)n+k−1

∀n~x
∨

m

∨

ψ∈(S′

0
)m+k−1

∃m~y
(

Ck~zψ(~z, ~y) ∧ ∀k~u
(

ϕ(~u, ~x) → ψ(~u, ~y)
))

holds in the weak model (K,Tn,Cn)n∈ω, which can be transformed to a standard
model for S0 (see [7]), where S0 ⊆ S′

0, S′
0 ∈ A is closed under substitution of the

constant symbol from K and disjunction, and

(S′
0)n = {ϕ ∈ S′

0 | ϕ has n+ 1 free variables}.
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It follows by means of the Barwise compactness theorem (see [1]) that S has a
standard model B, which can be transformed to a middle model (K,Tn,Cn)n∈ω of
Γ, similarly as in the logic LA(O,C). �

Let (K,T′
n,C

′
n)n∈ω be the middle model of T where T is Σ1-definable over A

consistent with the axioms of LA(On, Cn)n∈ω. Classes T
′
n and C

′
n for each n ∈ ω

satisfy conditions 2.1, so we can form the classes

Tn = {x | x is a finite intersection of members of T′
n}

and

Cn = {x | x is a finite unionof members of C′
n}.

As in the logic LA(O,C) we can prove that

(K,T′
n,C

′
n)n∈ω ≡LA(On,Cn)n∈ω

(K,Tn,Cn)n∈ω,

where Tn = {
⋃

x | x ∈ Tn} and Cn = {
⋂

x | x ∈ Cn} for each n ∈ ω using the

sentences θO
k

and θC
k

for each formula θ(z1, . . . , zn, y1, . . . , yn) of LA(On, Cn)n∈ω.
The given structure will be a complete topological class model for T . We have thus
proved the following theorem.

Theorem 4.2 (Completeness Theorem for LA(On, Cn)n∈ω). If T is Σ1-defin-

able over A and consistent with the axioms of LA(On, Cn)n∈ω, then there is a

complete topological class model of T .

5. Conclusion

We introduced the logic LA(On, Cn)n∈ω related to topological class-spaces and
suitable for studying continuous functions and product class-topologies. A sound
and complete axiomatization is given, and the completeness theorem is proved. The
proof illustrates the power of Rašković’s middle-model method in producing new
results. In general, it is worth noticing that Barwise compactness and the great
expressive power of infinitary logics can provide more subtle models that can be
obtained from ordinary compactness of the first-order logic.
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