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A unique fixed point theorem for three self-maps under rational type contractive condition is established. In addition, a unique
fixed point result for six continuous self-mappings through rational type expression is also discussed.

1. Introduction

Fixed point theory is one of the core subjects of nonlinear
analysis. This theory is not constrained to mathematics; it is
also applicable to other disciplines. It is closely linked with
social and medical science, military applications, graph the-
ory [1], game theory, economics [2], statistics, and medicine.
This theory is divided into three categories: topological fixed
point theory, metric fixed point theory, and discrete fixed
point theory.

In metric fixed point theory, the first result proved by
Banach [3] is known as Banach contraction principle. Many
researchers extended this principle for the study of fixed
points and common fixed points using different types of
contraction such as weak contraction [4, 5], integral type
contraction [6], rational type contraction [7], and T-Hardy
Rogers type contraction [8]. For more details, see [9–11] and
so forth.

Dass and Gupta [12] gave the extension of Banach’s
contraction mapping principle by using a contractive con-
dition of rational type. Jaggi [7] proved some unique fixed
point results through contractive condition of rational type
in metric spaces. Harjani et al. [13] studied the results of
Jaggi in the setting of partially ordered metric spaces. Using
generalized weak contractions Luong and Thuan [14] gener-
alized the results of [13] through rational type expressions

in the context of partially ordered metric spaces. Chandok
and Karapinar [15] generalized the results of Harjani and
established common fixed point results for weak contractive
conditions satisfying rational type expressions in partially
ordered metric spaces. Mustafa et al. [16] discussed fixed
point results by almost generalized contraction via rational
type expression which generalizes, extends, and unifies the
results of Jaggi [7], Harjani et al. [13], and Luong and Thuan
[14], respectively. Fixed point theorems for contractive type
conditions satisfying rational inequalities in metric spaces
have been developed in a number of works; see [17–20] and
so forth.

Mustafa and Sims [21] generalized the notion of metric
space as an appropriate notion of generalized metric space
called 𝐺-metric space. They have investigated convergence
in 𝐺-metric spaces, introduced completeness of 𝐺-metric
spaces, and proved a Banach contraction mapping theorem
and some other fixed point theorems involving contractive
type mappings in 𝐺-metric spaces using different contractive
conditions. Later, various authors have proved some common
fixed point theorems in these spaces (see [8, 22–24]).

Sanodia et al. [25] used rational type contraction and
investigated a unique fixed point theorem for single mapping
in 𝐺-metric spaces. Gandhi and Bajpai [26] generalized the
result of Sanodia et al. and proved unique common fixed
point results for three mappings in 𝐺-metric space satisfying
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rational type contractive condition. Recently, Shrivastava et
al. [27] established some unique fixed point theorem for some
new rational type contraction.

The aim of this paper is to establish two common fixed
point theorems satisfying rational type contraction. In the
first result, we discuss the existence and uniqueness of
common fixed point for three self-maps in the context of
𝐺-metric space, while in the second one we studied the
uniqueness of common fixed point for six continuous self-
mappings in the setting of 𝐺-metric through rational type
expression.

2. Preliminaries

We recall some definitions that will be used in our discussion.

Definition 1 (see [21]). Let𝑋 be a nonempty set and let𝐺 : 𝑋×

𝑋×𝑋 → R+ be a function satisfying the following conditions:

(1) 𝐺(𝑥, 𝑦, 𝑧) = 0 implies that 𝑥 = 𝑦 = 𝑧 for all 𝑥, 𝑦, 𝑧 ∈

𝑋.

(2) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

(3) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) ⋅ ⋅ ⋅ for all 𝑥, 𝑦, 𝑧 ∈

𝑋.

(4) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎)+𝐺(𝑎, 𝑦, 𝑧) for all𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Then, it is called 𝐺-metric and the pair (𝑋, 𝐺) is a 𝐺-
metric space.

Proposition 2 (see [21]). Let (𝑋, 𝐺) be a 𝐺-metric space. The
following are equivalent:

(1) (𝑥
𝑛
) is 𝐺-convergent to 𝑥.

(2) 𝐺(𝑥
𝑛
, 𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞.

(3) 𝐺(𝑥
𝑛
, 𝑥, 𝑥) → 0 as 𝑛 → ∞.

(4) 𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥) → 0 as 𝑛,𝑚 → ∞.

Definition 3 (see [22, 28]). A pair of self-mappings 𝑓, 𝑔 in a
𝐺-metric space is said to be weakly commuting if

𝐺 (𝑓𝑔𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥) ≤ 𝐺 (𝑓𝑥, 𝑔𝑥, 𝑔𝑥) , ∀𝑥 ∈ 𝑋. (1)

Sanodia et al. [25] proved the following fixed point theorem
in the setting of 𝐺-metric space.

Theorem4. Let (𝑋, 𝐺) be a𝐺-complete𝐺-metric space and let
𝑓 : 𝑋 → 𝑋 be a self-map satisfying the condition

𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) ≤ 𝐴

⋅

max {𝐺
2
(𝑥, 𝑓𝑥, 𝑓𝑦) , 𝐺

2
(𝑦, 𝑓𝑦, 𝑓𝑧) , 𝐺

2
(𝑧, 𝑓𝑧, 𝑓𝑥)}

𝐺 (𝑥, 𝑦, 𝑧)

(2)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 0 ≤ 𝐴 < 1. Then, 𝑓 has a unique
common fixed point in 𝑋.

Theorem 5. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑆, 𝑇 : 𝑋 → 𝑋 be two self-maps such that 𝑆(𝑋) ⊂ 𝑇(𝑋)

satisfying the following condition:

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝐴

⋅

max {𝐺
2
(𝑆𝑥, 𝑇𝑥, 𝑇𝑦) , 𝐺

2
(𝑆𝑦, 𝑇𝑦, 𝑇𝑧) , 𝐺

2

(𝑆𝑧, 𝑇𝑧, 𝑇𝑥)}

𝐺 (𝑆𝑥, 𝑆𝑦, 𝑆𝑧)

(3)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋with 0 ≤ 𝐴 < 1.Then, 𝑆 and𝑇 have a unique
common fixed point in 𝑋.

Gandhi and Bajpai [26] proved unique common fixed
point results satisfying the following rational type contractive
condition.

Theorem6. Let (𝑋, 𝐺) be a𝐺-complete𝐺-metric space and let
𝑓, 𝑔, ℎ : 𝑋 → 𝑋 be three self-mappings satisfying the condition

𝐺 (𝑓𝑥, 𝑔𝑦, ℎ𝑧) ≤ 𝐴

⋅

max {𝐺
2
(𝑥, 𝑓𝑥, 𝑔𝑦) , 𝐺

2
(𝑦, 𝑔𝑦, ℎ𝑧) , 𝐺

2
(𝑧, ℎ𝑧, 𝑓𝑥)}

𝐺 (𝑥, 𝑦, 𝑧)

(4)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 0 ≤ 𝐴 < 1. Then, 𝑓, 𝑔, and ℎ have a
unique common fixed point in 𝑋.

Currently, Shrivastava et al. [27] studied the following
result.

Theorem7. Let (𝑋, 𝐺) be a𝐺-complete𝐺-metric space and let
𝑓 : 𝑋 → 𝑋 be a self-map satisfying the condition

𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) ≤ 𝐴 ⋅
𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑥, 𝑓𝑧, 𝑓𝑧)

2
+ 𝐵

⋅ (𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦)𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑥, 𝑓𝑧, 𝑓𝑧)

+ 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥) + 𝐺 (𝑧, 𝑓𝑥, 𝑓𝑥))

⋅ (2 (𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)))
−1

(5)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 0 ≤ 𝐴 + 𝐵 < 1/2. Then, 𝑓 has a unique
common fixed point in 𝑋 and 𝑓 is 𝐺-continuous at 𝑢.

3. Main Results

Our first new result is the following.

Theorem8. Let (𝑋, 𝐺) be a𝐺-complete𝐺-metric space and let
𝑆, 𝑇, 𝑅 : 𝑋 → 𝑋 be three self-mappings satisfying the following
condition:

𝐺 (𝑆𝑥, 𝑇𝑦, 𝑅𝑧) ≤ 𝐴 ⋅ (𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)𝐺 (𝑦, 𝑇𝑦, 𝑅𝑧)

+ [𝐺 (𝑥, 𝑦, 𝑧)]
2

+ 𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑦, 𝑧))

⋅ (𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦) + 𝐺 (𝑥, 𝑦, 𝑧) + 𝐺 (𝑦, 𝑇𝑦, 𝑅𝑧))
−1

+ 𝐵 ⋅ (𝐺 (𝑦, 𝑇𝑦, 𝑅𝑧) [1 + 𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)]

⋅ (1 + 𝐺 (𝑥, 𝑦, 𝑧))
−1

) + 𝐶 ⋅ 𝐺 (𝑥, 𝑦, 𝑧)

(6)
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for all𝑥, 𝑦, 𝑧 ∈ 𝑋with𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥,𝐴, 𝐵, 𝐶 ≥ 0with 0 ≤ 𝐴+

𝐵+𝐶 < 1,𝐺(𝑥, 𝑆𝑥, 𝑇𝑦)+𝐺(𝑥, 𝑦, 𝑧)+𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) ̸= 0.Then, 𝑆,
𝑇, and 𝑅 have a common fixed point. Further, if𝐺(𝑥, 𝑆𝑥, 𝑇𝑦)+

𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) = 0 implies 𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧) = 0, then
𝑆, 𝑇, and 𝑅 have a unique common fixed point in 𝑋.

Proof. Let 𝑥
0
be arbitrary in 𝑋; we define a sequence 𝑥

𝑛
by

the following rules:

𝑥
3𝑛+1

= 𝑆𝑥
3𝑛

,

𝑥
3𝑛+2

= 𝑇𝑥
3𝑛+1

,

𝑥
3𝑛+3

= 𝑅𝑥
3𝑛+2

,

∀𝑛 ∈ X.

(7)

Now, we have to show that 𝑥
𝑛
is a 𝐺-Cauchy sequence in 𝑋.

Consider 𝐺(𝑥, 𝑆𝑥, 𝑇𝑦) + 𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) ̸= 0; from
(6), we have

𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) = 𝐺 (𝑆𝑥
3𝑛

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

) ≤ 𝐴

⋅ [𝐺 (𝑥
3𝑛

, 𝑆𝑥
3𝑛

, 𝑇𝑥
3𝑛+1

) 𝐺 (𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

)

+ [𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)]
2

+ 𝐺 (𝑥
3𝑛

, 𝑆𝑥
3𝑛

, 𝑇𝑥
3𝑛+1

)

⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)] (𝐺 (𝑥
3𝑛

, 𝑆𝑥
3𝑛

, 𝑇𝑥
3𝑛+1

)

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

+ 𝐺 (𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

))
−1

+ 𝐵

⋅ (𝐺 (𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

) [1

+ 𝐺 (𝑥
3𝑛

, 𝑆𝑥
3𝑛

, 𝑇𝑥
3𝑛+1

)] (1

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

))
−1

) + 𝐶 ⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

= 𝐴 ⋅ [𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) 𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

)

+ [𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)]
2

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)] (𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) + 𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

))
−1

+ 𝐵 ⋅ (𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) [1

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)] (1

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

))
−1

) + 𝐶 ⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

= 𝐴 ⋅ [𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) (𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

)

+ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) + 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

))]

⋅ (𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) + 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

+ 𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

))
−1

+ 𝐵

⋅ (𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) [1 + 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)]

⋅ (1 + 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

))
−1

) + 𝐶 ⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

,

𝑥
3𝑛+2

) = 𝐴 ⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) + 𝐵 ⋅ 𝐺 (𝑥
3𝑛+1

,

𝑥
3𝑛+2

, 𝑥
3𝑛+3

) + 𝐶 ⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) = (𝐴 + 𝐶)

⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) + 𝐵 ⋅ 𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) ,

(8)

which implies that

𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) ≤ ℎ ⋅ 𝐺 (𝑥
3𝑛

, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) , (9)

where ℎ = (𝐴 + 𝐶)/(1 − 𝐵).
Similarly,

𝐺 (𝑥
3𝑛+3

, 𝑥
3𝑛+4

, 𝑥
3𝑛+5

) ≤ ℎ ⋅ 𝐺 (𝑥
3𝑛+2

, 𝑥
3𝑛+3

, 𝑥
3𝑛+4

) . (10)

Therefore, for all 𝑛, we have

𝐺 (𝑥
𝑛+1

, 𝑥
𝑛+2

, 𝑥
𝑛+3

) ≤ ℎ ⋅ 𝐺 (𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ ⋅ ⋅ ⋅

≤ ℎ
𝑛+1

⋅ 𝐺 (𝑥
0
, 𝑥
1
, 𝑥
2
) .

(11)

Now, for all 𝑙, 𝑚, 𝑛, with 𝑙 > 𝑚 > 𝑛, using rectangular
inequality, the second axiom of the 𝐺-metric, and (11), we
have

𝐺 (𝑥
𝑛
, 𝑥
𝑚
, 𝑥
𝑙
) ≤ 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+1

)

+ 𝐺 (𝑥
𝑛+1

, 𝑥
𝑛+2

, 𝑥
𝑛+2

) + ⋅ ⋅ ⋅

+ 𝐺 (𝑥
𝑙−2

, 𝑥
𝑙−1

, 𝑥
𝑙
)

≤ 𝐺 (𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ 𝐺 (𝑥
𝑛+1

, 𝑥
𝑛+2

, 𝑥
𝑛+3

) + ⋅ ⋅ ⋅

+ 𝐺 (𝑥
𝑙−2

, 𝑥
𝑙−1

, 𝑥
𝑙
)

≤ ℎ
𝑛

+ ℎ
𝑛+1

+ ⋅ ⋅ ⋅ + ℎ
𝑙−2

⋅ 𝐺 (𝑥
0
, 𝑥
1
, 𝑥
2
)

=
ℎ
𝑛

1 − ℎ
⋅ 𝐺 (𝑥

0
, 𝑥
1
, 𝑥
2
) ,

(12)

where 𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥
𝑙
) → 0 as 𝑛,𝑚, 𝑙 → ∞.

This shows that 𝑥
𝑛
is a 𝐺-Cauchy sequence. But (𝑋, 𝐺) is

𝐺-complete 𝐺-metric space so there exists 𝑤 in 𝑋 such that
𝑥
𝑛
→ 𝑤 as 𝑛 tends to infinity.
Now, we assume that 𝑠𝑤 ̸= 𝑤. Using condition (6), we

have

𝐺 (𝑆𝑤, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) = 𝐺 (𝑆𝑤, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

) ≤ 𝐴

⋅ [𝐺 (𝑤, 𝑆𝑤, 𝑇𝑥
3𝑛+1

) 𝐺 (𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

)

+ [𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)]
2

+ 𝐺 (𝑤, 𝑆𝑤, 𝑇𝑥
3𝑛+1

)

⋅ 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)] (𝐺 (𝑤, 𝑆𝑤, 𝑇𝑥
3𝑛+1

)

+ 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

+ 𝐺 (𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

))
−1

+ 𝐵
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⋅ (𝐺 (𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+1

, 𝑅𝑥
3𝑛+2

)

⋅ [1 + 𝐺 (𝑤, 𝑆𝑤, 𝑇𝑥
3𝑛+1

)]

⋅ (1 + 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

))
−1

) + 𝐶

⋅ 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) = 𝐴 ⋅ [𝐺 (𝑤, 𝑆𝑤, 𝑥
3𝑛+2

)

⋅ 𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) + [𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)]
2

+ 𝐺 (𝑤, 𝑆𝑤, 𝑥
3𝑛+2

) 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)]

⋅ (𝐺 (𝑤, 𝑠𝑤, 𝑥
3𝑛+2

) + 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

)

+ 𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

))
−1

+ 𝐵

⋅ (𝐺 (𝑥
3𝑛+1

, 𝑥
3𝑛+2

, 𝑥
3𝑛+3

) [1 + 𝐺 (𝑤, 𝑆𝑤, 𝑥
3𝑛+2

)]

⋅ (1 + 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

))
−1

) + 𝐶

⋅ 𝐺 (𝑤, 𝑥
3𝑛+1

, 𝑥
3𝑛+2

) .

(13)

As 𝑥
𝑛
is 𝐺-Cauchy sequence and converges to 𝑤, therefore,

by taking limit 𝑛 → ∞, we get 𝐺(𝑆𝑤,𝑤, 𝑤) ≤ 0 which is held
only if 𝐺(𝑆𝑤,𝑤, 𝑤) = 0 implies that 𝑆𝑤 = 𝑤. Similarly, it can
be shown that 𝑇𝑤 = 𝑤 and 𝑅𝑤 = 𝑤. Hence, 𝑤 is a common
fixed point of 𝑆, 𝑇 and 𝑅.

Uniqueness. Suppose that 𝑆, 𝑇, and 𝑅 have two common fixed
points 𝑧 and𝑤 such that 𝑧 ̸= 𝑤. Since condition𝐺(𝑥, 𝑆𝑥, 𝑇𝑦)+

𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) = 0 implies 𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧) = 0, we
have that𝐺(𝑧, 𝑆𝑧, 𝑇𝑤)+𝐺(𝑧, 𝑤, 𝑤)+𝐺(𝑧, 𝑇𝑤, 𝑅𝑤) = 0 implies
𝐺(𝑆𝑧, 𝑇𝑤, 𝑅𝑤) = 0. Therefore, one can get the following:

𝐺 (𝑆𝑧, 𝑇𝑤, 𝑅𝑤) = 𝐺 (𝑧, 𝑤, 𝑤) = 0

implies that 𝑧 = 𝑤,

(14)

which is a contradiction. Therefore, the common fixed point
is unique.

Corollary 9. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑆, 𝑇, 𝑅 : 𝑋 → 𝑋 be three self-mappings satisfying the
condition

𝐺 (𝑆𝑥, 𝑇𝑦, 𝑅𝑧) ≤ 𝐴 ⋅ [𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑇𝑦, 𝑅𝑧)

+ [𝐺 (𝑥, 𝑦, 𝑧)]
2

+ 𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑦, 𝑧)]

⋅ (𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦) + 𝐺 (𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑅𝑧))
−1

(15)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐴 ≥ 0 with 0 ≤ 𝐴 <

1, 𝐺(𝑥, 𝑆𝑥, 𝑇𝑦) + 𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) ̸= 0. Then, 𝑆, 𝑇,
and 𝑅 have a common fixed point. Further, if 𝐺(𝑥, 𝑆𝑥, 𝑇𝑦) +

𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) = 0 implies 𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧) = 0, then
𝑆, T, and 𝑅 have a unique common fixed point in 𝑋.

Proof. The proof follows by taking 𝐵 = 𝐶 = 0 in Theorem 8.

Corollary 10. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑆, 𝑇, 𝑅 : 𝑋 → 𝑋 be three self-mappings satisfying the
condition

𝐺 (𝑆𝑥, 𝑇𝑦, 𝑅𝑧) ≤ 𝐵

⋅
𝐺 (𝑦, 𝑇𝑦, 𝑅𝑧) [1 + 𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)]

1 + 𝐺 (𝑥, 𝑦, 𝑧)

+ 𝐶 ⋅ 𝐺 (𝑥, 𝑦, 𝑧)

(16)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐵, 𝐶 ≥ 0 with 0 ≤

𝐵+𝐶 < 1,𝐺(𝑥, 𝑆𝑥, 𝑇𝑦)+𝐺(𝑥, 𝑦, 𝑧)+𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) ̸= 0.Then 𝑆,
𝑇, and 𝑅 have a common fixed point. Further, if𝐺(𝑥, 𝑆𝑥, 𝑇𝑦)+

𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑅𝑧) = 0 implies 𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧) = 0, then
𝑆, 𝑇, and 𝑅 have a unique common fixed point in 𝑋.

Proof. The proof follows by taking 𝐴 = 0 in Theorem 8.

Corollary 11. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑆, 𝑇 : 𝑋 → 𝑋 be two self-mappings satisfying the condition

𝐺 (𝑆𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝐴 ⋅ [𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧)

+ [𝐺 (𝑥, 𝑦, 𝑧)]
2

+ 𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑦, 𝑧)]

⋅ (𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦) + 𝐺 (𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧))
−1

+ 𝐵 ⋅ (𝐺 (𝑦, 𝑇𝑦, 𝑇𝑧) [1 + 𝐺 (𝑥, 𝑆𝑥, 𝑇𝑦)]

⋅ (1 + 𝐺 (𝑥, 𝑦, 𝑧))
−1

) + 𝐶 ⋅ 𝐺 (𝑥, 𝑦, 𝑧)

(17)

for all𝑥, 𝑦, 𝑧 ∈ 𝑋with𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐴, 𝐵, 𝐶 ≥ 0with 0 ≤ 𝐴+

𝐵 +𝐶 < 1, 𝐺(𝑥, 𝑆𝑥, 𝑇𝑦) + 𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑇𝑧) ̸= 0. Then,
𝑆 and 𝑇 have a common fixed point. Further, if 𝐺(𝑥, 𝑆𝑥, 𝑇𝑦) +

𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑇𝑧) = 0 implies 𝐺(𝑆𝑥, 𝑇𝑦, 𝑇𝑧) = 0, then
𝑆 and 𝑇 have a unique common fixed point in 𝑋.

Proof. The proof follows by taking 𝑅 = 𝑇 in Theorem 8.

By setting 𝑅 = 𝑇 = 𝑆 inTheorem 8, we have the following
corollary.

Corollary 12. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑇 : 𝑋 → 𝑋 be a self-mapping satisfying the condition

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝐴 ⋅ [𝐺 (𝑥, 𝑇𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧)

+ [𝐺 (𝑥, 𝑦, 𝑧)]
2

+ 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑦)𝐺 (𝑥, 𝑦, 𝑧)]

⋅ (𝐺 (𝑥, 𝑇𝑥, 𝑇𝑦) + 𝐺 (𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧))
−1

+ 𝐵 ⋅ (𝐺 (𝑦, 𝑇𝑦, 𝑇𝑧) [1 + 𝐺 (𝑥, 𝑇𝑥, 𝑇𝑦)]

⋅ (1 + 𝐺 (𝑥, 𝑦, 𝑧))
−1

) + 𝐶 ⋅ 𝐺 (𝑥, 𝑦, 𝑧)

(18)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐴, 𝐵, 𝐶 ≥ 0 with
0 ≤ 𝐴+𝐵+𝐶 < 1,𝐺(𝑥, 𝑇𝑥, 𝑇𝑦)+𝐺(𝑥, 𝑦, 𝑧)+𝐺(𝑥, 𝑇𝑦, 𝑇𝑧) ̸= 0.
Then, 𝑇 has a unique fixed point. Further, if 𝐺(𝑥, 𝑇𝑥, 𝑇𝑦) +

𝐺(𝑥, 𝑦, 𝑧) + 𝐺(𝑥, 𝑇𝑦, 𝑇𝑧) = 0 implies 𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) = 0, then
𝑇 has a unique common fixed point in 𝑋.
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The second main result in this section is the following.

Theorem 13. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space. Let
𝑅, 𝑆, 𝑇, 𝐼, 𝐽, 𝑄 : 𝑋 → 𝑋 be six continuous self-maps and let
{𝑆, 𝐼}, {𝑇, 𝐽}, and {𝑅, 𝑄} be weakly commuting pairs of self-
mapping such that 𝑇(𝑋) ⊂ 𝐼(𝑋), 𝑆(𝑋) ⊂ 𝐽(𝑋), and 𝑅(𝑋) ⊂

𝑄(𝑋), satisfying the condition

𝐺 (𝑅𝑥, 𝑆𝑦, 𝑇𝑧) ≤ 𝐴 ⋅ [𝐺 (𝑄𝑥, 𝑆𝑥, 𝐼𝑧) 𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥)

+ [𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧)]
2

+ 𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥) 𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧)] (𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥)

+ 𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥))
−1

+ 𝐵

⋅ 𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧)

(19)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐴, 𝐵 ≥ 0 with
0 ≤ 𝐴+𝐵 < 1,𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥)+𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧)+𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) ̸=

0. Then 𝑅, 𝑆, 𝑇, 𝐼, 𝐽, 𝑄 have a common fixed point. Further, if
𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) + 𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) = 0 implies
𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧) + 𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) = 0, then 𝑅, 𝑆, 𝑇, 𝐼, 𝐽, 𝑄 have
a unique common fixed point in 𝑋.

Proof. Take 𝑥
0
as arbitrary point of 𝑋. Since 𝑅(𝑋) ⊂ 𝑄(𝑋),

we can find a point 𝑥
1
in 𝑋 such that 𝑅𝑥

0
= 𝑄𝑥

1
. For

𝑆(𝑋) ⊂ 𝐽(𝑋), we can find a point 𝑥
2
in𝑋 such that𝑅𝑥

1
= 𝑄𝑥
2

and for 𝑇(𝑋) ⊂ 𝐼(𝑋) we can find a point 𝑥
3
in 𝑋 such that

𝑇𝑥
2
= 𝐼𝑥
3
. Generally, for a point 𝑥

3𝑛
, choose 𝑥

3𝑛+1
such that

𝑅𝑥
3𝑛

= 𝑄𝑥
3𝑛+1

; for a point 𝑥
3𝑛+1

, choose 𝑥
3𝑛+2

such that
𝑆𝑥
3𝑛+1

= 𝐽𝑥
3𝑛+2

; and for a point 𝑥
3𝑛+2

, choose 𝑥
3𝑛+3

such that
𝑇𝑥
3𝑛+2

= 𝐼𝑥
3𝑛+3

for 𝑛 = 0, 1, 2, 3, . . ..
Suppose 𝐺

3𝑛
= 𝐺(𝑅𝑥

3𝑛
, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) ̸= 0 and 𝐺
3𝑛+1

=

𝐺(𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+2

, 𝑇𝑥
3𝑛+3

) ̸= 0. Then, from condition (19), we
have

𝐺
3𝑛+1

= 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+2

, 𝑇𝑥
3𝑛+3

) ≤ 𝐴

⋅ [𝐺 (𝑄𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝐼𝑥
3𝑛+3

)

⋅ 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝐼𝑥
3𝑛+1

)

+ [𝐺 (𝑄𝑥
3𝑛+1

, 𝐽𝑥
3𝑛+2

, 𝐼𝑥
3𝑛+3

)]
2

+ 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝐼𝑥
3𝑛+1

)

⋅ 𝐺 (𝑄𝑥
3𝑛+1

, 𝐽𝑥
3𝑛+2

, 𝐼𝑥
3𝑛+3

)]

⋅ [𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝐼𝑥
3𝑛+1

)

+ 𝐺 (𝑄𝑥
3𝑛+1

, 𝐽𝑥
3𝑛+2

, 𝐼𝑥
3𝑛+3

)

+ 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝐼𝑥
3𝑛+1

)]
−1

+ 𝐵

⋅ 𝐺 (𝑄𝑥
3𝑛+1

, 𝐽𝑥
3𝑛+2

, 𝐼𝑥
3𝑛+3

) = 𝐴

⋅ [𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

)

⋅ 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛

)

+ [𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

)]
2

+ 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛

)

⋅ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

)]

⋅ [𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛

)

+ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

)

+ 𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛

)]
−1

+ 𝐵

⋅ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) = 𝐴

⋅ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) + 𝐵

⋅ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) = (𝐴 + 𝐵)

⋅ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) .

(20)

Hence,

𝐺 (𝑅𝑥
3𝑛+1

, 𝑆𝑥
3𝑛+2

, 𝑇𝑥
3𝑛+3

)

≤ (𝐴 + 𝐵) ⋅ 𝐺 (𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) ,

𝐺
3𝑛+1

≤ ℎ ⋅ 𝐺
3𝑛

,

(21)

where ℎ = 𝐴 + 𝐵. Continuing this procedure, in the end we
get

𝐺
3𝑛+1

≤ ℎ ⋅ 𝐺
3𝑛

≤ ℎ
2

⋅ 𝐺
3𝑛−1

≤ ℎ
3

⋅ 𝐺
3𝑛−2

≤ ℎ
4

⋅ 𝐺
3𝑛−3

≤ ⋅ ⋅ ⋅ ≤ ℎ
3𝑛+1

⋅ 𝐺
0
.

(22)

Clearly, 𝐺
3𝑛+1

→ 0 as 𝑛 → ∞. So, 𝐺(𝑅𝑥
3𝑛

, 𝑆𝑥
3𝑛+1

, 𝑇𝑥
3𝑛+2

) →

0; we get the following sequence:

{𝑅𝑥
0
, 𝑆𝑥
1
, 𝑇𝑥
2
, 𝑅𝑥
3
, 𝑆𝑥
4
, 𝑇𝑥
5
, 𝑅𝑥
6
, 𝑆𝑥
7
, 𝑇𝑥
8
, . . . , 𝑅𝑥

3𝑛+1
,

𝑆𝑥
3𝑛+2

, 𝑇𝑥
3𝑛+3

, . . .} ,

(23)

which is a Cauchy sequence in 𝐺-complete 𝐺-metric space
and therefore converges to a limit point 𝑤. But all subse-
quences of a convergent sequence converge; so, we have

lim
𝑛→∞

𝑅𝑥
3𝑛

= lim
𝑛→∞

𝑄𝑥
3𝑛+1

= 𝑤,

lim
𝑛→∞

𝑆𝑥
3𝑛

= lim
𝑛→∞

𝐽𝑥
3𝑛+1

= 𝑤,

lim
𝑛→∞

𝑇𝑥
3𝑛−1

= lim
𝑛→∞

𝐼𝑥
3𝑛

= 𝑤.

(24)

Since {𝑆, 𝐼} are weakly commuting mappings, thus we have

𝐺 (𝑆𝐼𝑥
3𝑛

, 𝐼𝑆𝑥
3𝑛

, 𝐼𝑆𝑥
3𝑛

) ≤ 𝐺 (𝐼𝑥
3𝑛

, 𝑆𝑥
3𝑛

, 𝑆𝑥
3𝑛

) . (25)

Taking limit 𝑛 → ∞ and noting that 𝑆 and 𝐼 are continuous
mappings, we have

𝐺 (𝑆𝑤, 𝐼𝑤, 𝐼𝑤) ≤ 𝐺 (𝑤,𝑤, 𝑤) , (26)
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which gives the notion that 𝑆𝑤 = 𝐼𝑤. Analogously, we can
get 𝑇𝑤 = 𝐽𝑤 and 𝑅𝑤 = 𝑄𝑤. We claim that 𝑅𝑤 ̸= 𝑆𝑤 and
𝑆𝑤 ̸= 𝑇𝑤 and then from condition (3)

𝐺 (𝑅𝑤, 𝑆𝑤, 𝑇𝑤) ≤ 𝐴

⋅ [𝐺 (𝑅𝑤, 𝑆𝑤, 𝑇𝑤)𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤)

+ [𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤)]
2

+ 𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤)𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤)]

⋅ (𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤) + 𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤)

+ 𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤))
−1

+ 𝐵 ⋅ 𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤) ,

𝐺 (𝑅𝑤, 𝑆𝑤, 𝑇𝑤) ≤ (𝐴 + 𝐵)𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤) ,

(27)

which is a contraction:

𝐺 (𝑅𝑤, 𝑆𝑤, 𝑇𝑤) = 0 implies 𝑅𝑤 = 𝑆𝑤 = 𝑇𝑤. (28)

Similarly, using similar arguments to those given above, we
obtain a contradiction for 𝑅𝑤 ̸= 𝑆𝑤 and 𝑆𝑤 = 𝑇𝑤 or for
𝑅𝑤 = 𝑆𝑤 and 𝑆𝑤 ̸= 𝑇𝑤. Hence, in all the cases, we conclude
that 𝑅𝑤 = 𝑆𝑤 = 𝑇𝑤. We prove that any fixed point of 𝑅 is a
fixed point of 𝑆, 𝑇, 𝑄, 𝐼, and 𝐽. Assume that𝑤 ∈ 𝑋 is such that
𝑅𝑤 = 𝑤. Now, we prove that 𝑤 = 𝑇𝑤 = 𝑆𝑤. If it is not the
case, then, for 𝑤 ̸= 𝑆𝑤 and 𝑤 ̸= 𝑇𝑤, we get

𝐺 (𝑤, 𝑆𝑤, 𝑇𝑤) = 𝐺 (𝑅𝑤, 𝑆𝑤, 𝑇𝑤) ≤ 𝐴

⋅ [𝐺 (𝑅𝑤, 𝑆𝑤, 𝑇𝑤)𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤)

+ [𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤)]
2

+ 𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤)𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤)]

⋅ (𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤) + 𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤)

+ 𝐺 (𝑅𝑤, 𝑆𝑤, 𝑆𝑤))
−1

+ 𝐵 ⋅ 𝐺 (𝑅𝑤, 𝑇𝑤, 𝑆𝑤) ,

𝐺 (𝑤, 𝑆𝑤, 𝑇𝑤) ≤ (𝐴 + 𝐵)𝐺 (𝑤, 𝑇𝑤, 𝑆𝑤) ,

(29)

where 𝐺(𝑤, 𝑆𝑤, 𝑇𝑤) = 0 which implies that 𝑤 = 𝑆𝑤 = 𝑇𝑤;
in a similar argument, we can prove the other cases.

Uniqueness. Suppose that 𝑆, 𝑇, 𝑅, 𝐼, 𝐽, and 𝑄 have two com-
mon fixed points 𝑧 and 𝑤 such that 𝑧 ̸= 𝑤. Since condition
𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) + 𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) = 0 implies
𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧)+𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) = 0, we have that𝐺(𝑅𝑧, 𝑆𝑧, 𝐼𝑧)+

𝐺(𝑄𝑧, 𝐽𝑧, 𝐼𝑤) + 𝐺(𝑅𝑧, 𝑆𝑧, 𝐼𝑧) = 0 implies 𝐺(𝑆𝑧, 𝑇𝑧, 𝑅𝑤) +

𝐺(𝑄𝑧, 𝐽𝑧, 𝐼𝑤) = 0, which can be written as𝐺(𝑆𝑧, 𝑇𝑧, 𝑅𝑤) = 0

or 𝐺(𝑄𝑧, 𝐽𝑧, 𝐼𝑤) = 0.
Therefore, one can get the following:

𝐺 (𝑧, 𝑧, 𝑤) = 0

or 𝐺 (𝑧, 𝑧, 𝑤) = 0 implies that 𝑧 = 𝑤.

(30)

Theorem 13 produces the following corollaries.

Corollary 14. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑅, 𝑆, 𝑇, 𝐼, 𝐽, 𝑄 : 𝑋 → 𝑋 be three self-maps and let {𝑆, 𝐼},
{𝑇, 𝐽}, and {𝑅, 𝑄} be weakly commuting pairs of self-mapping
such that 𝑇(𝑋) ⊂ 𝐼(𝑋), 𝑆(𝑋) ⊂ 𝐽(𝑋), and 𝑅(𝑋) ⊂ 𝑄(𝑋),
satisfying

𝐺 (𝑅𝑥, 𝑆𝑦, 𝑇𝑧) ≤ 𝐵 ⋅ 𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧) (31)

for all 𝑥, 𝑦, 𝑧 in 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 with 0 ≤ 𝐵 < 1. Then,
𝑅, 𝑆, 𝑇, 𝐼, 𝐽, and 𝑄 have a unique common fixed point in 𝑋.

Proof. It follows by taking 𝐴 = 0 in Theorem 13.

Corollary 15. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑅, 𝑆, 𝑇, 𝐼, 𝐽, 𝑄 : 𝑋 → 𝑋 be three self-maps and let {𝑆, 𝐼},
{𝑇, 𝐽}, and {𝑅, 𝑄} be weakly commuting pairs of self-mapping
such that 𝑇(𝑋) ⊂ 𝐼(𝑋), 𝑆(𝑋) ⊂ 𝐽(𝑋), and 𝑅(𝑋) ⊂ 𝑄(𝑋),
satisfying

𝐺 (𝑅𝑥, 𝑆𝑦, 𝑇𝑧) ≤ 𝐴 ⋅ [𝐺 (𝑄𝑥, 𝑆𝑥, 𝐼𝑧) 𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥)

+ [𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧)]
2

+ 𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥) 𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧)] (𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥)

+ 𝐺 (𝑄𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺 (𝑅𝑥, 𝑆𝑥, 𝐼𝑥))
−1

+ 𝐵

⋅ 𝐺 (𝑅𝑧, 𝑇𝑧, 𝑆𝑧)

(32)

for all 𝑥, 𝑦, 𝑧 in 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐴 ≥ 0 with 0 ≤

𝐴 < 1, 𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) + 𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) ̸= 0.
Then, 𝑅, 𝑆, 𝑇, 𝐼, 𝐽, and 𝑄 have a common fixed point. Further,
if 𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) + 𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺(𝑅𝑥, 𝑆𝑥, 𝐼𝑥) = 0 implies
𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧)+𝐺(𝑄𝑥, 𝐽𝑦, 𝐼𝑧) = 0, then𝑅, 𝑆, 𝑇, 𝐼, 𝐽, and𝑄 have
a unique common fixed point in 𝑋.

Proof. It follows by taking 𝐵 = 0 in Theorem 13.

Corollary 16. Let (𝑋, 𝐺) be a 𝐺-complete 𝐺-metric space and
let 𝑇, 𝑅, 𝐼, 𝐽 : 𝑋 → 𝑋 be three self-maps and let {𝑇, 𝐼}, {𝑇, 𝐽},
and {𝑅, 𝐼} be weakly commuting pairs of self-mapping such that
𝑇(𝑋) ⊂ 𝐼(𝑋), 𝑇(𝑋) ⊂ 𝐽(𝑋), and 𝑅(𝑋) ⊂ 𝐼(𝑋), satisfying

𝐺 (𝑅𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝐴 ⋅ [𝐺 (𝐼𝑥, 𝑇𝑥, 𝐼𝑧) 𝐺 (𝑅𝑥, 𝑇𝑥, 𝐼𝑥)

+ [𝐺 (𝐼𝑥, 𝐽𝑦, 𝐼𝑧)]
2

+ 𝐺 (𝑅𝑥, 𝑇𝑥, 𝐼𝑥) 𝐺 (𝐼𝑥, 𝐽𝑦, 𝐼𝑧)]

⋅ (𝐺 (𝑅𝑥, 𝑇𝑥, 𝐼𝑥) + 𝐺 (𝐼𝑥, 𝐽𝑦, 𝐼𝑧)

+ 𝐺 (𝑅𝑥, 𝑇𝑥, 𝐼𝑥))
−1

+ 𝐵 ⋅ 𝐺 (𝐼𝑥, 𝐽𝑦, 𝐼𝑧)

(33)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 𝑥 𝐴, 𝐵 ≥ 0 with
0 ≤ 𝐴+𝐵 < 1,𝐺(𝑅𝑥, 𝑇𝑥, 𝐼𝑥)+𝐺(𝐼𝑥, 𝐽𝑦, 𝐼𝑧)+𝐺(𝑅𝑥, 𝑇𝑥, 𝐼𝑥) ̸=

0. Then, 𝑇, 𝑅, 𝐼, and 𝐽 have a common fixed point. Further,
if 𝐺(𝑅𝑥, 𝑇𝑥, 𝐼𝑥) + 𝐺(𝐼𝑥, 𝐽𝑦, 𝐼𝑧) + 𝐺(𝑅𝑥, 𝑇𝑥, 𝐼𝑥) = 0 implies
𝐺(𝑆𝑥, 𝑇𝑦, 𝑅𝑧) + 𝐺(𝐼𝑥, 𝐽𝑦, 𝐼𝑧) = 0, then 𝑇, 𝑅, 𝐼, and 𝐽 have a
unique common fixed point in 𝑋.

Proof. The proof follows by setting 𝑆 = 𝑇 and 𝐼 = 𝑄 in
Theorem 13.
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