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ON GENERALIZED NULL MANNHEIM CURVES

IN MINKOWSKI SPACE-TIME

Milica Grbović, Kazim Ilarslan, and Emilija Nešović

Abstract. We define generalized null Mannheim curves in Minkowski space-
time and characterize them and their generalized Mannheim mate curves in
terms of curvature functions, and obtain relations between their frames. We
provide examples of such curves.

1. Introduction

In the Euclidean space E
3 there are many associated curves (Bertrand mates,

Mannheim mates, spherical images, evolutes, the principal-direction curves, etc.)
the frame’s vector fields of which satisfy some extra conditions. In particular,
Mannheim curves in E

3 are defined by the property that their principal normal
lines coincide with the binormal lines of their mate curves at the corresponding
points [4, 7, 11]. The parameter equation of a Mannheim curve α in E

3 is given in
[4] by α(t) = (

∫

h(t) sin(t)dt,
∫

h(t) cos(t)dt,
∫

h(t)g(t)dt), where g : I → R is any
smooth function and the function h : I → R is given by

h =
(1 + g2 + g′2)3 + (1 + g2)3(g + g′′)2

(1 + g2)3/2(1 + g2 + g′2)5/2
.

Mannheim curves and their partner curves in 3-dimensional space forms are studied
in [2]. In the Euclidean 4-space, the notion of Mannheim curves is generalized in
[12] as follows. A special Frenet curve α : I → E

4 is called a generalized Mannheim
curve, if there exists a special Frenet curve α∗ : I⋆ → E

4 and a bijection φ : α → α⋆

such that the principal normal line of α at each point of α lies in the plane spanned
by the first binormal and the second binormal line of α∗. The generalized spacelike
Mannheim curves in Minkowski space-time, the Frenet frame of which contains only
non-null vectors, are characterized in [5].

In this paper, we define the generalized null Mannheim curves in Minkowski
space-time. We obtain the relations between the curvature functions and the frames
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of the generalized null Mannheim curves and the generalized Mannheim mate curves
of theirs. We give the necessary conditions for the null Cartan curve α with the
second curvature κ2 6= 0 and its mate curve α⋆ = α + (1/2κ2)N to be the general-
ized null Mannheim curve and the generalized Mannheim mate curve, respectively.
In particular, we prove that there are no generalized null Mannheim curves the
generalized Mannheim mate curve of which is a partially null or a pseudo null
curve. Finally, we characterize the generalized null Mannheim curves in terms of
the normal curves and give some examples.

2. Preliminaries

The Minkowski space-time E
4
1 is the Euclidean 4-space E

4 equipped with in-
definite flat metric given by g = −dx2

1 + dx2
2 + dx2

3 + dx2
4, where (x1, x2, x3, x4) is

a rectangular coordinate system of E
4
1. Recall that a vector v ∈ E

4
1\{0} can be

spacelike if g(v, v) > 0, timelike if g(v, v) < 0 and null (lightlike) if g(v, v) = 0.
In particular, the vector v = 0 is said to be a spacelike. The norm of a vector v

is given by ‖v‖ =
√

|g(v, v)|. Two vectors v and w are said to be orthogonal, if
g(v, w) = 0. An arbitrary curve α in E

4
1, can locally be spacelike, timelike or null

(lightlike), if all its velocity vectors α′(s) are respectively spacelike, timelike or null
[13]. A non-null curve α is parametrized by the arc-length function s (or has the
unit speed), if g(α′(s), α′(s)) = ±1. A pseudo-arc length function (or the canonical

parameter) is defined in [1] by s(t) =
∫ t

0 g(α′′(u), α′′(u))
1
4 du. A null curve α is said

to be parameterized by the pseudo-arc length function s, if g(α′′(s), α′′(s)) = 1
[1, 3].

Definition 2.1. A non-geodesic null curve α : I → E
4
1 parameterized by

the pseudo-arc length function s is called a Cartan curve, if there exists a unique
positively oriented Cartan frame {T, N, B1, B2} along α and three smooth functions
κ1, κ2 and κ3 satisfying the Cartan equations [3].

(2.1)
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N ′

B′
1

B′
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=









0 κ1 0 0
−κ2 0 −κ1 0

0 κ2 0 κ3

−κ3 0 0 0

















T
N
B1

B2









.

The curvature functions κ1(s) = 1, κ2(s) and κ3(s) are respectively called the first,
the second and the third Cartan curvature of α. Cartan’s frame vector fields T ,
N , B1 and B2 are respectively called the tangent, the principal normal, the first
binormal and the second binormal vector field, and they satisfy the conditions

g(T, T ) = g(B1, B1) = 0, g(N, N) = g(B2, B2) = 1,

g(T, N) = g(T, B2) = g(N, B1) = g(N, B2) = g(B1, B2) = 0, g(T, B1) = 1.

Definition 2.2. A spacelike or a timelike unit speed smooth curve α : I → E
4
1

is called a Frenet curve, if there exists a unique positively oriented orthonormal or
pseudo-orthonormal Frenet frame {T, N, B1, B2} along α and three smooth func-
tions κ1 6= 0, κ2 and κ3 satisfying the corresponding Frenet equations.
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The smooth functions κ1 6= 0, κ2 and κ3 are respectively called the first, the
second and the third Frenet curvatures of α. Let {T, N, B1, B2} be the moving
Frenet frame along the unit speed Frenet curve α : I → E

4
1, consisting of the tan-

gent, the principal normal, the first binormal and the second binormal vector field,
respectively. Depending on the causal character of Frenet’s vector fields, we have
three types of the Frenet equations.

Type 1. If α is a timelike or a spacelike Frenet curve whose orthonormal Frenet
frame {T, N, B1, B2} contains only non-null vector fields, the Frenet equations are
given by [10]

(2.2)
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N ′

B′
1

B′
2
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0 ǫ2κ1 0 0
−ǫ1κ1 0 ǫ3κ2 0

0 −ǫ2κ2 0 −ǫ1ǫ2ǫ3κ3

0 0 −ǫ3κ3 0
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N
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,

where g(T, T ) = ǫ1, g(N, N) = ǫ2, g(B1, B1) = ǫ3, g(B2, B2) = ǫ4, ǫ1ǫ2ǫ3ǫ4 = −1,
ǫi ∈ {−1, 1}, i ∈ {1, 2, 3, 4}.

Type 2. If α is a pseudo null Frenet curve, i.e. a spacelike Frenet curve with
a pseudo-orthonormal frame {T, N, B1, B2} and null vector fields N and B2, the
Frenet formulae read [14]

(2.3)
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,

where the first curvature k1(s) = 1. Moreover, the following conditions are satisfied:

g(T, T ) = g(B1, B1) = 1, g(N, N) = g(B2, B2) = 0,

g(T, N) = g(T, B1) = g(T, B2) = g(N, B1) = g(B1, B2) = 0, g(N, B2) = 1.

Type 3. If α is a partially null Frenet curve, i.e. a spacelike Frenet curve with
a pseudo-orthonormal frame {T, N, B1, B2} and null vector fields B1 and B2, the
Frenet formulae read [14]

(2.4)
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,

where the third curvature κ3(s) = 0. In particular, there holds

g(T, T ) = g(N, N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T, N) = g(T, B1) = g(T, B2) = g(N, B1) = g(N, B2) = 0, g(B1, B2) = 1.

Recall that a normal curve in E
4
1 is defined in [8] as a curve the position

vector of which always lies in its normal space T ⊥, which represents the orthogonal
complement of the tangent vector field T of the curve.
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3. The generalized null Mannheim curves in E
4
1

It is proved in [6] that there are no null Mannheim curves in E
3
1. In relation

to that, throughout this section we will assume that the null Cartan curve α in E
4
1

has the third curvature κ3(s) 6= 0. Note that when κ3(s) 6= 0, the second curvature
κ2(s) of α can be equal to zero (when α is a null cubic), or different from zero. We
firstly define the generalized null Mannheim curves as follows.

Definition 3.1. A null Cartan curve α : I → E
4
1 is called a generalized null

Mannheim curve if there exists a null Cartan curve or a Frenet curve α⋆ : I⋆ → E
4
1

and a bijection φ : α → α⋆ such that at the corresponding points of the curves, the
principal normal line of α is included in the plane spanned by the first binormal
line and the second binormal line of α⋆, under bijection φ.

The curve α∗ is called the generalized Mannheim mate curve of α.

Remark 3.1. The generalized Mannheim mate curve of the generalized space-
like Mannheim curve in E

4
1, the Frenet frame of which contains only the non-null

vector fields, is defined in [5] as the spacelike Frenet curve. Unfortunately, such
definition is not correct, since it can have arbitrarily causal character.

By the principal normal (binormal) line, we mean the straight line in direc-
tion of the principal normal (binormal) vector field. Throughout this section, let
{T, N, B1, B2} and {T ⋆, N⋆, B⋆

1 , B⋆
2 } denote the Cartan frame of the generalized

null Mannheim curve α and the corresponding (Cartan or Frenet) frame of the
generalized Mannheim mate curve α⋆ of α, respectively. Since the principal normal
vector N(s) of α lies in the plane spanned by {B⋆

1 , B⋆
2}, it satisfies the equation

N(s) = a(s)B⋆
1 (s) + b(s)B⋆

2(s), for some differentiable functions a(s) and b(s). De-
pending on the causal character of the plane span{B⋆

1 , B⋆
2}, we distinguish three

cases: (A) span{B⋆
1 , B⋆

2 } is a spacelike plane; (B) span{B⋆
1 , B⋆

2} is a timelike plane;
(C) span{B⋆

1 , B⋆
2 } is a lightlike plane. In what follows, we consider these three cases

separately.
(A) span{B⋆

1 , B⋆
2} is a spacelike plane.

Theorem 3.1. Let α : I → E
4
1 be the generalized null Mannheim curve and

α⋆ : I⋆ → E
4
1 the generalized Mannheim mate curve of α such that the principal

normal line of α lies in the spacelike plane spanned by {B⋆
1 , B⋆

2}. Then α⋆ is the
timelike Frenet curve such that the curvatures of α and α⋆ satisfy the relations

(3.1) κ1 = 1, κ2 =
1

2λ
, |κ⋆

1| = |κ⋆
2| = |κ3| 6= 0, |κ⋆

3| =
1

λ
, λ ∈ R

+
0 ,

and the corresponding frames of α and α⋆ are related by

T ⋆ =
1

2
√

λ
(T − 2λB1),(3.2)

N⋆ = − sgn(κ⋆
1) sgn(κ3)B2,

B⋆
1 = sgn(κ⋆

1) sgn(κ⋆
2)

1

2
√

λ
(T + 2λB1),

B⋆
2 = sgn(κ⋆

2) sgn(κ3)N.
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Proof. Since the principal normal line of α lies in the spacelike plane spanned
by {B⋆

1 , B⋆
2 }, α⋆ is a spacelike or a timelike curve the Frenet frame of which satisfies

the equations (2.2), where ǫ⋆
1 = −ǫ⋆

2, ǫ⋆
3 = ǫ⋆

4 = 1. In particular, the curve α⋆ can
be parameterized by

(3.3) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the pseudo-arc length parameter of α, s⋆ = f(s) =
∫ s

0 ‖α⋆′(t)‖dt is
the arc-length parameter of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth
functions. We distinguish two cases: (A.1) κ2 = 0 and (A.2) κ2 6= 0.

(A.1) κ2 = 0.
Differentiating relation (3.3) with respect to s and applying (2.1), we find

(3.4) T ⋆f ′ = T + λ′N − λB1.

By taking the scalar product of (3.4) with N = aB⋆
1 + bB⋆

2 , we find λ′ = 0.
Substituting this in (3.4), we get

(3.5) T ⋆f ′ = T − λB1, λ ∈ R0,

where R0 denotes R\{0}. From (3.5) we have g(T ⋆f ′, T ⋆f ′) = ǫ⋆
1f ′2 = −2λ and

therefore

(3.6) f ′2 = −2ǫ⋆
1λ = constant 6= 0.

Differentiating relation (3.5) with respect to s and using (2.1), (2.2) and (3.6) we

find ǫ⋆
2κ⋆

1N⋆f ′2 = N − λκ3B2. By taking the scalar product of the last equation
with N = aB⋆

1 + bB⋆
2 , we obtain a contradiction.

(A.2) κ2 6= 0.
Differentiating relation (3.4) with respect to s and using (2.1), we find

(3.7) T ⋆f ′ = (1 − λκ2)T + λ′N − λB1.

By taking the scalar product of (3.7) with N = aB⋆
1 + bB⋆

2 yields

(3.8) λ′ = 0.

Substituting (3.8) in (3.7), we get

(3.9) T ⋆f ′ = (1 − λκ2)T − λB1.

Differentiating relation (3.9) with respect to s and using (2.1) and (2.2), we obtain

(3.10) ǫ⋆
2κ⋆

1N⋆f ′2 + T ⋆f ′′ = (1 − λκ2)′T + (1 − 2λκ2)N − λκ3B2.

By taking the scalar product of (3.10) with N = aB⋆
1 + bB⋆

2 and using (3.8), it
follows that

(3.11) κ2 =
1

2λ
= constant, λ ∈ R0.

Moreover, by using (3.9) we obtain

(3.12) g(T ⋆f ′, T ⋆f ′) = ǫ⋆
1f ′2 = −2λ(1 − λκ2).

Substituting (3.11) in (3.12) yields

(3.13) f ′2 = −ǫ⋆
1λ = constant 6= 0.
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Relations (3.10), (3.11) and (3.13) imply

(3.14) ǫ⋆
2κ⋆

1N⋆f ′2 = −λκ3B2.

Since a spacelike vector B2 is collinear with N⋆, it follows that T ⋆ is a timelike
vector. Consequently, α⋆ is a timelike curve. Substituting ǫ⋆

1 = −1 = −ǫ⋆
2 in (3.13)

we get

(3.15) f ′2 = λ, λ ∈ R+
0 ,

where R
+
0 denotes R

+\{0}. Therefore,

(3.16) f ′(s) = ‖α⋆′(s)‖ =
√

λ.

Substituting (3.11) and (3.16) in (3.9), we obtain

(3.17) T ⋆ =
1

2
√

λ
(T − 2λB1).

Next, substituting ǫ⋆
2 = 1 and (3.15) in (3.14), we get κ⋆

1N⋆ = −κ3B2. It follows
that

(3.18) κ⋆
1 = −κ3, N⋆ = B2,

or

(3.19) κ⋆
1 = κ3, N⋆ = −B2.

Assume that (3.18) holds. Differentiating the equation N⋆ = B2 with respect to s
and applying (2.1) and (2.2), it follows that

(3.20) (κ⋆
1T ⋆ + κ⋆

2B⋆
1)f ′ = −κ3T.

By taking the scalar product of (3.20) with N = aB⋆
1 + bB⋆

2 , we find aκ⋆
2f ′ = 0.

If κ⋆
2 = 0, relation (3.20) implies that a timelike vector T ⋆ is collinear with a null

vector T , which is a contradiction. Consequently, a = 0 and hence N = bB⋆
2 . The

condition g(N, N) = 1 gives b2 = 1 and thus

(3.21) N = B⋆
2 ,

or

(3.22) N = −B⋆
2 .

Assume that (3.21) holds. Differentiating relation (3.21) with respect to s and
using (2.1) and (2.2), we get −κ2T − B1 = −κ⋆

3f ′B⋆
1 . The last relation together

with (3.11) and (3.15) yield

(3.23) B⋆
1 =

1

λ
√

λκ⋆
3

(1

2
T + λB1

)

.

On the other hand, by using relations (3.16), (3.17), (3.18) and (3.20), we find

(3.24) B⋆
1 =

κ⋆
1√

λκ⋆
2

(1

2
T + λB1

)

.
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Since λ > 0, from (3.23) and (3.24), we get sgn(κ⋆
1) sgn(κ⋆

2) = sgn(κ⋆
3). By using

(3.17), (3.18), (3.21), (3.24) and the condition det(T ⋆, N⋆, B⋆
1 , B⋆

2) = 1, we find

(3.25) κ⋆
1 = −κ⋆

2.

Therefore, sgn(κ⋆
3) = −1. From (3.23) and the condition g(B⋆

1 , B⋆
1) = 1, we get

κ⋆ 2
3 = 1

λ2 . Consequently,

(3.26) κ⋆
3 = − 1

λ
, λ ∈ R

+
0 .

Substituting (3.25) in (3.24), we find

(3.27) B⋆
1 = − 1

2
√

λ
(T + 2λB1).

Now, relations (3.11), (3.18), (3.25) and (3.26) imply that (3.1) holds, where κ⋆
1 =

−κ⋆
2 = −κ3. By using the last relation and the relations (3.17), (3.18), (3.21)

and (3.27), it follows that (3.2) is satisfied. Similarly, when (3.19) and (3.21), or
(3.18) and (3.22), or (3.19) and (3.22) hold, we also obtain that (3.1) and (3.2) are
satisfied. This completes the proof of the theorem. �

In the following theorem we give the necessary conditions for the null Cartan
curve α and its associated curve α⋆ = α + (1/2κ2)N to be the generalized null
Mannheim curve and the generalized Mannheim mate curve, respectively.

Theorem 3.2. Let α : I → E
4
1 be a null Cartan curve with a non-zero con-

stant second curvature κ2 ∈ R
+
0 and the Cartan frame {T, N, B1, B2}. If the curve

α⋆ : I⋆ → E
4
1 defined by α⋆ = α + (1/2κ2)N is the Frenet curve, then α is the

generalized null Mannheim curve and α⋆ the generalized timelike Mannheim mate
curve of α.

Proof. Assume that the curve α⋆ defined by

(3.28) α⋆(s) = α(s) +
1

2κ2
N(s), κ2 ∈ R

+
0 ,

is the Frenet curve, where s is the pseudo-arc length parameter of α and s⋆ = f(s) =
∫ s

0 ‖α⋆′(t)‖dt is the arc-length parameter of α⋆. Putting λ = 1/κ2, κ2 ∈ R
+
0 , it can

be easily checked that g(α⋆′(s), α⋆′(s)) = −λ. This means that α⋆ is a timelike

curve. Consequently, f(s) =
√

λs. Differentiating relation (3.28) with respect to s,

and using (2.1) and f ′ =
√

λ, we obtain

(3.29) T ⋆ =
1

2
√

λ
(T − 2λB1).

Differentiating the last relation with respect to s and using (2.1) and (2.2), we find
κ⋆

1N⋆ = −κ3B2. It follows that

(3.30) κ⋆
1 = −κ3, N⋆ = B2,

or

(3.31) κ⋆
1 = κ3, N⋆ = −B2.
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Assume that relation (3.30) holds. Differentiating the relation N⋆ = B2 with
respect to s and using (2.1) and (2.2), we get

(3.32) (κ⋆
1T ⋆ + κ⋆

2B⋆
1)f ′ = −κ3T.

The last relation implies (−κ⋆2
1 + κ⋆2

2 )f ′2 = 0. It follows that

(3.33) |κ⋆
1| = |κ⋆

2|.
Substituting (3.29) in (3.32) and using (3.30), (3.33) and f ′ =

√
λ, we get

(3.34) B⋆
1 =

sgn(κ⋆
1) sgn(κ⋆

2)

2
√

λ
(T + 2λB1).

Differentiating the last relation with respect to s and using (2.1), (2.2), (3.30) and
λ = 1/2κ2, we get

(3.35) B⋆
2 =

sgn(κ⋆
1) sgn(κ⋆

2)

λκ⋆
3

N.

Relations (3.29), (3.30), (3.34), (3.35) and the condition det(T ⋆, N⋆, B⋆
1 , B⋆

2) = 1
imply κ⋆

3 = −1/λ, λ ∈ R
+
0 . Substituting the last relation in (3.35), it follows that

(3.36) B⋆
2 = − sgn(κ⋆

1) sgn(κ⋆
2)N.

By using (3.29), (3.30), (3.34) and (3.36), we obtain that the frames of α and α⋆

are related by

T ⋆ =
1

2
√

λ
(T − 2λB1),

N⋆ = B2,

B⋆
1 =

sgn(κ⋆
1) sgn(κ⋆

2)

2
√

λ
(T + 2λB1),

B⋆
2 = − sgn(κ⋆

1) sgn(κ⋆
2)N.

Since the principal normal N of α lies in the spacelike plane spanned by {B⋆
1 , B⋆

2},
it follows that α is the generalized null Mannheim curve and α⋆ the generalized
timelike Mannheim mate curve of α. Assuming that relation (3.31) holds, we also
obtain that N lies in the spacelike plane spanned by {B⋆

1 , B⋆
2}. This completes the

proof of the theorem. �

(B) span{B⋆
1 , B⋆

2} is a timelike plane.
In this case, we obtain two theorems depending on the causal character of

the basis vectors B⋆
1 and B⋆

2 of a timelike plane span{B⋆
1 , B⋆

2}. It is known that a
timelike plane can be spanned by the spacelike and the timelike mutually orthogonal
unit vectors or else by two linearly independent null vectors. Theorems 3.3 and 3.4
can be proved in a similar way as Theorems 3.1 and 3.2 respectively, so we omit
their proofs.

Theorem 3.3. Let α : I → E
4
1 be the generalized null Mannheim curve and

α⋆ : I⋆ → E
4
1 the generalized Mannheim mate curve of α such that the principal

normal line of α lies in the timelike plane spanned by non-null vectors {B⋆
1 , B⋆

2}.
Then α⋆ is the spacelike Frenet curve such that the curvatures of α and α⋆ satisfy
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the relations κ1 = 1, κ2 = 1/2λ, |κ⋆
1| = |κ⋆

2| = |κ3|, |κ⋆
3| = − 1

λ , λ ∈ R
−
0 , and the

corresponding frames of α and α⋆ are related by

T ⋆ =
1

2
√

|λ|
(T − 2λB1),

N⋆ = sgn(κ⋆
1) sgn(κ3)B2,

B⋆
1 = sgn(κ⋆

1) sgn(κ⋆
2)

1

2
√

|λ|
(T + 2λB1),

B⋆
2 = sgn(κ⋆

2) sgn(κ3)N.

Theorem 3.4. Let α : I → E
4
1 be a null Cartan curve with a non-zero con-

stant second curvature κ2 ∈ R
−
0 and the Cartan frame {T, N, B1, B2}. If the curve

α⋆ : I⋆ → E
4
1 defined by α⋆ = α + (1/2κ2)N is the Frenet curve, then α is the

generalized null Mannheim curve and α⋆ the generalized spacelike Mannheim mate
curve of α.

In the case when a timelike plane span{B⋆
1 , B⋆

2} is spanned by two linearly
independent null vectors B⋆

1 and B⋆
2 , we obtain the following theorem.

Theorem 3.5. There are no generalized null Mannheim curves in E
4
1 the gen-

eralized Mannheim mate curve of which is a partially null Frenet curve.

Proof. Assume that there exists the generalized null Mannheim curve α : I →
E

4
1 the generalized Mannheim mate curve α⋆ : I⋆ → E

4
1 of which is a partially null

Frenet curve. Then the principal normal line of α lies in the timelike plane spanned
by null vector fields B⋆

1 and B⋆
2 . In particular, the curve α⋆ can be parameterized

by

(3.37) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the pseudo-arc length parameter of α, s⋆ = f(s) =
∫ s

0 ‖α⋆′(t)‖dt the arc-
length parameter of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth functions.
We distinguish two cases: (B.1) κ2 = 0 and (B.2) κ2 6= 0.

(B.1) κ2 = 0.
Differentiating relation (3.37) with respect to s and applying (2.1), we obtain

(3.38) T ⋆f ′ = T + λ′N − λB1.

By taking the scalar product of (3.38) with N = aB⋆
1 + bB⋆

2 , we find λ′ = 0.
Substituting this in (3.38) it follows that

(3.39) T ⋆f ′ = T − λB1, λ ∈ R0.

From (3.39) we have

(3.40) g(T ⋆f ′, T ⋆f ′) = f ′2 = −2λ = constant 6= 0.

Differentiating relation (3.39) with respect to s and using (2.1), (2.4) and (3.40), it
follows that

(3.41) κ⋆
1N⋆f ′2 = N − λκ3B2.
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By taking the scalar product of (3.41) with N = aB⋆
1 + bB⋆

2 , we obtain a contra-
diction.

(B.2) κ2 6= 0.
Differentiating relation (3.37) with respect to s and using (2.1), we find

(3.42) T ⋆f ′ = (1 − λκ2)T + λ′N − λB1.

By taking the scalar product of (3.42) with N yields

(3.43) λ′ = 0.

Substituting (3.43) in (3.42) we get

(3.44) T ⋆f ′ = (1 − λκ2)T − λB1, λ ∈ R0.

Differentiating relation (3.44) with respect to s and using (2.1) and (2.4), we obtain

(3.45) κ⋆
1N⋆f ′2 + T ⋆f ′′ = (1 − λκ2)′T + (1 − 2λκ2)N − λκ3B2.

By taking the scalar product of (3.45) with N = aB⋆
1 + bB⋆

2 , it follows that

(3.46) κ2 =
1

2λ
, λ ∈ R0.

By using (3.44) we obtain

(3.47) g(T ⋆f ′, T ⋆f ′) = f ′2 = −2λ(1 − λκ2).

Substituting (3.46) in (3.47) it follows that

(3.48) f ′2 = −λ = constant, λ ∈ R
−
0 .

From (3.45), (3.46) and (3.48) we obtain

(3.49) κ⋆
1N⋆ = κ3B2.

Relation (3.49) implies κ⋆
1 = κ3, N⋆ = B2 or κ⋆

1 = −κ3, N⋆ = −B2. Differentiating
the relation N⋆ = ±B2 with respect to s and applying (2.1) and (2.4), it follows
that

(3.50) (−κ⋆
1T ⋆ + κ⋆

2B⋆
1)f ′ = ∓κ3T.

By taking the scalar product of (3.50) with N = aB⋆
1 + bB⋆

2 we find bκ⋆
2f ′ = 0. If

κ⋆
2 = 0, relation (3.50) implies that a spacelike vector T ⋆ is collinear with a null

vector T , which is a contradiction. It follows that b = 0, so N = aB⋆
1 . This means

that a spacelike vector N is collinear with a null vector B⋆
1 , which is impossible. �

(C) span{B⋆
1 , B⋆

2} is a lightlike plane.
In this case, we obtain two theorems depending on the causal character of the

basis vectors of a lightlike plane span{B⋆
1 , B⋆

2}, which can be spanned by a null
vector B⋆

1 and a spacelike vector B⋆
2 , or else by a spacelike vector B⋆

1 and a null
vector B⋆

2 .

Theorem 3.6. Let α : I → E
4
1 be the generalized null Mannheim curve and

α⋆ : I⋆ → E
4
1 the generalized Mannheim mate curve of α, such that the principal

normal line of α lies in the lightlike plane spanned by a null vector B⋆
1 and a

spacelike vector B⋆
2 . Then α⋆ is a null Cartan curve such that one of the two

statements hold:
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(i) the curvatures of α and α⋆ satisfy the relations

(3.51) κ2 =
1 − sinh2 (

√
2

2 s
)

cosh2 (

√
2

2 s
)

, κ⋆
2 = 0, |κ3| = cosh6

(

√
2

2
s
)

, |κ⋆
3| =

1

cosh2 (

√
2

2 s
)

,

and the corresponding Cartan frames of α and α⋆ are related by

(3.52)

T ⋆ =
sinh2(

√
2

2 s)

cosh4(
√

2
2 s)

T +

√
2 sinh(

√
2

2 s)

cosh3(
√

2
2 s)

N − 1

cosh2(
√

2
2 s)

B1,

N⋆ = − sgn(κ⋆
3)B2,

B⋆
1 = − cosh2

(

√
2

2
s
)

T,

B⋆
2 = − sgn(κ⋆

3)

(

√
2 sinh

(

√
2

2 s
)

cosh
(

√
2

2 s
)

T + N

)

;

(ii) the curvatures of α and α⋆ satisfy the relations

κ2 =
2λ − λ′2

2λ2 6= 0, κ⋆
2 =

X

λλ′2f ′2 6= 0, |κ3| =

√

λ2f ′4 − X2

λ2 ,(3.53)

|κ⋆
3| =

(

λ′X
2λ2f ′2

)′
+ 2(λ2f ′4−X2)−λX

2λ3f ′2 +
((

X
λ′f ′2

)′
+ X

λ′2f ′2

)(

2λ−λ′2

2λ2

)

f ′2 .

where X(s) = λλ′′ − λ′2 − λ, f ′ = e
∫

λλ
′′+λ

′2
−λ

λλ′
ds and λ(s) 6= constant satisfy the

differential equation

X2[λ2f ′4 + λλ′X ′ − (3λλ′′ + 2λ′2 − 3λ)X ]2

λ4λ′2f ′′4(λ2f ′4 − X2)

+ 2

[

( λ′X

2λ2f ′2

)′
+

2(λ2f ′4 − X2) − λX

2λ3f ′2

][

( X

λ′f ′2

)′
+

X

λ′2f ′2

]

= 0,

while the corresponding Cartan frames of α and α⋆ are related by

T ⋆ =
λ′2

2λf ′ T +
λ′

f ′ N − λ

f ′ B1,

N⋆ = − sgn(κ⋆
3)

(λ′(λλ′′ − λ′2 − λ)

2λ2f ′2 T +
(λλ′′ − λ′2 − λ

λ′f ′2

)

B1

−
√

λ2f ′4 − (λλ′′ − λ′2 − λ)2

λf ′2

)

B2,(3.54)

B⋆
1 = xT + yB1 + zB2,

B⋆
2 = − sgn(κ⋆

3)

f ′κ⋆
3

[(x′ − zκ3 − κ⋆
2mf ′)T + (x + yκ2)N

+ (y′ − κ⋆
2nf ′)B1 + (yκ3 + z′ − κ⋆

2pf ′)B2],



88 GRBOVIĆ, ILARSLAN, AND NEŠOVIĆ

where x, y, z are given by

x = − 1

f ′

(( λ′X

2λ2f ′2

)′
+

2(λ2f ′4 − X2) − λX

2λ3f ′2

)

,

y = − 1

f ′

(( X

λ′f ′2

)′
+

X

λ′2f ′2

)

,

z = − 1

f ′

(X [λ2f ′4 + λλ′X ′ − (3λλ′′ + 2λ′2 − 3λ)X ]

λ2λ′f ′2
√

λ2f ′4 − X2

)

.

Proof. By assumption the principal normal line of α lies in the lightlike plane
spanned by a null vector B⋆

1 and a spacelike vector B⋆
2 . Therefore, α⋆ is a null

Cartan curve the Cartan frame of which satisfies the relation (2.1). The curve α⋆

has parametrization of the form

(3.55) α⋆(f(s)) = α(s) + λ(s)N(s),

where s and s⋆ = f(s) are the pseudo-arc length parameters of α and α⋆ respectively
and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth functions. We distinguish two
subcases: (C.1) κ2 = 0 and (C.2) κ2 6= 0.

(C.1) κ2 = 0.
Differentiating relation (3.55) with respect to s and using (2.1) we obtain

(3.56) T ⋆f ′ = T + λ′N − λB1.

Since g(T ⋆f ′, T ⋆f ′) = λ′2 − 2λ = 0, it follows that

(3.57) λ(s) =
(s + c)2

2
, c ∈ R.

Differentiating relation (3.56) with respect to s and using (2.1) and (3.57), we
obtain

(3.58) N⋆f ′2 + T ⋆f ′′ = 2N − 2(s + c)B1 − 1

2
(s + c)2κ3B2.

By taking the scalar products of (3.56) and (3.58) with N = aB⋆
1 ± B⋆

2 , we respec-
tively find

af ′ = s + c, c ∈ R,(3.59)

af ′′ = 2.(3.60)

Relations (3.59) and (3.60) imply

(3.61) a =
1

c1(s + c)
, f ′ = c1(s + c)2, c1 ∈ R

+
0 , c ∈ R.

Substituting (3.57) and (3.61) in (3.56), we obtain

(3.62) T ⋆ =
1

c1(s + c)2 T +
1

c1(s + c)
N − 1

2c1
B1.

Substituting (3.61) in (3.58) and using (3.62), we get

(3.63) N⋆ = − 2

c2
1(s + c)5 T − 1

c2
1(s + c)3 B1 − κ3

2c2
1(s + c)2 B2.
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Now we distinguish two subcases: (C.1.1) κ⋆
2 = 0 and (C.1.2) κ⋆

2 6= 0.
(C.1.1) κ⋆

2 = 0;
Differentiating relation (3.58) with respect to s and using (2.1), we obtain

f ′′′T ⋆ + 3f ′f ′′N⋆ − f ′3B⋆
1 =

κ2
3

2
(s + c)2T − 4B1 − (s + c)

(

3κ3 +
(s + c)

2
κ′

3

)

B2.

By taking the scalar product of the last relation with N = aB⋆
1 ± B⋆

2 , we get
af ′′′ = 0. This implies a = 0 or f ′′′ = 0, which is a contradiction with (3.61).

(C.1.2) κ⋆
2 6= 0; Differentiating relation (3.63) with respect to s and using

(2.1), we find

(−κ⋆
2T ⋆ − B⋆

1)f ′ =
20 + κ2

3(s + c)4

2c2
1(s + c)6 T − 2

c2
1(s + c)5 N(3.64)

+
3

c2
1(s + c)4 B1 − κ′

3

2c2
1(s + c)2 B2.

By taking the scalar product of the last relation with N = aB⋆
1 ± B⋆

2 and using
(3.61), it follows that

(3.65) κ⋆
2 =

2

c2
1(s + c)6 , c1 ∈ R

+
0 , c ∈ R.

Substituting (3.62) and (3.65) in (3.64), we get

−B⋆
1f ′ =

24 + κ2
3(s + c)4

2c2
1(s + c)6 T +

2

c2
1(s + c)4 B1 − κ′

3

2c2
1(s + c)2 B2.

The last relation and the condition g(B⋆
1 , B⋆

1 ) = 0 imply [2(24 + κ2
3(s + c)4)/c4

1(s +
c)10] + [κ′2

3 /4c4
1(s + c)4] = 0, which is a contradiction.

(C.2) κ2 6= 0;
Differentiating relation (3.55) with respect to s and using (2.1), we obtain

(3.66) T ⋆ =
(1 − λκ2

f ′

)

T +
λ′

f ′ N − λ

f ′ B1.

Since g(T ⋆, T ⋆) = (λ′2 − 2λ(1 − λκ2))/f ′2 = 0, it follows that

(3.67) κ2 =
2λ − λ′2

2λ2 .

Next we prove that λ 6= constant. If λ = constant 6= 0, relation (3.67) gives κ2 = 1
λ .

Substituting this in (3.66) we obtain T ⋆f ′ = −λB1. By taking the scalar product
of the last equation with N = aB⋆

1 ±B⋆
2 , we find af ′ = 0. Therefore, a = 0 and thus

N = ±B⋆
2 . Differentiating the last relation with respect to s and using (2.1), we

get −κ2T − B1 = ±κ⋆
3f ′T ⋆. The last relation implies g(−κ2T − B1, −κ2T − B1) =

2κ2 = 0, which is a contradiction. Consequently, λ 6= constant.
Putting

(3.68) u =
1 − λκ2

f ′ v =
λ′

f ′ w = − λ

f ′ ,

relation (3.66) becomes

(3.69) T ⋆ = uT + vN + wB1.
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Differentiating the last relation with respect to s and using (2.1), we find

(3.70) N⋆ =
(u′ − vκ2

f ′

)

T +
(u + v′ + wκ2

f ′

)

N +
(w′ − v

f ′

)

B1 +
wκ3

f ′ B2.

By taking the scalar product of (3.70) with N = aB⋆
1 ± B⋆

2 , we get

(3.71) u + v′ + wκ2 = 0.

Substituting (3.67) and (3.68) in (3.71), we obtain

(3.72)
f ′′

f ′ =
λλ′′ + λ′2 − λ

λλ′ .

Consequently, f ′ = ce
∫

λλ
′′+λ

′2
−λ

λλ′
ds, c ∈ R

+
0 . Taking c = 1, we find

(3.73) f ′ = e
∫

λλ
′′+λ

′2
−λ

λλ′
ds.

Substituting (3.71) in (3.70) yields

(3.74) N⋆ =
(u′ − vκ2

f ′

)

T +
(w′ − v

f ′

)

B1 +
wκ3

f ′ B2.

Next, the condition g(N⋆, N⋆) = 1 and the relation (3.74) imply κ2
3 = [f ′2 − 2(u′ −

vκ2)(w′ − v)]/w2. Substituting (3.67) and (3.68) in the last relation, we get

(3.75) |κ3| =

√

λ2f ′4 − (λλ′′ − λ′2 − λ)2

λ2 .

Putting

(3.76) m =
u′ − vκ2

f ′ , n =
w′ − v

f ′ , p =
wκ3

f ′ ,

relation (3.74) becomes

(3.77) N⋆ = mT + nB1 + pB2.

Differentiating the last relation with respect to s and using (2.1), we get

(3.78) (−κ⋆
2T ⋆ − B⋆

1 )f ′ = (m′ − pκ3)T + (m + nκ2)N + n′B1 + (nκ3 + p′)B2.

Now we distinguish two subcases: (C.2.1) κ⋆
2 = 0 and (C.2.2) κ⋆

2 6= 0.
(C.2.1) κ⋆

2 = 0.
Then relation (3.78) reads

(3.79) B⋆
1 = − 1

f ′ [(m
′ − pκ3)T + (m + nκ2)N + n′B1 + (nκ3 + p′)B2].

By taking the scalar product of (3.79) with N = aB⋆
1 ± B⋆

2 , we get m + nκ2 = 0.
Substituting (3.76) in the last relation, we find u′ − 2vκ2 + w′κ2 = 0. Next,
substituting (3.67), (3.68) and (3.72) in the last equation, we obtain the second
order differential equation in terms of λ, which reads λλ′′ −λ′2 −λ = 0. The general

solution of the last differential equation is given by λ = (2/c1) cosh2 (

√
c1

2 (s + c2)
)

,
c1, c2 ∈ R, c1 6= 0. Taking c1 = 2 and c2 = 0, we get

(3.80) λ = cosh2(

√
2

2
s).
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Substituting (3.80) in (3.67) and (3.75), we respectively get

(3.81) κ2 =
1 − sinh2(

√
2

2 s)

cosh2(
√

2
2 s)

, |κ3| = cosh6(

√
2

2
s).

Next, substituting (3.80) in (3.73), we obtain

(3.82) f ′ = cosh4(

√
2

2
s).

From (3.80), (3.81), (3.82) and (3.66) we have

(3.83) T ⋆ =
sinh2 (

√
2

2 s
)

cosh4 (

√
2

2 s
)

T +

√
2 sinh

(

√
2

2 s
)

cosh3 (

√
2

2 s
)

N − 1

cosh2 (

√
2

2 s
)

B1.

Differentiating the previous equation with respect to s, using (2.1) and (3.82), we

obtain N⋆ = −κ3/ cosh6 (

√
2

2 s
)

B2. It follows that

(3.84) N⋆ = B2, κ3 = − cosh6
(

√
2

2
s
)

,

or

(3.85) N⋆ = −B2, κ3 = cosh6
(

√
2

2
s
)

.

Assume that (3.84) holds. Differentiating the relation N⋆ = B2 with respect to s,
using (2.1), (3.82) and (3.84), we find

(3.86) B⋆
1 = − cosh2

(

√
2

2
s
)

T.

Differentiating relation (3.86) with respect to s and using (2.1) and (3.82), we get

(3.87) κ⋆
3B⋆

2 = −
√

2 sinh
(

√
2

2 s
)

cosh3 (

√
2

2 s
)

T − 1

cosh2 (

√
2

2 s
)

N.

Relation (3.87) and the condition g(B⋆
2 , B⋆

2) = 1 imply

(3.88) |κ⋆
3| =

1

cosh2 (

√
2

2 s
)

.

Next, by using (3.83), (3.84), (3.86), (3.87) and the condition det(T ⋆, N⋆, B⋆
1 , B⋆

2) =
1, we obtain

(3.89) κ⋆
3 = − 1

cosh2 (

√
2

2 s
)

.

Substituting (3.89) in (3.87) yields

(3.90) B⋆
2 =

√
2 sinh

(

√
2

2 s
)

cosh
(

√
2

2 s
)

T + N.

Finally, relations (3.81) and (3.88) imply that (3.51) holds. By using relations
(3.83), (3.84), (3.86) and (3.90), we obtain that (3.52) holds. Assuming that (3.85)
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holds, in a similar way it can be proved that (3.51) and (3.52) are satisfied. This
proves statement (i).

(C.2.2) κ⋆
2 6= 0;

Since relation (3.73) holds, it follows that the curvatures κ2 and κ3 in relations
(3.67) and (3.75) are expressed only in terms of λ. Next, we show that another
two curvatures κ⋆

2 and κ⋆
3 can also be expressed only in terms of λ, such that

λ 6= constant satisfies the corresponding differential equation. Substituting (3.69)
in (3.78), we obtain

B⋆
1 = − 1

f ′

[

(m′ − pκ3 + uf ′κ⋆
2)T + (m + nκ2 + vf ′κ⋆

2)N(3.91)

+ (n′ + wf ′κ⋆
2)B1 + (nκ3 + p′)B2

]

.

By taking the scalar product of (3.91) with N = aB⋆
1 ± B⋆

2 , we find

(3.92) κ⋆
2 = −m + nκ2

vf ′ .

Substituting (3.67), (3.68), (3.73) and (3.76) in (3.92), it follows that

(3.93) κ⋆
2 =

λ + λ′2 − λλ′′

λλ′2e2
∫

λλ′′+λ′2
−λ

λλ′
ds

.

Substituting (3.92) in (3.91), we find

(3.94) B⋆
1 = − 1

f ′
[

(m′ − pκ3 + uf ′κ⋆
2)T + (n′ + wf ′κ⋆

2)B1 + (nκ3 + p′)B2
]

.

By using relation (3.94) and the condition g(B⋆
1 , B⋆

1) = 0, we get

(3.95) (nκ3 + p′)2 + 2(m′ − pκ3 + uf ′κ⋆
2)(n′ + wf ′κ⋆

2) = 0.

Assuming that sgn(κ3) = 1 and putting

(3.96) X = λλ′′ − λ′2 − λ,

relation (3.75) becomes κ3 =
√

λ2f ′4 − X2/λ2. By using the last relation and
relations (3.68), (3.75), (3.76), (3.93), a straightforward calculation yields

nκ3 + p′ =
X [λ2f ′4 + λλ′X ′ − (3λλ′′ + 2λ′2 − 3λ)X ]

λ2λ′f ′2
√

λ2f ′4 − X2
,(3.97)

m′ − pκ3 + uf ′κ⋆
2 =

( λ′X

2λ2f ′2

)′
+

2(λ2f ′4 − X2) − λX

2λ3f ′2 ,(3.98)

n′ + wf ′κ⋆
2 =

( X

λ′f ′2

)′
+

X

λ′2f ′2 ,(3.99)

where f ′′ and X are given by (3.73) and (3.96), respectively. Substituting the
relations (3.97), (3.98) and (3.99) in (3.95), we obtain the third order differential
equation only in terms of λ, which reads

X2[λ2f ′4 + λλ′X ′ − (3λλ′′ + 2λ′2 − 3λ)X ]2

λ4λ′2f ′4(λ2f ′4 − X2)
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+ 2
[( λ′X

2λ2f ′2

)′
+

2(λ2f ′4 − X2) − λX

2λ3f ′2

][( X

λ′f ′2

)′
+

X

λ′2f ′2

]

= 0.

Putting

(3.100)

x = −m′ − pκ3 + uf ′κ⋆
2

f ′ ,

y = −n′ + wf ′κ⋆
2

f ′ ,

z = −nκ3 + p′

f ′ ,

relation (3.94) becomes

(3.101) B⋆
1 = xT + yB1 + zB2.

Differentiating relation (3.101) with respect to s and using (2.1), we obtain

(3.102) f ′(κ⋆
2N⋆ + κ⋆

3B⋆
2) = (x′ − zκ3)T + (x + yκ2)N + y′B1 + (yκ3 + z′)B2.

Next, substituting (3.77) in (3.102) we get

B⋆
2 =

1

f ′κ⋆
3

[

(x′ − zκ3 − κ⋆
2mf ′)T + (x + yκ2)N(3.103)

+ (y′ − κ⋆
2nf ′)B1 + (yκ3 + z′ − κ⋆

2f ′p)B2
]

,

where x, y, z are given by (3.100). By taking the scalar product of (3.103) with
N = aB⋆

1 ± B⋆
2 , we find

|κ⋆
3| =

x + yκ2

f ′ .

By using (3.69), (3.77), (3.101), (3.103) and the condition det(T ⋆, N⋆, B⋆
1 , B⋆

2) = 1,
we get

(3.104) κ⋆
3 =

x + yκ2

f ′ .

Substituting (3.67) and (3.100) in (3.104), we get

(3.105) κ⋆
3 = −

(

λ′X
2λ2f ′2

)′
+ 2(λ2f ′4−X2)−λX

2λ3f ′2 +
((

X
λ′f ′2

)′
+ X

λ′2f ′2

)(

2λ−λ′2

2λ2

)

f ′2 .

Finally, relations (3.67), (3.75), (3.93) and (3.105) imply that (3.53) holds. By using
(3.67), (3.68), (3.69), (3.76), (3.77), (3.101) and (3.103), we obtain that the Cartan
frames of α and α⋆ are related by (3.54). Moreover, a straightforward calculation
shows that N = (λ′/f ′)B⋆

1 + B⋆
2 . Assuming that sgn(κ3) = −1, we also obtain that

(3.53) and (3.54) hold. This proves statement (ii) of the theorem. �

Remark 3.2. Note that the statement (i) of Theorem 3.6 is the special case of
statement (ii), when X = 0.

When a lightlike plane span{B⋆
1 , B⋆

2} is spanned by a spacelike vector B⋆
1 and

a null vector B⋆
2 , we get the following theorem.
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Theorem 3.7. There are no generalized null Mannheim curves in E
4
1 the gen-

eralized Mannheim mate curve of which is a pseudo null Frenet curve.

Proof. Assume that there exists the generalized null Mannheim curve α in
E4

1 the generalized Mannheim mate curve α⋆ : I⋆ → E
4
1 of which is a pseudo null

Frenet curve. The curve α⋆ can be parameterized by

(3.106) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the pseudo-arc length parameter of α, s⋆ = f(s) =
∫ s

0 ‖α⋆′(t)‖dt is
the arc-length parameter of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth
functions on I. We distinguish two cases: (C∗.1) κ2 = 0 and (C∗.2) κ2 6= 0.

(C∗.1) κ2 = 0.
Differentiating relation (3.106) with respect to s and applying (2.1), we obtain

(3.107) T ⋆f ′ = T + λ′N − λB1.

By taking the scalar product of (3.107) with N = ±B⋆
1 + bB⋆

2 , we find λ′ = 0.
Substituting this in (3.107), we get

(3.108) T ⋆f ′ = T − λB1, λ ∈ R0,

where R0 denotes R\{0}. Relation (3.108) implies

(3.109) g(T ⋆f ′, T ⋆f ′) = f ′2 = −2λ = constant .

Differentiating relation (3.108) with respect to s and using (2.1), (2.3) and (3.109),
it follows that

N⋆f ′2 = N − λκ3B2.

The last relation gives g(N⋆f ′2, N⋆f ′2) = 1 + λ2κ2
3 = 0, which is a contradiction.

(C∗.2) κ2 6= 0.
Differentiating relation (3.106) with respect to s and using (2.1), we obtain

T ⋆f ′ = (1 − λκ2)T + λ′N − λB1. By taking the scalar product of the last relation
with N = ±B⋆

1 + bB⋆
2 , we get λ′ = 0. Consequently,

(3.110) T ⋆ =
(1 − λκ2

f ′

)

T − λ

f ′ B1, λ ∈ R0.

By using the condition g(T ⋆, T ⋆) = 1 and relation (3.110), we find

(3.111) f ′2 = −2λ(1 − λκ2).

Differentiating relation (3.110) with respect to s, using (2.1), (2.3) and (3.111), we
obtain

(3.112) N⋆ = − λκ′
2

2f ′2 T +
(1 − 2λκ2

f ′2

)

N +
λ3κ′

2

f ′4 B1 − λκ3

f ′2 B2.

Assuming that κ2 = constant 6= 0, relation (3.112) implies that a null vector N⋆ is
a linear combination of two mutually orthogonal spacelike vectors N i B2, which is
impossible. Therefore,

(3.113) κ2 6= constant .
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Relation (3.112) and the condition g(N⋆, N⋆) = 0 imply

(3.114) κ2
3 =

λ4κ′2
2 − f ′2(1 − 2λκ2)2

λ2f ′2

Substituting (3.111) in (3.114), we get

(3.115) κ2
3 =

λ3κ′2
2 + 2(1 − λκ2)(1 − 2λκ2)2

−2λ2(1 − λκ2)

Putting

(3.116) m = − λκ′
2

2f ′2 , n =
1 − 2λκ2

f ′2 , p =
λ3κ′

2

f ′4 , q = −λκ3

f ′2 ,

relation (3.112) becomes N⋆ = mT + nN + pB1 + qB2. Differentiating the last
relation with respect to s and using (2.1) and (2.3), we find

κ⋆
2B⋆

1 f ′ = (m′ − nκ2 − qκ3)T + (m + n′ + pκ2)N + (p′ − n)B1 + (pκ3 + q′)B2.

By taking the scalar product of the last relation with N = ±B⋆
1 + bB⋆

2 it follows
that ±κ⋆

2f ′ = m + n′ + pκ2. Assuming that κ⋆
2f ′ = m + n′ + pκ2, we obtain

(3.117) B⋆
1 =

(m′ − nκ2 − qκ3

κ⋆
2f ′

)

T + N +
(p′ − n

κ⋆
2f ′

)

B1 +
(pκ3 + q′

κ⋆
2f ′

)

B2.

The condition g(B⋆
1 , B⋆

1) = 1 and relation (3.117) yield

(3.118) 2(m′ − nκ2 − qκ3)(p′ − n) + (pκ3 + q′)2 = 0.

By using (3.115) and (3.116), we find

m′ − nκ2 − qκ3 =
κ′′

2λ2(1 − λκ2) + 2λ3κ′2
2 + 2(1 − λκ2)2(1 − 2λκ2)

4λ2(1 − λκ2)2 ,

p′ − n =
κ′′

2λ2(1 − λκ2) + 2λ3κ′2
2 + 2(1 − λκ2)2(1 − 2λκ2)

4λ(1 − λκ2)3 .(3.119)

From the last two relations we get

(3.120) m′ − nκ2 − qκ3 =
(1 − λκ2)

λ
(p′ − n).

Substituting (3.120) in (3.118), we obtain

(3.121) 2
(1 − λκ2

λ

)

(p′ − n)2 + (pκ3 + q′)2 = 0.

Since (3.113) holds, relation (3.121) implies

p′ − n = 0,(3.122)

pκ3 + q′ = 0.(3.123)

By using (3.114) and (3.116), a straightforward calculation yields

(3.124) pκ3 + q′ =
κ′

2

[

κ′′
2λ2(1 − λκ2) + 2λ3κ′2

2 − (1 − λκ2)(1 − 2λκ2)(1 + 2λκ2)
]

−4λκ3(1 − λκ2)3
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By using (3.119) and (3.122), we have

(3.125) κ′′
2λ2(1 − λκ2) + 2λ3κ′2

2 + 2(1 − λκ2)2(1 − 2λκ2) = 0.

Similarly, by using (3.123) and (3.124), we get

(3.126) κ′′
2 λ2(1 − λκ2) + 2λ3κ′2

2 + (1 − λκ2)(1 − 2λκ2)(−1 − 2λκ2) = 0.

Finally, relations (3.125) and (3.126) imply κ2 = 1/2λ = constant or κ2 = 1/λ =
constant, which is a contradiction with (3.113). �

In order to characterize the generalized null Mannheim curves in E
4
1 in terms

of the normal curves, we recall the next theorem given in [9].

Theorem 3.8. Let α(s) be a null curve in E
4
1 parameterized by pseudo-arc s

and with curvatures κ1(s) = 1, κ2(s) 6= 0, κ3(s) 6= 0. Then α is a normal curve if
and only if one of the following statements holds:

(i) α lies in pseudosphere S
3
1(r), r ∈ R

+
0 ;

(ii) the third curvature κ3(s) is a non-zero constant;
(iii) the second binormal component of the position vector α is a non-zero

constant, i.e. g(α, B2) = c0, c0 ∈ R0.

By using Theorems 3.1–3.4, 3.6 and 3.8, we get the following corollaries.

Corollary 3.1. Every null Cartan helix in E
4
1 is a normal generalized null

Mannheim curve the generalized Mannheim mate curve of which is a timelike or a
spacelike helix.

Corollary 3.2. There are no normal generalized null Mannheim curves the
generalized Mannheim mate curve of which is a null Cartan curve.

4. Some examples

Example 4.1. Consider the null Cartan curve α in E
4
1 with parameter equation

α(s) =
(

∫

es cosh
(

√
2

2es

)

ds, −
∫

es sinh
(

√
2

2es

)

ds,

−
∫

es sin
(

√
2

2es

)

ds,

∫

es cos
(

√
2

2es

)

ds
)

where s is the pseudo-arc length parameter. The curvatures of α are given by
κ1(s) = 1, κ2(s) = −1/2, κ3(s) = 1/2e2s. The principal normal vector N(s) of α
is given by

N(s) = α′′(s) = es
(

cosh
(

√
2

2es

)

, − sinh
(

√
2

2es

)

, − sin
(

√
2

2es

)

, cos
(

√
2

2es

))

+

√
2

2

(

− sinh
(

√
2

2es

)

, cosh
(

√
2

2es

)

, cos
(

√
2

2es

)

, sin
(

√
2

2es

))

.

Define the curve α⋆ : I → E
4
1 by α⋆(s) = α(s) − N(s). Since g(α⋆′(s), α⋆′(s)) = 1,

α⋆ is a unit speed spacelike curve. The curvatures of α⋆ are given by κ⋆
1(s) =
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κ⋆
2(s) = 1/2e2s, κ⋆

3(s) = 1. Moreover, by using a straightforward calculation, it
follows that the Frenet frame of α⋆ is given by

T ⋆(s) =

√
2

2

(

sinh
(

√
2

2es

)

, − cosh
(

√
2

2es

)

, − cos
(

√
2

2es

)

, − sin
(

√
2

2es

))

− e−s

2

(

cosh
(

√
2

2es

)

, − sinh
(

√
2

2es

)

, sin
(

√
2

2es

)

, − cos
(

√
2

2es

))

,

N⋆(s) =

√
2

2

(

sinh
(

√
2

2es

)

, − cosh
(

√
2

2es

)

, cos
(

√
2

2es

)

, sin
(

√
2

2es

))

,

B⋆
1(s) = −

√
2

2

(

sinh
(

√
2

2es

)

, − cosh
(

√
2

2es

)

, − cos
(

√
2

2es

)

, − sin
(

√
2

2es

))

+
e−s

2

(

cosh
(

√
2

2es

)

, − sinh
(

√
2

2es

)

, sin
(

√
2

2es

)

, − cos
(

√
2

2es

))

+ es
(

cosh
(

√
2

2es

)

, − sinh
(

√
2

2es

)

, − sin
(

√
2

2es

)

, cos
(

√
2

2es

))

,

B⋆
2(s) = es

(

cosh
(

√
2

2es

)

, − sinh
(

√
2

2es

)

, − sin
(

√
2

2es

)

, cos
(

√
2

2es

))

+

√
2

2

(

− sinh
(

√
2

2es

)

, cosh
(

√
2

2es

)

, cos
(

√
2

2es

)

, sin
(

√
2

2es

))

.

According to Theorem 3.4, α is the generalized null Mannheim curve and α⋆ the
generalized spacelike Mannheim mate curve of α. Since N(s) = B⋆

2 (s), the vector
N(s) lies in the timelike plane span{B⋆

1 , B⋆
2 }.

Example 4.2. Consider the null Cartan helix α in E
4
1, parameterized by

the pseudo-arc length function s, with parameter equation α(s) = (sinh(s/
√

2),

(1/
√

3) sin(s
√

3/
√

2), cosh(s/
√

2), (−1/
√

3) cos(s
√

3/
√

2)) and the curvature func-
tions κ1(s) = 1, κ2(s) = 1/2, κ3(s) =

√
3/2. The principal normal vector N(s) of

α is given by

N(s) = α′′(s) =
(1

2
sinh

( s√
2

)

, −
√

3

2
sin

(s
√

3√
2

)

,
1

2
cosh

( s√
2

)

,

√
3

2
cos

(s
√

3√
2

))

.

Define the curve α⋆ : I → E
4
1 by α⋆(s) = α(s)+N(s). Since g(α⋆′(s), α⋆′(s)) = −1,

α⋆ is a unit speed timelike curve. A straightforward calculation shows that the
curvatures of α⋆ are given by κ⋆

1(s) = κ⋆
2(s) =

√
3/2, κ⋆

3(s) = 1. Consequently, α⋆

is a timelike helix. Moreover, the Frenet frame of α⋆ has the form

T ⋆(s) =
( 3

2
√

2
cosh

( s√
2

)

, − 1

2
√

2
cos

(s
√

3√
2

)

,
3

2
√

2
sinh

( s√
2

)

, − 1

2
√

2
sin

(s
√

3√
2

))

,

N⋆(s) =
(

√
3

2
sinh

( s√
2

)

,
1

2
sin

(s
√

3√
2

)

,

√
3

2
cosh

( s√
2

)

, −1

2
cos

(s
√

3√
2

))

,

B⋆
1(s) =

(

− 1

2
√

2
cosh

( s√
2

)

,
3

2
√

2
cos

(s
√

3√
2

)

, − 1

2
√

2
sinh

( s√
2

)

,
3

2
√

2
sin

(s
√

3√
2

))

,

B⋆
2(s) =

(1

2
sinh

( s√
2

)

, −
√

3

2
sin

(s
√

3√
2

)

,
1

2
cosh

( s√
2

)

,

√
3

2
cos

(s
√

3√
2

))

.
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According to Corollary 3.1, α is the normal generalized null Mannheim curve and
α⋆ the generalized timelike Mannheim mate curve of α, such that N(s) = B⋆

2(s).
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