COMPARISON BETWEEN THE LAPLACIAN-ENERGY-LIKE INVARIANT AND THE KIRCHHOFF INDEX*

S. PIRZADA ${ }^{\dagger}$, HILAL A. GANIE ${ }^{\dagger}$, AND IVAN GUTMAN ${ }^{\ddagger}$

Abstract

For a simple connected graph G of order n, having Laplacian eigenvalues μ_{1}, μ_{2}, \ldots, $\mu_{n-1}, \mu_{n}=0$, the Laplacian-energy-like invariant $(L E L)$ and the Kirchhoff index $(K f)$ are defined as $L E L(G)=\sum_{i=1}^{n-1} \sqrt{\mu_{i}}$ and $K f(G)=n \sum_{i=1}^{n-1} \frac{1}{\mu_{i}}$, respectively. In this paper, $L E L$ and $K f$ are compared, and sufficient conditions for the inequality $K f(G)<L E L(G)$ are established.

Key words. Laplacian spectrum, Laplacian-energy-like invariant, Kirchhoff index.

AMS subject classifications. 05C50, 15A18.

1. Introduction. Let G be finite, undirected and simple graph with n vertices and m edges having vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=$ $\left(a_{i j}\right)$ of G is the $(0,1)$-square matrix of order n whose (i, j)-entry is equal to one if v_{i} is adjacent to v_{j}, and is equal to zero otherwise. Let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix, where d_{i} is the degree of the vertex v_{i} of G. Then $L(G)=D(G)-$ $A(G)$ is the Laplacian matrix, and its spectrum $S p_{L}(G)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}, \mu_{n}\right\}$ is the Laplacian spectrum of the graph G. For the sake of simplicity, we use $\mu_{i}^{t_{j}}$ to denote that the eigenvalue μ_{i} is repeated t_{j} times in the spectrum. In what follows, we assume that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$. For other undefined notations and terminology from spectral graph theory, the readers are referred to [6, 32]

It is well known that the Laplacian eigenvalues are non-negative real numbers and that eigenvalue zero has multiplicity equal to the number of connected components of the underlying graph G, for more details on Laplacian eigenvalues, see [16, 18, 19 , [29, 30, 33, 34, 36, 37]. Thus, $\mu_{n}=0$ for all graphs, and $\mu_{n-1}>0$ if and only if G is connected. The eigenvalue μ_{n-1} is called the algebraic connectivity of the graph G [10, 12 .

The concept of resistance distance was introduced by Klein and Randic [23]. In a graph G, the resistance distance between vertices v_{i} and v_{j}, denoted by $r_{i j}$, is defined

[^0]to be the effective resistance between nodes v_{i} and v_{j} as computed by Kirchhoff's laws, when all the edges of G are considered to be unit resistors.

The traditional distance between vertices v_{i} and v_{j}, denoted by $d_{i j}$, is the length of a shortest path connecting them. The Wiener index $W(G)$ is defined as $W(G)=$ $\sum_{i<j} d_{i j}$. As an analogue to the Wiener index, the sum $K f(G)=\sum_{i<j} r_{i j}$ was considered [23], later named the Kirchhoff index [5]. In [23], it was shown that $r_{i j} \leq d_{i j}$ and $K f(G) \leq W(G)$ with equality if and only if G is a tree.

The Kirchhoff index has a nice purely mathematical interpretation. Mohar and one of the present authors [21] demonstrated that the Kirchhoff index of a connected graph satisfies the relation

$$
K f=K f(G)=n \sum_{i=1}^{n-1} \frac{1}{\mu_{i}}
$$

Noteworthy applications in chemistry of the Kirchhoff index as a molecular structure descriptor have been found [5, 7, 11, 31, 43). For details on the extensive mathematical research of the Kirchhoff index, see the recent papers [2, 3, 4, 14, 15, 24, 35, [38, 40, 42] and the references cited therein.

Another Laplacian-spectrum-based graph invariant was put forward by Liu and Liu 27, defined as

$$
L E L=L E L(G)=\sum_{i=1}^{n-1} \sqrt{\mu_{i}}
$$

and named this as Laplacian-energy-like invariant. The motivation for introduction of the $L E L$ was in its analogy to the earlier studied graph energy [25] and Laplacian energy [22, 25]; for more details see the survey [26] and the references cited therein. Recently, several mathematical investigations of the LEL were communicated [8, 20, 28, 35, 38, 39, 41, 44, 45.

Motivated by the papers [3, 9 in which two sufficient conditions were established for the inequality $K f(G)>L E L(G)$, and the relations between $K f(G)$ and $L E L(G)$ were completely solved for trees, unicyclic graphs, bicyclic graphs, tricyclic graphs, and tetracyclic graphs, we now obtain sufficient conditions under which $L E L(G)>$ $K f(G)$ holds. Complete comparisons are only given for these graphs if they have a sufficient number of vertices.
2. Main results. In order to compare the Kirchhoff index and the Laplacian-energy-like invariant of a graph G, we need the following lemmas [12, 17, 18.

Lemma 2.1. Let G be a connected graph of order n and let Δ be its maximum degree. Then $\Delta+1 \leq \mu_{1} \leq n$. Equality holds on the left if $\Delta=n-1$ and on the right if and only if G is the join of two graphs.

Lemma 2.2. Let $G \not \approx K_{n}$ be a connected graph of order n and let δ be its smallest vertex degree. Then $\mu_{n-1} \leq \delta$.

LEMMA 2.3. If $0=\mu_{n}<\mu_{n-1} \leq \mu_{n-2} \leq \cdots \leq \mu_{1}$ are the Laplacian eigenvalues of the graph G, then the Laplacian eigenvalues of its complement \bar{G} are $0=\mu_{n}<$ $n-\mu_{1} \leq n-\mu_{2} \leq \cdots \leq n-\mu_{n-1}$.

Our first result is as follows.
Theorem 2.4. Let G be a connected graph with algebraic connectivity $\mu_{n-1} \geq k$ and let m be the number of edges and Δ the maximum degree of G. If

$$
\begin{equation*}
2 m>\frac{k(\sqrt{n}+\sqrt{k})}{k+\sqrt{n}+\sqrt{k}}\left(\frac{(n+k)(n-1)}{k}-\frac{(n-1) \sqrt{k(\Delta+1)}}{\sqrt{n}+\sqrt{k}}\right) \tag{2.1}
\end{equation*}
$$

then $K f(G)<L E L(G)$.
Proof. Let $0=\mu_{n}<\mu_{n-1} \leq \cdots \leq \mu_{1}$ be the Laplacian eigenvalues of the connected graph G, and let $\mu_{n-1} \geq k$. Then

$$
\begin{aligned}
L E L(G) & =\sum_{i=1}^{n-1} \sqrt{\mu_{i}}=\sum_{i=1}^{n-1}\left(\sqrt{\mu_{i}}-\sqrt{\mu_{n-1}}\right)+(n-1) \sqrt{\mu_{n-1}} \\
& =\sum_{i=1}^{n-1}\left(\frac{\mu_{i}-\mu_{n-1}}{\sqrt{\mu_{i}}+\sqrt{\mu_{n-1}}}\right)+(n-1) \sqrt{\mu_{n-1}} \\
& \geq \sum_{i=1}^{n-1}\left(\frac{\mu_{i}-\mu_{n-1}}{\sqrt{\mu_{1}}+\sqrt{\mu_{n-1}}}\right)+(n-1) \sqrt{\mu_{n-1}} \\
& =\frac{2 m+(n-1) \sqrt{\mu_{1} \mu_{n-1}}}{\sqrt{\mu_{1}}+\sqrt{\mu_{n-1}}} \\
& \geq \frac{2 m+(n-1) \sqrt{(\Delta+1) \mu_{n-1}}}{\sqrt{n}+\sqrt{\mu_{n-1}}} .
\end{aligned}
$$

For $k \leq x \leq \delta$, consider the function

$$
f(x)=\frac{2 m+(n-1) \sqrt{(\Delta+1) x}}{\sqrt{n}+\sqrt{x}}
$$

for which

$$
f^{\prime}(x)=\frac{(n-1) \sqrt{n(\Delta+1)}-2 m}{2 \sqrt{x}(\sqrt{n}+\sqrt{x})^{2}}
$$

Since $\Delta+1 \geq \frac{2 m}{n}+1 \geq \frac{2 m}{n-1}$ and $n-1 \geq \frac{2 m}{n}$, it follows that

$$
(\Delta+1)(n-1) \geq \frac{2 m}{n-1} \frac{2 m}{n}=\frac{1}{n}\left(\frac{4 m^{2}}{n-1}\right)
$$

that is, $(n-1) \sqrt{n(\Delta+1)}-2 m \geq 0$, implying $f^{\prime}(x) \geq 0$. Thus, $f(x)$ is an increasing function for $k \leq x \leq \delta$. Therefore, $f(x) \geq f(k)$, giving

$$
\frac{2 m+(n-1) \sqrt{(\Delta+1) x}}{\sqrt{n}+\sqrt{x}} \geq \frac{2 m+(n-1) \sqrt{(\Delta+1) k}}{\sqrt{n}+\sqrt{k}}
$$

that is,

$$
\begin{equation*}
L E L(G) \geq \frac{2 m+(n-1) \sqrt{k(\Delta+1)}}{\sqrt{n}+\sqrt{k}} \tag{2.2}
\end{equation*}
$$

We also have

$$
\begin{aligned}
K f(G) & =n \sum_{i=1}^{n-1} \frac{1}{\mu_{i}}=n \sum_{i=1}^{n-1}\left(\frac{1}{\mu_{i}}-\frac{1}{\mu_{1}}\right)+\frac{n(n-1)}{\mu_{1}} \\
& =n \sum_{i=1}^{n-1}\left(\frac{\mu_{1}-\mu_{i}}{\mu_{1} \mu_{i}}\right)+\frac{n(n-1)}{\mu_{1}} \\
& \leq n \sum_{i=1}^{n-1}\left(\frac{\mu_{1}-\mu_{i}}{\mu_{1} \mu_{n-1}}\right)+\frac{n(n-1)}{\mu_{1}} \\
& =\frac{n(n-1) \mu_{1}-2 m n}{\mu_{1} \mu_{n-1}}+\frac{n(n-1)}{\mu_{1}} \\
& \leq \frac{k n(n-1)-2 m n}{k \mu_{1}}+\frac{n(n-1)}{k} .
\end{aligned}
$$

For $\Delta+1 \leq x \leq n$, consider the function $g(x)=\frac{k n(n-1)-2 m n}{k x}$, for which $g^{\prime}(x)=$ $\frac{2 m n-k n(n-1)}{k x^{2}}>0$. As G is connected, so $2 m>k(n-1)$. Therefore, $g(x)$ is an increasing function of x, implying $g(x) \leq g(n)$, that is,

$$
\frac{k n(n-1)-2 m n}{k x} \leq \frac{k(n-1)-2 m}{k} \text {; }
$$

resulting in

$$
\begin{equation*}
K f(G) \leq \frac{(n+k)(n-1)-2 m}{k} \tag{2.3}
\end{equation*}
$$

Suppose inequality (2.1) holds. By direct calculation, it can be transformed into

$$
\frac{2 m+(n-1) \sqrt{k(\Delta+1)}}{\sqrt{n}+\sqrt{k}}>\frac{(n+k)(n-1)-2 m}{k}
$$

Keeping in mind (2.2) and (2.3), it follows that $L E L(G)>K f(G)$.
In particular, if $\mu_{n-1} \geq 1$, we have the result stated in Corollary [2.5. In 9], the question was raised whether it is "possible to find a constant c (which may depend on the number of vertices n and maximum vertex degree Δ), such that for any connected graph G with $m \geq c$ edges, $L E L(G)>K f(G)$ holds". Corollary 2.5 provides a partial answer to this question.

Corollary 2.5. Let G be a connected graph G with algebraic connectivity $\mu_{n-1} \geq 1$. Let m be the number of edges and Δ the maximum degree of G. If

$$
2 m>\frac{\sqrt{n}+1}{\sqrt{n}+2}\left(n^{2}-1-\frac{(n-1) \sqrt{\Delta+1}}{\sqrt{n}+1}\right)
$$

then $\operatorname{Kf}(G)<L E L(G)$.
Corollary 2.6. Let T be a tree and \bar{T} its complement. If the order of T is $n \geq 7$ and $\Delta(T) \leq n-2$, then $L E L(\bar{T})>K f(\bar{T})$.

Proof. Since any T of order n has minimum degree one and $n-1$ edges, it follows that $\Delta(\bar{T})=n-2$ and $2 m(\bar{T})=(n-1)(n-2)$. Since $\Delta(T) \leq n-2$, we have $\mu_{1}(T) \leq n-2\left(\right.$ as $\left.T \neq K_{n-1,1}\right)$ and so by Lemma 2.3, $\mu_{n-1}(\bar{T})=n-\mu_{1}(T) \geq 2$. Therefore,

$$
\begin{aligned}
& \frac{2(\sqrt{n}+\sqrt{2})}{\sqrt{n}+2+\sqrt{2}}\left(\frac{(n+2)(n-1)}{2}-\frac{(n-1) \sqrt{2(n-1)}}{\sqrt{n}+\sqrt{2}}\right) \\
& =(n-1)\left(\frac{(n+2)(\sqrt{n}+\sqrt{2})-2 \sqrt{2(n-1)}}{\sqrt{n}+2+\sqrt{2}}\right) \\
& <(n-1)(n-2)=2 m(\bar{T})
\end{aligned}
$$

if

$$
n-2>\frac{(n+2)(\sqrt{n}+\sqrt{2})-2 \sqrt{2(n-1)}}{\sqrt{n}+2+\sqrt{2}}
$$

that is, $n+\sqrt{2(n-1)}>2 \sqrt{n}+4.8284$, which is true for $n \geq 7$.
Therefore, by Theorem 2.4, LEL $(G)>K f(G)$, for $n \geq 7$. \square
Corollary 2.7. Let U be a unicyclic graph and \bar{U} its complement. If the order of U is $n \geq 14$ and $\Delta(U) \leq n-2$, then $L E L(\bar{U})>K f(\bar{U})$.

Proof. Since in a unicyclic graph it is either $\delta(U)=1$ or $\delta(U)=2$, and

$$
\Delta(\bar{U})+1= \begin{cases}n-1 & \text { if } \delta(U)=1 \\ n-2 & \text { if } \delta(U)=2\end{cases}
$$

In addition, $2 m(\bar{U})=n(n-3)$ and $\mu_{n-1}(\bar{U})=n-\mu_{1}(U) \geq 1$, as $\mu_{1}(U) \leq n-1$.
If $\Delta+1=n-1$, then

$$
\begin{aligned}
\frac{\sqrt{n}+1}{\sqrt{n}+2}\left(n^{2}-1-\frac{(n-1) \sqrt{\Delta+1}}{\sqrt{n}+1}\right) & =(n-1)\left(\frac{(n+1)(\sqrt{n}+1)-\sqrt{n-1}}{\sqrt{n}+2}\right) \\
& <n(n-3)=2 m(\bar{U})
\end{aligned}
$$

provided $n-3>\left(\frac{(n+1)(\sqrt{n}+1)-\sqrt{n-1}}{\sqrt{n}+2}\right)$, that is, $n+\sqrt{n-1}>4 \sqrt{n}+7$, which is true for $n \geq 21$.

For $n=14,15,16,17,18,19,20$, it can be checked by direct calculation that

$$
\frac{\sqrt{n}+1}{\sqrt{n}+2}\left(n^{2}-1-\frac{(n-1) \sqrt{\Delta+1}}{\sqrt{n}+1}\right)<n(n-3) .
$$

Similarly, if $\Delta+1=n-2$, then for $n \geq 14$,

$$
\frac{\sqrt{n}+1}{\sqrt{n}+2}\left(n^{2}-1-\frac{(n-1) \sqrt{n-2}}{\sqrt{n}+1}\right)<n(n-3) .
$$

Therefore, by Corollary 2.5 it follows that $L E L(\bar{U})>K f(\bar{U})$.
Corollary 2.8. Let B be a bicyclic graph and \bar{B} be its complement. If the order of B is $n \geq 15$ and $\Delta(B) \leq n-2$, then $L E L(\bar{B})>K f(\bar{B})$.

Proof. Since in a bicyclic graph, either $\delta(B)=1$ or $\delta(B)=2$, it follows that

$$
\Delta(\bar{B})+1= \begin{cases}n-1 & \text { if } \delta(B)=1 \\ n-2 & \text { if } \delta(B)=2\end{cases}
$$

In addition, $2 m(\bar{B})=n(n-3)-2=n^{2}-3 n-2$ and $\mu_{n-1}(\bar{B})=n-\mu_{1}(B) \geq 1$, as $\mu_{1}(B) \leq n-1$. Consider the function

$$
f(n)=n^{2}-3 n-2-\frac{\left(n^{2}-1\right)(\sqrt{n}+1)-(n-1) \sqrt{n-2}}{\sqrt{n}+2}
$$

for which

$$
f^{\prime}(n)=2 n-3-\frac{1}{(\sqrt{n}+2)^{2}}\left(2 n^{2}+\frac{13}{2} n^{3 / 2}-\frac{1}{2 \sqrt{n}}-\frac{3 n-5}{\sqrt{n-2}}-\frac{n^{2}-n-1}{\sqrt{n(n-2)}}-1\right)
$$

It can be seen that $f^{\prime}(n)>0$, for all $n \geq 4$, that is $f(n)$ is an increasing function on $[4, \infty)$. So we have $f(n)>f(15)=0.73565404>0$, that is, $f(n)>0$ for $n \geq 15$, which implies that

$$
n^{2}-3 n-2>\left(\frac{\left(n^{2}-1\right)(\sqrt{n}+1)-(n-1) \sqrt{n-2}}{\sqrt{n}+2}\right)
$$

The result follows from Corollary [2.5,
Corollary 2.9. Let $T C$ be a tricyclic graph and $\overline{T C}$ be its complement. If the order of $T C$ is $n \geq 16$ and $\Delta(T C) \leq n-2$, then $L E L(\overline{T C})>K f(\overline{T C})$.

Proof. Since in a tricyclic graph, either $\delta(T C)=1$ or $\delta(T C)=2$ or $\delta(T C)=3$, it follows that

$$
\Delta(\overline{T C})+1= \begin{cases}n-1 & \text { if } \delta(T C)=1 \\ n-2 & \text { if } \delta(T C)=2 \\ n-3 & \text { if } \delta(T C)=3\end{cases}
$$

In addition, $2 m(\overline{T C})=n(n-3)-4=n^{2}-3 n-4$ and $\mu_{n-1}(\overline{T C})=n-\mu_{1}(T C) \geq 1$, as $\mu_{1}(T C) \leq n-1$. Proceeding in an analogous manner as in the proof of Corollary 2.8, it can be shown that for $n \geq 16$,

$$
n^{2}-3 n-4>\frac{\left(n^{2}-1\right)(\sqrt{n}+1)-(n-1) \sqrt{n-3}}{\sqrt{n}+2}
$$

The result follows from Corollary 2.5, ㅁ
In a fully analogous manner, we also obtain the following.
Corollary 2.10. Let $Q C$ be a tetracyclic graph and $\overline{Q C}$ be its complement. If the order of $Q C$ is $n \geq 17$ and $\Delta(Q C) \leq n-2$, then $L E L(\overline{Q C})>K f(\overline{Q C})$.

The line graph of the graph G is denoted by $£(G)$. We need the following result by Anderson and Morley [1]:

Lemma 2.11. Let $0=\mu_{n}<\mu_{n-1} \leq \mu_{n-2} \leq \cdots \leq \mu_{1}$ be the Laplacian eigenvalues of the graph G and let $t_{1} \geq t_{2} \geq \cdots \geq t_{n}$ be the degree sequence of its line graph $£(G)$. Then $\mu_{1} \leq t_{1}+2$, with equality if and only if G is a regular or a semiregular bipartite graph.

THEOREM 2.12. If G is a graph for which $\mu_{1}<n-n^{2 / 3}$, then $\operatorname{LEL}(\bar{G})>$ $K f(\bar{G})$.

Proof. By applying Lemma 2.3, we have

$$
\operatorname{LEL}(\bar{G})-K f(\bar{G})=\sum_{i=1}^{n-1} \sqrt{n-\mu_{i}}-\sum_{i=1}^{n-1} \frac{n}{n-\mu_{i}}=\sum_{i=1}^{n-1} \frac{\left(n-\mu_{i}\right)^{3 / 2}-n}{n-\mu_{i}} .
$$

For $\mu_{n-1} \leq x \leq \mu_{1}$, consider the function $f(x)=\left[(n-x)^{3 / 2}-n\right] /(n-x)$, for which

$$
f^{\prime}(x)=-\frac{\left[\frac{1}{2}(n-x)^{3 / 2}+n\right]}{(n-x)^{2}}<0
$$

for all $\mu_{n-1} \leq x \leq \mu_{1}$. Thus, $f(x)$ is decreasing for $\mu_{n-1} \leq x \leq \mu_{1}$, implying

$$
f(x) \geq f\left(\mu_{1}\right)=\frac{\left(n-\mu_{1}\right)^{3 / 2}-n}{n-\mu_{1}}
$$

that is,

$$
L E L(\bar{G})-K f(\bar{G}) \geq \frac{(n-1)\left(\left(n-\mu_{1}\right)^{3 / 2}-n\right)}{n-\mu_{1}}>0
$$

if $\left(n-\mu_{1}\right)^{3 / 2}-n>0$, i.e., $\mu_{1}<n-n^{2 / 3}$.
Remark 2.13. By Lemma 2.11] $\mu_{1} \leq t_{1}+2$, where t_{1} is the maximum vertex degree of the line graph $£(G)$. From Theorem 2.12 it follows that $f(x) \geq f\left(t_{1}+2\right)=$ $\frac{\left(n-t_{1}-2\right)^{3 / 2}-n}{n-t_{1}-2}$, which gives $L E L(\bar{G})>K f(\bar{G})$ if $t_{1}<n-n^{2 / 3}-2$.

The kite $K i_{n, \omega}$ is the graph of order n, obtained by attaching a pendent path on $n-\omega$ vertices to a vertex of the complete graph of order ω. Let $\Gamma_{n, k}$ be the class of graphs of order n obtained by attaching a pendent path on $n-k$ vertices to a vertex of a connected graph of order k. In particular, $K i_{n, k} \in \Gamma_{n, k}$. The following result can be found in [18, 19 .

Lemma 2.14. Let $G^{\prime}=G+e$ be the graph obtained from G by inserting into it a new edge e. Then the Laplacian eigenvalues of G interlace the Laplacian eigenvalues of G^{\prime}, that is,

$$
\mu_{1}\left(G^{\prime}\right) \geq \mu_{1}(G) \leq \mu_{2}\left(G^{\prime}\right) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}\left(G^{\prime}\right) \geq \mu_{n}(G)=0
$$

Corollary 2.15. Let $G \in \Gamma_{n, k}$ with $k \geq 4$ and $n-k \geq n^{2 / 3}+2$. Then $L E L(\bar{G})>K f(\bar{G})$.

Proof. Since $G \in \Gamma_{n, k}, G$ is an edge-deleted subgraph of $K i_{n, k}$. By Lemma 2.14 for $j=1,2, \ldots, n$, we have $\mu_{j}(G) \leq \mu_{j}\left(K i_{n, k}\right)$. There exists an edge e in $E\left(K i_{n, k}\right)$ such that $K i_{n, k}-e=K_{k} \cup P_{n-k}$. Since $k \geq 4$, by Lemma 2.14, and in view of $\sum_{i=1}^{n}\left(\mu_{i}(G+e)-\mu_{i}(G)\right)=2$, it follows that $k+1 \leq \mu_{1}\left(K i_{n, k}\right) \leq k+2$. So
$\mu_{1}(G) \leq \mu_{1}\left(K i_{n, k}\right) \leq k+2$. If $\mu_{1}(G)<n-n^{2 / 3}$, then $k+2<n-n^{2 / 3}$, that is $n-k>n^{2 / 3}+2$.

Corollary 2.16. Let $G \not \approx K_{n}$ be an r-regular graph with n vertices. If $r<(n-$ $\left.n^{2 / 3}\right) / 2$, then $L E L(\bar{G})>K f(\bar{G})$. If $r>\left(n+n^{2 / 3}-2\right) / 2$, then $L E L(G)>K f(G)$.

Proof. Since G is r-regular, its line graph $£(G)$ is $t_{1}=(2 r-2)$-regular. Assume that $r<\left(n-n^{2 / 3}\right) / 2$. Then $t_{1}=2 r-2<n-n^{2 / 3}-2$. By Remark 2.13, $L E L(\bar{G})>$ $K f(\bar{G})$.

Since \bar{G} is $(n-1-r)$-regular, its line graph $£(\bar{G})$ is $t_{1}=(2 n-2 r-4)$-regular. Assume that $r>\left(n+n^{2 / 3}-2\right) / 2$. Then $t_{1}=(2 n-2 r-4)<n-n^{2 / 3}-2$. By Remark 2.13, $L E L(G)>K f(G)$.

The following result has been proven in [3].
Lemma 2.17. Let $G+e$ be the graph obtained by adding a new edge to the connected graph G. If $K f(G)<L E L(G)$, then $K f(G+e)<L E L(G+e)$.

Let $K K_{n}^{j}$ be the graph obtained from two copies of complete graphs K_{n}, by joining a vertex of one copy with $j, 1 \leq j \leq n$, vertices of the other copy. The Laplacian spectrum of $K K_{n}^{j}$ was obtained in [13] and is given by

$$
S p_{L}\left(K K_{n}^{j}\right)=\left\{n^{2 n-j-2},(n+1)^{j-1}, \frac{(n+j+1) \pm \sqrt{(n+j+1)^{2}-8 j}}{2}, 0\right\}
$$

Therefore,

$$
\begin{align*}
\operatorname{LEL}\left(K K_{n}^{j}\right)= & (2 n-j-2) \sqrt{n}+(j-1) \sqrt{n+1} \\
& +\sqrt{\frac{(n+j+1)+\sqrt{(n+j+1)^{2}-8 j}}{2}} \\
& +\sqrt{\frac{(n+j+1)-\sqrt{(n+j+1)^{2}-8 j}}{2}} \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
K f\left(K K_{n}^{j}\right)= & \frac{2 n(2 n-j-2)}{n}+\frac{2 n(j-1)}{n+1}+\frac{2 n}{\frac{(n+j+1)+\sqrt{(n+j+1)^{2}-8 j}}{2}} \\
& +\frac{2 n}{\frac{(n+j+1)+\sqrt{(n+j+1)^{2}-8 j}}{2}} \\
= & 4 n-2 j-4+\frac{2 n(j-1)}{n+1}+\frac{n(n+j+1)}{j} . \tag{2.5}
\end{align*}
$$

For $j \geq \frac{n}{4}$ and $n \geq 22$, it is easy to see that

$$
(2 n-j-2) \sqrt{n}+(j-1) \sqrt{n+1}>4 n-2 j-3+\frac{n(n+j+1)}{j} .
$$

Therefore, from (2.4) and (2.5), we have $L E L\left(K K_{n}^{j}\right)>K f\left(K K_{n}^{j}\right)$. Thus, using Lemma 2.17, we arrive at the following result.

ThEOREM 2.18. For $j \geq n / 4$, let $K K_{n}^{j}$ be a spanning subgraph of the graph G. Then for $n \geq 22$ we have $L E L(G)>K f(G)$.

From Theorem 2.18, we observe the following. If G is a graph of order $n,(n \equiv$ $0(\bmod 8))$ having two cliques of order $n / 2$ each, such that there are at least $n / 8$ edges between a vertex in one of the cliques and $n / 8$ vertices of the other clique, then for $n \geq 44, L E L(G)>K f(G)$.

It is clear from above that $\mu_{1}\left(K K_{n}^{j}\right)=n+1<2 n-(2 n)^{2 / 3}$, for $n \geq 7$. For the complement of the graph $K K_{n}^{j}$, from Theorem [2.12, it follows that $L E L\left(\overline{K K_{n}^{j}}\right)>$ $K f\left(\overline{K K_{n}^{j}}\right)$ holds for all $n \geq 7$ and $1 \leq j \leq n-1$. Thus, using Lemma 2.17, we arrive at the following result.

THEOREM 2.19. If $\overline{K K_{n}^{j}}$ is a spanning subgraph of a graph G with $2 n$ vertices, then $L E L(G)>K f(G)$ for $n \geq 7$.

The join (complete product) $G_{1} \vee G_{2}$ of the graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set consisting of all the edges of G_{1} and G_{2} together with the edges joining each vertex of G_{1} with every vertex of G_{2}. The Laplacian spectrum of the join is given by the the following result [18, 19].

Lemma 2.20. If $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$ are two graphs having Laplacian spectra $S p_{L}\left(G_{1}\right)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n_{1}-1}, \mu_{n_{1}}=0\right\}$ and $S p_{L}\left(G_{2}\right)=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n_{2}-1}\right.$, $\left.\sigma_{n_{2}}=0\right\}$, then $S p_{L}\left(G_{1} \vee G_{2}\right)=\left\{n_{1}+n_{2}, n_{1}+\sigma_{1}, n_{1}+\sigma_{2}, \ldots, n_{1}+\sigma_{n_{2}-1}, n_{2}+\mu_{1}, n_{2}+\right.$ $\left.\mu_{2}, \ldots, n_{2}+\mu_{n_{1}-1}, 0\right\}$.

Theorem 2.21. For $p \geq 4$, let $K_{p} \vee \overline{K_{r}}, 1 \leq r \leq p$, be a spanning subgraph of a graph G of order $n=p+r$. Then $L E L(G)>K f(G)$.

Proof. The Laplacian spectra of K_{p} and $\overline{K_{r}}$ are $\left\{p^{p-1}, 0\right\}$ and $\left\{0^{r}\right\}$, respectively. Therefore, by Lemma 2.20, $S p_{L}\left(K_{p} \vee \overline{K_{r}}\right)=\left\{(p+r)^{p}, p^{r-1}, 0\right\}$. This implies

$$
\begin{aligned}
K f\left(K_{p} \vee \overline{K_{r}}\right) & =\frac{n p}{p+r}+\frac{n(r-1)}{p} \\
& \leq(p+r-1)+(p-1) \leq 2(p+r-2)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{LEL}\left(K_{p} \vee \overline{K_{r}}\right) & =p \sqrt{p+r}+(r-1) \sqrt{p} \\
& \geq(p+r-1) \sqrt{p} \geq 2(p+r-2)
\end{aligned}
$$

resulting in $L E L\left(K_{p} \vee \overline{K_{r}}\right) \geq K f\left(K_{p} \vee \overline{K_{r}}\right)$. Theorem 2.21 now follows from Lemma 2.17 \square

The Laplacian spectrum of the complete bipartite graph $K_{\frac{n}{2}, \frac{n}{2}}$ is $\left\{n,\left(\frac{n}{2}\right)^{n-2}, 0\right\}$. For $n \geq 5$, this yields $K f\left(K_{\frac{n}{2}}, \frac{n}{2}\right)=2 n-3<\sqrt{n}+(n-2) \sqrt{\frac{n}{2}}=L E L\left(K_{\frac{n}{2}, \frac{n}{2}}\right)$. Then Lemma 2.17 leads to the following result.

ThEOREM 2.22. If $K_{\frac{n}{2}, \frac{n}{2}}$ is a spanning subgraph of a graph G of order n, then $K f(G)<L E L(G)$, for all $n \geq 5$.

The sufficient condition given by Theorem [2.4] seems to be useful for graphs with large number of edges and large number of vertices. We now state an analogous condition pertaining to the graph complement.

TheOrem 2.23. Let G be a connected graph with n vertices with largest Laplacian eigenvalue $\mu_{1} \leq \frac{n}{2}$ and algebraic connectivity $\mu_{n-1} \geq k$. If

$$
\begin{equation*}
2 m<\frac{(\Delta+1)(n-\Delta-1)(n(n-1)+(n-1) \sqrt{k(n-k)})}{n(\sqrt{n-k}+\sqrt{k})+(\Delta+1)(n-\Delta-1)} \tag{2.6}
\end{equation*}
$$

then $L E L(\bar{G})>K f(\bar{G})$.
Proof. Using Lemma 2.3, since $\Delta+1 \leq \mu_{1} \leq \frac{n}{2}$, we have

$$
\begin{align*}
K f(\bar{G}) & =n \sum_{i=1}^{n-1} \frac{1}{n-\mu_{i}}=n \sum_{i=1}^{n-1}\left(\frac{1}{n-\mu_{i}}-\frac{1}{\mu_{1}}\right)+\frac{n(n-1)}{\mu_{1}} \\
& =n \sum_{i=1}^{n-1}\left(\frac{\mu_{1}+\mu_{i}-n}{\mu_{1}\left(n-\mu_{i}\right)}\right)+\frac{n(n-1)}{\mu_{1}} \\
& \leq n \sum_{i=1}^{n-1}\left(\frac{\mu_{1}+\mu_{i}-n}{\mu_{1}\left(n-\mu_{1}\right)}\right)+\frac{n(n-1)}{\mu_{1}} \\
& =\frac{2 m n}{\mu_{1}\left(n-\mu_{1}\right)} \leq \frac{2 m n}{(\Delta+1)(n-\Delta-1)} \tag{2.7}
\end{align*}
$$

and

$$
\begin{aligned}
L E L(\bar{G}) & =\sum_{i=1}^{n-1} \sqrt{n-\mu_{i}}=\sum_{i=1}^{n-1}\left(\sqrt{n-\mu_{i}}-\sqrt{\mu_{n-1}}\right)+(n-1) \sqrt{\mu_{n-1}} \\
& =\sum_{i=1}^{n-1}\left(\frac{n-\mu_{i}-\mu_{n-1}}{\sqrt{n-\mu_{i}}+\sqrt{\mu_{n-1}}}\right)+(n-1) \sqrt{\mu_{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sum_{i=1}^{n-1}\left(\frac{n-\mu_{i}-\mu_{n-1}}{\sqrt{n-\mu_{n-1}}+\sqrt{\mu_{n-1}}}\right)+(n-1) \sqrt{\mu_{n-1}} \\
& =\frac{n(n-1)-2 m+(n-1) \sqrt{\mu_{n-1}\left(n-\mu_{n-1}\right)}}{\sqrt{n-\mu_{n-1}}+\sqrt{\mu_{n-1}}} .
\end{aligned}
$$

For $k \leq x \leq \delta$, consider the function

$$
f(x)=\frac{n(n-1)-2 m+(n-1) \sqrt{n x-x^{2}}}{\sqrt{n-x}+\sqrt{x}}
$$

for which

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1}{(\sqrt{n-x}+\sqrt{x})^{2}}\left[(\sqrt{n-x}+\sqrt{x}) \frac{(n-1)(n-2 x)}{2 \sqrt{n x-x^{2}}}\right. \\
& \left.-\left(n(n-1)-2 m+(n-1) \sqrt{n x-x^{2}}\right)\left(\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt{n-x}}\right)\right]>0
\end{aligned}
$$

for all $k \leq x \leq \delta$. Therefore, the function $f(x)$ is increasing for $k \leq x \leq \delta$. Therefore,

$$
f(x) \geq f(k)=\frac{n(n-1)-2 m+(n-1) \sqrt{n k-k^{2}}}{\sqrt{n-k}+\sqrt{k}}
$$

from which it follows that

$$
L E L(\bar{G}) \geq \frac{n(n-1)-2 m+(n-1) \sqrt{n k-k^{2}}}{\sqrt{n-k}+\sqrt{k}}
$$

Keeping in mind the relations (2.7) and (2.8), inequality (2.6) can be transformed into

$$
\frac{2 m n}{(\Delta+1)(n-\Delta-1)}<\frac{n(n-1)-2 m+(n-1) \sqrt{n k-k^{2}}}{\sqrt{n-k}+\sqrt{k}}
$$

whose direct consequence is $K f(\bar{G})<L E L(\bar{G})$.
The importance of the Theorem 2.23 is that it is directly applicable to the complement \bar{G} of the graph G and, under the conditions stated in the theorem, is an improvement of the Theorem 2.12, for all $n \geq 9$. The condition $\mu_{1}(G) \leq \frac{n}{2}$, in Theorem 2.23, by Lemma 2.3 gives $\mu_{n-1}(\bar{G}) \geq \frac{n}{2}$. That is, this theorem is applicable to the graphs whose complements have a higher value of algebraic connectivity. As an instance, we have the following corollary.

Corollary 2.24. Let T be a tree on $n \geq 41$ vertices with largest Laplacian eigenvalue $\mu_{1} \leq \frac{n}{2}$ and algebraic connectivity $\mu_{n-1} \geq 0.1$. Then $L E L(\bar{T})>K f(\bar{T})$.

Proof. For all $\mu_{1} \leq \frac{n}{2}$ and $n \geq 41$, by Theorem 2.23, we have

$$
2(n-1)<\frac{(\Delta+1)(n-\Delta-1)(n-1)(n+\sqrt{0.1(n-0.1)})}{n(\sqrt{n-0.1})+\sqrt{0.1}+(\Delta+1)(n-\Delta-1)} .
$$

which is clearly true, as for a tree T of order n has $n-1$ edges and $\Delta+1 \leq \mu_{1} \leq \frac{n}{2}$ gives $\Delta+1 \leq \frac{n}{2}$ and $n-\Delta-1 \geq \frac{n}{2}$.

We have partially solved the problem in 9 to find a constant c (which may depend on the number of vertices n and maximum vertex degree Δ), such that for any connected graph G with $m \geq c$ edges, $L E L(G)>K f(G)$. It will be of interest in future to find more sufficient conditions for the inequality $L E L(G)>K f(G)$.

Acknowledgement. The authors would like to thank the anonymous referee for his/her helpful suggestions.

REFERENCES

[1] W.N. Anderson and T.D. Morley. Eigenvalues of the Laplacian of a graph. Linear Multilinear Algebra, 18:141-145, 1985.
[2] C. Arauz. The Kirchhoff indexes of some composite networks. Discrete Appl. Math., 160:14291440, 2012.
[3] B. Arsić, I. Gutman, K.C. Das, and K. Xu. Relations between Kirchhoff index and Laplacian-energy-like invariant. Bull. Cl. Sci. Math. Nat. Sci. Math., 37:59-70, 2012.
[4] E. Bendito, A. Carmona, A.M. Encinas, J.M. Gesto, and M. Mitjana. Kirchhoff indexes of a network. Linear Algebra Appl., 432:2278-2292, 2010.
[5] D. Bonchev, A.T. Balaban, X. Liu, and D.J. Klein. Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances. Internat. J. Quantum Chem., 50:1-20, 1994.
[6] D. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs - Theory and Application. Academic Press, Inc., New York, 1980.
[7] K.C. Das, A.D. Güngör, and A.S. Çevik. On Kirchhoff index and the resistance-distance energy of a graph. MATCH Commun. Math. Comput. Chem., 67:541-556, 2012.
[8] K.C. Das, I. Gutman, and A.S. Çevik. On the Laplacian-energy-like invariant. Linear Algebra Appl., 442:58-68, 2014.
[9] K.C. Das, K. Xu, and I. Gutman. Comparison between Kirchhoff index and the Laplacian-energy-like invariant. Linear Algebra Appl., 436:3661-3671, 2012.
10] N.M.M. de Abreu. Old and new results on algebraic connectivity of graphs. Linear Algebra Appl., 423:53-73, 2007.
[11] E. Estrada and N. Hatano. Topological atomic displacements, Kirchhoff and Wiener indices of molecules. Chem. Phys. Lett., 486:166-170, 2010.
[12] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23:298-305, 1973.
[13] M. Freitas, R. Del-Vecchio, and N. Abreu. Spectral properties of $K K_{n}^{j}$ graphs. Mat. Contemp., 39:129-134, 2010.
[14] X. Gao, Y. Luo, and W. Liu. Resistance distances and the Kirchhoff index in Cayley graphs. Discrete Appl. Math., 159:2050-2057, 2011.
[15] X. Gao, Y. Luo, and W. Liu. Kirchhoff index in line, subdivision and total graphs of a regular graph. Discrete Appl. Math., 160:560-565, 2012.
[16] H.A. Ganie, S. Pirzada, and I. Antal. Energy and Laplacian energy of double graphs and new families of equienergetic graphs. Acta Univ. Sap. Informatica, 6:89-116, 2014.
[17] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New York, 2001.
[18] R. Grone and R. Merris. The Laplacian spectrum of a graph II. SIAM J. Discrete Math., 7:221-229, 1994.
[19] R. Grone, R. Merris, and V.S. Sunder. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl., 11:218-238, 1990.
[20] I. Gutman. Estimating the Laplacian-energy-like molecular structure descriptor. Z. Naturforsch., 67a:403-406, 2012.
[21] I. Gutman and B. Mohar. The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci., 36:982-985, 1996.
[22] I. Gutman and B. Zhou. Laplacian energy of a graph. Linear Algebra Appl., 414:29-37, 2006.
[23] D.J. Klein and M. Randić. Resistance distance. J. Math. Chem., 12:81-95, 1993.
[24] R. Li. Lower bounds for the Kirchhoff index. MATCH Commun. Math. Comput. Chem., 70:163-174, 2013.
[25] X. Li, Y. Shi, and I. Gutman. Graph Energy. Springer, New York, 2012.
[26] B. Liu, Y. Huang, and Z. You. A survey on the Laplacian-energy-like invariant. MATCH Commun. Math. Comput. Chem., 66:713-730, 2011.
[27] J. Liu and B. Liu. A Laplacian-energy-like invariant of a graph. MATCH Commun. Math. Comput. Chem., 59:355-372, 2008.
[28] M. Liu, B. Liu, and X. Tan. The first to ninth greatest LEL-invariants of connected graphs. Util. Math., 93:153-160, 2014.
[29] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra Appl., 197/198:143-176, 1994.
[30] R. Merris. A survey of graph Laplacians. Linear Multilinear Algebra, 39:19-31, 1995.
[31] J.L. Palacios and J.M. Renom. Broder and Karlin's formula for hitting times and the Kirchhoff index. Int. J. Quantum Chem., 111:35-39, 2011.
[32] S. Pirzada. An Introduction to Graph Theory. Universities Press, Orient Blackswan, Hyderabad, 2012.
[33] S. Pirzada and H.A. Ganie. On the construction of L-equienergetic graphs. AKCE Int. J. Graphs Comb., 12,2:141-154, 2015.
[34] S. Pirzada and H.A. Ganie. On the Laplacian eigenvalues of a graph and Laplacian energy. Linear Algebra Appl., 486:454-468, 2015.
[35] S. Pirzada and H.A. Ganie. On Laplacian-energy-like invariant and incidence energy. Trans. Comb., 4:41-51, 2015.
[36] S. Pirzada and H.A. Ganie. Spectra, energy and Laplacian energy of strong double graphs. In: D. Mugnolo (editor), Mathematical Technology of Networks, Springer Proc. Math. Stat., Springer International Publishing, 128:175-189, 2015.
[37] S. Pirzada, H.A. Ganie, and E.T. Baskoro. On energy, Laplacian energy and p-fold graphs. Electronic J. Graph Theory Appl., 3:94-107, 2015.
[38] S. Pirzada, H.A. Ganie, and I. Gutman. On Laplacian-energy-like invariant and Kirchhoff index. MATCH Commun. Math. Comput. Chem., 73:41-59, 2015.
[39] W. Wang and Y. Luo. On Laplacian-energy-like invariant of a graph. Linear Algebra Appl., 437:713-721, 2012.
[40] W. Wang, D. Yang, and Y. Luo. The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs. Discrete Appl. Math., 161:3063-3071, 2013.
[41] K. Xu and K.C. Das. Extremal Laplacian-energy-like invariant of graphs with given matching number. Electron. J. Linear Algebra, 26:131-140, 2013.
[42] Y. Yang. The Kirchhoff index of subdivisions of graphs. Discrete Appl. Math., 171:153-157, 2014.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 31, pp. 27-41, January 2016

ELA
 ELA

Comparison Between the Laplacian-Energy-Like Invariant and the Kirchhoff Index
[43] Y. Yang and D.J. Klein. Comparison theorems on resistance distances and Kirchhoff indices of S,T-isomers. Discrete Appl. Math., 175:87-93, 2014.
[44] Z. You and B. Liu. On the Laplacian-energy-like of graphs. Ars Combin., 110:355-369, 2013.
[45] B.X. Zhu. The Laplacian-energy like of graphs. Appl. Math. Lett., 24:1604-1607, 2011.

[^0]: *Received by the editors on March 31, 2015. Accepted for publication on December 31, 2015. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, University of Kashmir, Srinagar, India (pirzadasd@kashmiruniversity.ac.in, hilahmad1119kt@gmail.com).
 ${ }^{\ddagger}$ Faculty of Science, University of Kragujevac, Kragujevac, Serbia, and State University of Novi Pazar, Novi Pazar, Serbia (gutman@kg.ac.rs).

