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Abstract. This work presents a methodology to evaluate the reconstruction of the Computer-Aided Design 
(CAD) model in reverse engineering of an aspherical lens. A glass made lens is used as reference part for the 
measurements.  The reconstruction of the CAD model is explained and the analysis of the deviations between 
data points measured on the lens surface and theoretical CAD model is presented. The theoretical model was 
developed through the measurement of data points on the profile of the part using a Coordinate Measuring 
Machine (CMM) Cantilever type having a probing uncertainty of 3.2 µm. A 10th order stepwise polynomial 
regression model was fitted to the data profile with Matlab software and the parameters K and R of the lens were 
determined by analyzing the aspherical theoretical equations. The uncertainty of these parameters was 
determined using GUM Supplement 1, Monte Carlo simulation. An additional analysis was carried out to 
compare the measured points against the CAD model generated with aspherical profile in Catia software. 
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1. Introduction 
 
Aspherical lenses are important part of optical devices 
thanks to the curvature that avoids image aberration. It 
substitutes the spherical lenses group with the advantage 
of reducing the weight and improving performance of the 
optical system. Manufacture of aspherical lenses are 
reported as easy but the metrological issues are 
considered as complicated, from measurement to fitting 
the geometry [1]. 

The aspherical lens profile shows a smooth 
curvature deviation at the borders in respect to the 
spherical one. It is considered as a freeform surface with 
the mathematical equation known from literature. Figure 
(1) shows the aspherical lens with the parameters vertex 
radius (R), sag (z) and distance from center (y). Eq. (1) 
presents the general model to represent the aspherical 
lens, showing the relation among the variables. The first 
term represents the conical section of the lens, where the 
conic constant K characterizes the type of curvature, the 
parameter c is the reciprocal of the vertex radius R 
(c=1/R) and S the radial distance from Z axis, equals to 
� = ��� + �� in 3D space (S=y to lens profile). Other 

parameters are the polynomial coefficients of the high 
order aspheric terms, A4, A6, A8 and A10 [1].  

 
 

Figure 1. Aspherical lens with design parameters. 
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According to Smith [2], Eq. (1) is flexible and it can 
represent extreme cases. The author points out that 
aspheric surfaces have conic sections (paraboloid, 
ellipsoid, hyperboloid) and can be represented by a 
power series, as showed by Eq. (2). This equation may 
be rewritten as a function of bi coefficients and have the 
formulation according to the Eq. (3).   
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The equation of aspheric profile is used to build the 
Computer-Aided Design (CAD) model, required to 
conduct simulation of optical devices using Computer-
Aided Engineering (CAE) tools. The path followed by 
light can be simulated and the performance checked. 
Optical surfaces are demanded in two classes, precision 
and ophthalmic optics. The difference is associated to the 
accuracy and tolerances of the lens contour. The 
tolerance of vertical sag (z) for ophthalmic applications 
is ± 8 µm, while for surface profile is ± 4 µm, to a lens 
having 70 mm in diameter and 60 mm radius. Other 
specifications are presented in literature in function of the 
application (mechanical, electronics or optical) and 
manufacturing processes [3].

The CAD model is the basis of the Computer-Aided 
Manufacturing (CAM) processing. The fabrication of 
aspherical lens can be performed by matrix stamping of 
polymers using glass molds milled by CAM techniques.
The molds are produced by fine grinding in CNC 
machines and polishing operation. The aspherical lenses 
can still be made in glass by CNC lathe machining with 
single crystal diamond tools [3].  Brecher et al. (2004) 
presented a study of aspherical molds machined by using 
a Non-Uniform Rational B-Splines data interface and 
concluded that the tool paths were determined with 
increased flexibility and precision [4].  

In search of precision, processing by high 
temperature compression molding was used to 
manufacture aspherical micro-lenses in optical glasses 
[5]. Knowledge of the error sources is a key issue to error 
compensation and an investigation of the geometric and 
dynamic machining errors in manufacturing of 
aspherical surfaces by diamond turning was performed.
Error sources as turning parameters (geometry, scale, 
angular, straightness), machine geometry errors (scale, 
straightness, angular and squareness) and tool parameters 
(centering, radius, edge and waviness) were studied [6].  

Computational tools are used in the early steps of the 
optical project to develop the aspherical lens CAD 
model. Starting from the lens mathematical model, the 
profile and the surface are designed on computer screen.
An alternative for medium and large scale optical 
components is the acquisition of data from a prototype 
geometry by measurement, followed by fitting the lens 
mathematical model to apply reverse engineering 
techniques. The measurement of aspherical lens has been 
investigated and a small scale measuring instrument was 
developed to evaluate micro-aspheric lenses having 1 
mm in diameter with form accuracy smaller than 100 nm 
[7].  

The research on fitting methods are under way and 
the literature point directions to be followed. A
comparative study was performed with data from a high 

precision profilometer, comparing fitting algorithms 
applied to aspherical surface error characterization. 
These fitting algorithms were the registration and the 
orthogonal non-linear least squares [8]. A non-linear 
least squares based algorithm was used to fit aspheric 
surfaces in 3D space. The authors estimated the 
parameters of the design equation and discussed the 
application of the fitting method to measured surfaces 
[9]. A minimax fitting algorithm was applied to evaluate
an ultra-precision aspheric surface and compared with 
the least squares algorithm [10]. Recently, three fitting 
algorithms were investigated to evaluate aspherical 
surfaces form large-volume datasets. The methods of
Limited memory-Broyden-Fletcher-Goldfarb-Shanno 
(L-BFGS), Levenberg-Marquardt (LM) and Iterative 
Closest Point (ICP) variant were applied and their speed 
of convergence and robustness was compared [11].  

Selection of the measurement instrument and fitting 
algorithm are determinant of the uncertainty in designed 
lens. This work presents a methodology to carry out 
reconstruction of CAD model in reverse engineering of 
an aspherical lens. A physical lens prototype was used as 
reference part to take the measurements. The 
reconstruction of the CAD model is explained and the 
analysis of the deviations between lens surface data 
points and theoretical CAD model is presented. The 
uncertainty of the aspherical model parameters was 
determined by Monte Carlo simulation following the 
GUM Supplement 1 recommendations [12]. 

2. Case study

A reference aspherical lens manufactured in glass and 
having a diameter 88 mm at the basis circle was used to 
carry out the reconstruction of the CAD model. Fig. (2) 
presents this part, with a dotted line designed over the 
surface. This line was considered to acquire the profile 
by measuring data points with a Coordinate Measuring 
Machine (CMM) Cantilever type, manufactured by 
Mitutoyo and having a probing error of 3.2 µm
(uncertainty of point determination), stated by its 
calibration certificate. 

Figure 2. Aspherical lens prototype. 

Web of Conferences

13007-p.2



The measurement strategy is described as follows: i) 
measurement of the contour circle of the lens taking 30 
points after aligning with the machine basis, to determine 
the circle center; the process was repeated with 5 new 
measurements of this circle, taking 3 points each time 
and determining the center to compare with the first 
measurement. ii) extraction of the orthogonal axis (Z) 
from the center of the circle, with the CMM software. iii) 
determination of the top surface point of the lens by 
moving the CMM probe, locked at the x and y axes as 
determined by the lens circle center. iv) measurement of 
the lens top surface with the probe to determine the top 
point, changing the origin of the coordinate system to this 
point. This strategy is presented in Fig. (3).  

Figure 3. Adopted strategy to determine the center on 
lens top surface. 

The data points were fitted to a curve using an 
algorithm built in MatLab software. Based on the power 
series of Eq. (3), a stepwise polynomial equation of 10th

order was fitted by least squares algorithm and the 
coefficients were determined. Hypothesis Student t test 
was applied to verify which polynomial coefficient was
statistically significant and enter in the model at each 
step. The suitability of the fitted model was verified by 
applying the F test over the regression and carrying out a 
residual analysis, together with the determination 
parameter R2 [13]. 

The lens aspherical parameters K and R were 
determined with the statistically significant coefficients, 
in association with Eq. (3). The uncertainty of these 
parameters was simulated by GUM Supplement 1, 
Monte Carlo simulation, with M=105 iterations, based on 
the probing the error of the CMM. The probing error was 
considered as the limits to simulate variability in z
coordinates, whereas the x coordinate was changed in a 
controlled way and the y coordinate held constant 
(locked). The variability produced changes and 
uncertainty in bi coefficients that propagated to the 
aspherical constants of the lens.  

The three-dimensional (3D) CAD model of the 
surface was developed with Catia software. The model 
was built by inserting the lens equation with determined 
parameters K and R to initially fit a 2D line and thus 

extrude in 3D space to obtain the surface. An analysis of 
the CAD model was carried out by measuring the lens 
prototype and taking a cloud of points to compare. It was 
used the same Cantilever CMM. The cloud of points 
were compared with the CAD model and the deviations 
were determined and saved as txt data files. Alignement 
was accomplished by using the lens external circle of 
CAD model. 

3. Results and discussion

A group of 51 points obtained of the aspherical profile 
was determined with the CMM and the coordinates x, y 
and z were saved in a file txt format. The coordinates of 
x and z-axis are used to fit the regression model, since 
the y coordinates were fixed (locked y-axis). Despite of 
this, y presented a small variation and was considered to 
determine the s parameter in the model, as squared root 
of x squared plus y squared. The results were fitted using 
the stepwise polynomial regression method with the 
algorithm developed in MatLab, showed in Table 1. The 
terms were consecutively introduced in the model, as x2,
x4, x6, x8 and x10, followed by an evaluation of the 
regression fitness. This evaluation was done by t tests of 
the coefficients and by F Snedecor test over regression. 
Since the term in significant, a new one is introduced and 
the regression is evaluated again, This process was 
accomplished until no other term can enter the model.

Table 2 presents the results with the regression 
coefficients and p-value of t-Student test for the 
coefficients, after finishing the iteration in stepwise 
regression. As observed, the coefficients b1, b2 and b3
were significant at the p-significance level showed, 
greater than 0.01 or 99% probability. Thus, the terms of 
2nd, 4th and 6th order in equations (2) and (3) can explain 
the variability of the data obtained. Besides, the 
determination coefficient R2 was equals 1 and the 
ANOVA results presented in Table 3 showed that the 
regression is significant at 99% probability (F5,10(99%)= 
5.64). The residual probability plot is showed in Fig.(4) 
and the hypothesis of normal distribution of the residuals 
can not be rejected. 

Table 1. Algorithm developed for stepwise polynomial 
regression fitting and analysis. 

% REGRESSION - aspherical profile 
clc;clear;close all;
% Data points measured, from file or type A=[x y z] ----------
% Input data matrix A with columns x, y and z from points --
x=A(:,1);y=A(:,2);z=A(:,3);zmed=mean(z);n=size(z);
s=sqrt(x.^2+y.^2);
% STEPWISE POLYNOMIAL regression, b0 b1 b2 b3 b4 ------
% Model z=b1.x^2+b2.x^4+b3.x^6+b4.x^8+b5.x^10 --------
fprintf('STEPWISE regression, parameters b1 b2 b3 b4 b5');
xx=[x.^2 x.^4 x.^6 x.^8 x.^10];
[be,SE,pval,inmodel,stats,nextstep]=stepwisefit(xx,z)
%residual analysis for fitted regression
m=size(behat);xxhat=[x.^2 x.^4 x.^6];
behat=[be(1); be(2); be(3)];zest=xxhat*behat;
R2mltp=1-(sum(resid.^2))/(sum(z-mean(z).^2))
% ANOVA regression F test --------------------------------------
glreg=m(1)-1;
SQreg=behat'*xxhat'*z-n(1)*zmed^2;
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QMreg=SQreg/glreg;
glt=n(1)-1;SQT=z'*z-n(1)*zmed^2;glres=glt-glreg;
SQres=SQT-SQreg;QMres=SQres/glres;
Fc=QMreg/QMres
% RESIDUAL analysis ------------------------------------------------
normplot(resid)
% END

Table 2. Stepwise polynomial regression results, with 
parameters and respective p-values. (*significant) 

b1 (*) b2 (*) b3 (*) b4 b5

values 0.0048138 1x10-7 8x10-12 -9x10-

16
-2x10-19

p-value 5x10-125 4x10-41 3x10-13 0.58 0.62

Table 3. ANOVA results of the regression fitting. 

SV SS DF MS Fc

Regression 434.2284 2 217.1142 3.4x104

Residual 0.3006 47 0.0064
Total 434.5289 49

Figure 4. Residual analysis of polynomial regression. 

The lens parameters R and K were determined by 
using the equations (2) and (3), using the stepwise 
polynomial regression coefficients b1 and b2. The results 
are showed by equations (4) and (5). These lens 
parameters were used to generate the aspherical profile 
as showed in Fig. (5). 

& = 0.5 %�⁄ = 103.868 ''           (4) 

* = 8. %�. &� − 1 = −0.081            (5) 

Figure 5. Aspherical profile generated by stepwise 
polynomial regression with data points. 

The uncertainty in parameters R and K determined by 
polynomial regression was carried out by Monte Carlo 
(MC) simulation with the algorithm developed and 
showed in Table 4. The number of iterations was 105 and 
the values of standard and expanded (95%) uncertainties 
were determined and presented in Table 5. Repetition of 
the simulation procedure showed variability only in the 
third decimal digit of R and K means and the uncertainty 
at the first decimal digit.    

Table 4. Algorithm to determine the uncertainty by 
Monte Carlo simulation. 

% UNCERTAINTY in k and R - Monte Carlo simulation
% Number of Monte Carlo iteration = Me
fprintf(' ....... CALCULATING ........');
Me=100000;
u=0.0032;uh=u/6;
xx=[x.^2 x.^4 x.^6 x.^8 x.^10];
for i=1:Me;

delta=randn(size(x));
zeh=z+uh*delta;

 [be]=stepwisefit(xx,zeh);
erre(i)=0.5/be(1);
ka(i)=(8*be(2)*erre(i)^3)-1;

end
% RESULTS
R_med=mean(erre)
u_R=std(erre)
U95_R=1.96*u_R
k_med=mean(ka)
u_k=std(ka)
U95_k=1.96*u_k
figure(1)
hist(erre)
figure(2)
hist(ka)
% END

Table 5. Results of MC simulation 

Parameter Estimated
(Mean)

Stand.
uncertainty

Expanded
uncertainty

MC
Trials

R 103.869 0.025 0.049 105

K -0.078 0.021 0.042 105

The graphics of Fig. (6) and (7) presents the 
distribution of the simulated results of R and K, 
respectively. It is shown that the distribution of the values 
is close to the Normal probability distribution.  
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Figure 6. Results of MC simulation for R parameter. 

Figure 7. Results of MC simulation for k parameter. 

The profile fitted by regression was used to build the 
3D CAD model in Catia Software. A cloud of points of 
the same aspherical lens prototype was measured with 
the CMM and the comparison with the CAD model is 
presented in Fig. (8). The deviations between the points 
and the CAD model are presented by the hairs (line 
segments) and are distributed along the entire aspherical 
surface.  

Figure 8. Analysis of the CAD model deviations. 

The analysis showed a mean deviation of -0.003 mm, 
a standard deviation of 0.013 mm and a range of 0.061 
mm (0.038 to -0.023 mm). The variability was greater 
than the CMM uncertainty (0.0032 mm) but these values 
have the contribution of other sources as algorithm 

fitting, measurement errors, surface form deviation,
alignment and others. 

4. Conclusions

The reconstruction methodology applied to aspherical 
lens was presented and was based on measurement of a 
lens prototype profile. A detailed statistics analysis was 
carried out and the parameters R and K of the lens were 
determined by polynomial regression. An uncertainty 
analysis was performed by Monte Carlo simulation and 
the standard and expanded (95%) uncertainties were 
determined with precision of two decimal digits. CAD 
model analysis showed a uniform surface with deviations 
distributed without any bias. 

The considerations presented to large aspherical 
lenses can be extended to small lenses since the 
replacement of the measuring instruments by others 
having greater accuracy and reduced uncertainty is 
accomplished.
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