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We present a new technique for detection of epileptiform activity in EEG signals. After
preprocessing of EEG signals we extract representative features in time, frequency and
time-frequency domain as well as using non-linear analysis. The features are extracted
in a few frequency sub-bands of clinical interest since these sub-bands showed much
better discriminatory characteristics compared with the whole frequency band. Then
we optimally reduce the dimension of feature space to two using scatter matrices. A
decision about the presence of epileptiform activity in EEG signals is made by quadratic
classifiers designed in the reduced two-dimensional feature space. The accuracy of the
technique was tested on three sets of electroencephalographic (EEG) signals recorded
at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial
EEG signals from the epilepsy patients during the seizure free interval from within the
seizure focus and intracranial EEG signals of epileptic seizures also fromwithin the seizure
focus. An overall detection accuracy of 98.7% was achieved.

Keywords: seizure detection, epileptiform activity, non-linear analysis, scatter matrices, quadratic classifiers

Introduction

According to the estimations of the World Health Organization around 50 million people world-
wide suffer from epilepsy as the most common disorder of the brain activity (World Health Orga-
nization, 2012). It is characterized by sudden and recurrent seizures which are the result of an
excessive and synchronous electrical discharge of a large number of neurons. Epileptic seizures
can be divided by their clinical manifestation into two main classes, partial and generalized (Tzal-
las et al., 2007). Partial or focal epileptic seizures involve only a circumscribed region of the brain
(epileptic focus) and remain restricted to this region while generalized epileptic seizures involve
almost the entire brain. Both classes of epileptic seizures can occur at all ages. An epileptiform
activity in EEG signals including spikes, sharp waves, or spike-and-wave complexes can be evident
not only during a seizure (the ictal period) but also a short time before (the preictal period) as
well as between seizures (the interictal period). Consequently, EEG signals have been the most uti-
lized in clinical assessments of the brain state including both prediction and detection of epileptic
seizures (Waterhouse, 2003; Casson et al., 2010). However, the detection of epileptiform activity
in EEG signals by visual scanning of EEG recordings usually collected over a few days is a tedious
and time-consuming process. In addition, it requires a team of experts to analyze the entire length
of the EEG recordings in order to detect epileptiform activity. A reliable technique for detection
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of epileptiform activity in EEG signals would ensure an objective
and facilitating treatment of patients and thus improve the diag-
nosis of epilepsy. Furthermore, it would also enable an automated
prediction and/or detection of epileptic seizures in real time by
a system to be implanted in head of epileptic patients (Jerger
et al., 2001). Such a system would significantly improve quality of
life of people suffering from epilepsy. Most of the techniques for
automated detection of epileptiform activity that have emerged
in recent years consist of two key successive steps: extraction of
features from EEG signals and then classification of the extracted
features for detection of epileptiform activity.

The feature extraction, as the first step, has a direct influence
on both precision and complexity of the entire technique. Most
common statistical features in time domain, such as the mean,
the variance, the coefficient of variation and the total variation,
by themselves are not sufficient for a reliable detection of epilepti-
form activity, and thus are mostly used as statistical measures for
features in other domains. The variance and the total variation
are considered to have better discriminatory capabilities than the
mean, since they are able to detect magnitude of change in a sig-
nal over time. Even though we can note a certain periodicity and
synchronization between EEG signals from different electrodes,
neither the autocorrelation nor the cross-correlation have proved
to be reliable features for detection of epileptiform activity. This
is especially true in the case of the cortical EEG where the record-
ing electrodes are so close to each other that the synchronization
could be noted even when there was no seizure. However, in
the literature we can still find several applications of these two
features (Niederhauser et al., 2003; Jerger et al., 2005).

Unlike the previous features, the spectral features of EEG sig-
nals obtained through the Fourier transform have found wide
applications in the field (Polat and Gunes, 2007; Mousavi et al.,
2008). Namely, all the research carried out to date clearly indi-
cates that it is much better to identify and extract the features of
interest in frequency domain than in time domain, even though
the both domains contain identical information. The analysis in
time-frequency domain gives even better results considering that
it contains, in addition to frequency, also the temporal compo-
nent of signal which is lost during the Fourier transform. The
literature mainly contains techniques based on wavelet transform
(Subasi, 2007a,b; Wang et al., 2011; Gajić et al., 2014) which has
also been used in the research related to other brain disorders,
such as schizophrenia (Hazarika et al., 1997) and Alzheimer’s dis-
ease (Adeli and Ghosh-Dastidar, 2010). The detection of epilep-
tiform activity based on non-linear analysis, i.e., extraction of
the correlational dimension and the Lyapunov exponents as
non-linear features can also be noted in some research stud-
ies (Iasemidis et al., 2003; Srinivasan et al., 2007; Adeli and
Ghosh-Dastidar, 2010).

A precise classification as the second key step directly depends
on the previously extracted features. That is, there is no classi-
fier which could in any way make up for the shortcomings which
are consequence of the information lost during the feature extrac-
tion. Like in the case of the feature extraction, we can come across
a very wide range of classifiers starting from the most simple ones
with thresholds (Altunay et al., 2010) or rule-based (Gotman,
1999), to linear classifiers (Liang et al., 2010; Iscan et al., 2011)

and all the way to those more complex ones based on fuzzy logic
and artificial neural networks (Gajić, 2007; Subasi, 2007a; Tzallas
et al., 2007).We can also note the use of other techniques for clas-
sification based on k nearest neighbors (Guo et al., 2011; Orhan
et al., 2011), decision trees (Tzallas et al., 2009), expert models
(Ubeyli, 2007; Ubeyli and Guler, 2007) as well as Bayes classi-
fiers (Tzallas et al., 2009; Iscan et al., 2011). Considering that the
feature extraction as a process of higher priority can be computa-
tionally very demanding it is always more desirable to use simpler
classifiers so that the entire decision-making system could ideally
work in real time.

In this paper we present an automated technique for detec-
tion of epileptiform activity in EEG signals. In contrast with the
existing techniques which are mainly based on features from one
domain of interest, our new technique optimally integrates fea-
tures from a few domains and frequency sub-bands of clinical
interest in order to increase its robustness and accuracy. We
extract features in both time and frequency domain as well as
time-frequency domain using discrete wavelet transform which
has already been recognized as a very good linear technique for
analysis of non-stationary signals such as EEG signals. In addi-
tion, by non-linear analysis we extract the correlation dimension
and the largest Lyapunov exponent as much better measures of
EEG signal non-linearity which is only approximated by other
linear techniques such as fast Fourier transform (FFT) and dis-
crete wavelet transform (DWT). After the feature extraction we
optimally reduce the feature space dimension to two using scatter
matrices and then perform classification in the reduced feature
space by quadratic classifiers which have already been known
as very robust solutions for classification of random feature
vectors.

Materials and Methods

Materials
The EEG signals used to design and test the new technique were
recorded at the University Hospital Bonn, Germany with the
same 128-channel amplifier system (Andrzejak et al., 2001). After
12 bit analog-to-digital conversion the EEG signals were saved in
a data acquisition system at a sampling rate of 173.61Hz. The
amplifier range was adjusted well so that the recordings could
be made with 12 bits. The recorded EEG signals were further
passed through a low pass filter with the finite impulse response
and bandwidth of 0–60Hz. The frequencies higher than 60Hz
mostly present noise and are a very small part of the signal total
energy in the frequency band up to 86.8Hz saved by the acquisi-
tion system.We used 100 segments of epileptic and 200 segments
of non-epileptic EEG signals to design and test our new tech-
nique. The epileptic EEG signals were recorded using cortical
electrodes from 5 epileptic patients during seizure from within
the seizure focus, i.e., the region of unhealthy brain tissue that was
later removed by surgery. The first 100 segments of non-epileptic
EEG signals were also recorded using cortical electrodes from
the same epileptic patients and the same unhealthy brain tissue
but during seizure-free interval. The remaining 100 segments of
non-epileptic EEG signals were recorded using scalp electrodes
from 5 healthy volunteers and of course their healthy brain tissue.
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So, there was a total of three groups with 100 segments of the
EEG signals. All the segments have duration of 4096 samples,
i.e., 23.6 s, and were additionally tested on the weak stationarity
(Andrzejak et al., 2001) in order to perform non-linear analysis.
Since the EEG signals were recorded from different patients and
with different electrodes, all extracted EEG signal segments were
also additionally normalized in order to have the same zero mean
and unit variance as shown in Figure 1. In this way, we wanted
to design a detection technique that is not dependent on patient
and the EEG recording system either.

Methods
There are five broad sub-bands of the EEG signal which are
generally of clinical interest: delta (0–4Hz), theta (4–8Hz),
alpha (8–16Hz), beta (16–32Hz), and gamma waves (32–
64Hz). Higher frequencies are often more common in abnor-
mal brain states such as epilepsy, i.e., there is a shift of EEG
signal energy from lower to higher frequency bands before
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FIGURE 1 | Non-normalized (lower) and normalized (upper) epileptic (in

red) and non-epileptic (unhealthy in blue and healthy tissue in green)

EEG signals.

and during a seizure (Gajić et al., 2014). These five frequency
sub-bands provide more accurate information about neuronal
activities underlying the problem. Consequently, some changes
in the EEG signal, which are not so obvious in the orig-
inal full-spectrum signal, can be amplified when each sub-
band is considered independently. Thus, we extract features
from each sub-band separately and also in time, frequency
and time-frequency domain as well as by non-linear analysis.
After the feature extraction we reduce dimension of the fea-
ture space to two. Finally, two quadratic classifiers able to sep-
arate all three groups of the EEG signals from each other are
designed. The entire structure of the technique is shown in
Figure 2.

FIGURE 2 | Structure of the new technique consisting of four key

steps: preprocessing, feature extraction, dimension reduction, and

classification.
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Time-Frequency Domain Analysis
Since the segments of the EEG signals have already been nor-
malized and all have zero mean and unit variance, additional
extraction of these two features as well as coefficient of varia-
tion as function of mean value and variance, does not make any
sense. However, we extracted the total variation as another mea-
sure of signal variability in the time domain even after normal-
ization since it counts number of signal sign changes or signal
polarity. In the case of a signal segment x [n] of N samples, i.e.,
n = 1, 2 · · ·N, the total variation is given by:

vx =
1

N − 1

∑N
n= 2 |x [n] − x[n − 1]|
(maxx − minx)

(1)

where the signal is essentially normalized by the difference
between its maximum and minimum values in the segment of
interest. Obviously, the value of the total variation is located in
the range between 1/(N − 1) for slower signals and 1 for signals
with very high and frequent changes.

EEG signals, as the outcome of events with different repeti-
tion periods, contain signals whose different frequencies cannot
be identified in the time domain, since all these signals are shown
together. Thus, signal transformation from the time domain to
the frequency domain is necessary, which in the case of a sig-
nal segment x[n] of N samples is achieved using the fast Fourier
transform (FFT) defined by:

fft [ω] =
N∑

n= 1

x[n]e−iωn, ω = 2πm

N
, 0 ≤ m ≤ N − 1 (2)

where ω = 2π f /fs represents the angular frequency discretized
in N samples (Proakis and Manolakis, 1996). In order to avoid
discontinuities between the end and beginning of the segments
and thus spurious spectral frequency components the beginning
of each segment was chosen in such a way that the amplitude dif-
ference of the last and first data points was within the range of
amplitude differences of consecutive data points, and the slopes
at the end and beginning of each segment had the same sign.
This procedure reduces edge effects that result in spectral leak-
age in the FFT spectrum. In order to further minimize spectral
leakage windowing of signal segments by the Hamming window
(the sum of a rectangle and a Hanning window) is used before
application of the FFT. Considering the fact that by transforming
the signal into the frequency domain we do not lose any original
information from the time domain, the signal can completely be
reconstructed using the inverse Fourier transform by:

x[n] = 1

N

2π(N−1)/N∑

ω= 0

fft[ω]eiωn, 1 ≤ n ≤ N (3)

Clearly, the longer the segment x[n], i.e., the larger N, the greater
the frequency resolution.

Power spectral density is also one of the most important
features of the signal in the frequency domain and represents
the contribution of each individual frequency component to the

power of the whole signal segment x[n]. In practice, power spec-
tral density is usually estimated using the coefficients of the fast
Fourier transform, i.e., the periodogram (Welch, 1967) given by:

per [ω] = 1

N

∣∣fft[ω]
∣∣
2

(4)

which is an unbiased and inconsistent estimator. Thus, with the
increase in the length of the signal segment, the mean of the
estimation tends toward the actual value of power spectral den-
sity, which is actually an advantage, unlike variance estimation,
which is not reduced, i.e., which does not have a tendency toward
zero with the increase in segment length. A periodogram can be
further normalized by the total signal power, i.e.,:

pernorm [ω] = 1

N

∣∣fft [ω]
∣∣
2

/

2π(N−1)/N∑

ω= 0

per [ω] (5)

where we obtain the relative contribution of each frequency com-
ponent to the total power of the signal. If the original signal
segment x[n] is further divided into P sub-segments of the N/P
samples, the periodogram can be calculated as follows:

per [ω] = 1

P

P−1∑

p= 0

P

N

∣∣∣fftp[ω]
∣∣∣
2

(6)

where fftp [ω] is the fast Fourier transform of each of the sub-
segments of the N/P sample. In this way, the periodogram is
actually an averaged one with a smaller variance, but clearly
with a lower resolution in the frequency domain. Based on the
periodogram we extracted relative power of all five previously
mentioned sub-bands, i.e., delta (0–4Hz), theta (4–8Hz), alpha
(8–12Hz), beta (12–30Hz), and gamma (30–60Hz), as features
of interest in frequency domain.

By analyzing the EEG signals solely in the time domain,
extracted features do not contain any information on frequen-
cies, which are, as we will later show, also very important for the
proper detection of epileptic EEG signals. On the other hand,
by transforming the signals from the time into the frequency
domain, any information on time is completely lost, except of
course in the case of sequential application on sufficiently short
and stationary sub-segments, which also has its disadvantage in
terms of the correct choice of the length of these sub-segments
which would enable the simultaneous achievement of the desired
resolution in both domains. In addition, once selected, the sub-
segment length, i.e., the resolution in the time domain, remains
fixed throughout the entire frequency bands and cannot be
adjusted to the dominant signal frequencies at a specific time.
Signal processing using wavelets very accurately resolves this defi-
ciency and results in sufficient information on non-stationary
signals, both in the time and frequency domain. We are already
familiar with the fact that a signal can be presented as a lin-
ear combination of its basic functions. A unit impulse function
whose power is limited and whose mean differs from zero is the
basic function of the signal in the time domain, whereas in the
frequency domain, this role is assigned to the sinusoidal function
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that has infinite power, and a zero mean. In the time-frequency
domain, the basic function is the wavelet, which is actually a func-
tion of limited power, i.e., duration, and a zero mean (Rao and
Bopardikar, 1998), and for which the following is valid:

∞∑

n=−∞
|ψ[n]|2 <∞,

∞∑

n=−∞
ψ [n] = 0. (7)

The wavelet that is moved, or translated, in time for b samples
and scaled by the so-called dilation parameter a is given by:

ψab[n] =
1√
a
ψ

[
n − b

a

]
. (8)

By changing the dilation parameter, the basic wavelet (a = 1)
changes its width, that is, it spreads (a > 1) and contracts
(0 ≤ a < 1) in the time domain. In the analysis of non-stationary
signals, the possibility of changing the width of the wavelet rep-
resents a significant advantage of this analysis technique, consid-
ering the fact that wider wavelets can be used to extract slower
changes, i.e., lower signal frequencies, and narrower wavelets can
be used to extract faster changes, i.e., higher frequencies. Follow-
ing the selection of the values of parameters a and b it is possible
to transform segments of the signal x

[
k
]
of N samples, that is, to

calculate the wavelet transform coefficients in the following way:

wab[n] =
N∑

τ = 1

x[τ ]ψab [n − τ ], 1 ≤ n ≤ N (9)

Thus, what is actually being extracted from the signal are only
those frequencies that are within the wavelet frequency band
ψab[n], i.e., the signals are filtrated by the wavelet ψab[n]. As pre-
viously indicated, based on the coefficients obtained in this way,
the original signal can be reconstructed using an inverse wavelet
transform. Of course, if necessary, it is possible to also indepen-
dently reconstruct the part of the signal which is filtered, as well
as the part that was rejected by the wavelet ψab[n] on the basis
of the so-called detail coefficients and approximation coefficients
respectively, which are of course a function of the transformation
coefficients ψab[n].

Parameters a and b can continuously change, which is not so
practical especially bearing in mind that the signal can be com-
pletely and accurately transformed and reconstructed by using
a smaller and finite number of wavelets, that is, by using a lim-
ited number of discrete values of parameters a and b, which is
also known as the discrete wavelet transform (DWT). In this case,
parameters a and b are the powers of 2, which gives us the dyadic
orthogonal wavelet network with frequency bands which do not
overlap each other. The dilation parameter a, as the power of 2, at
each subsequent higher level of transformation, doubles in value
in comparison to the value from the previous level, which means
that the wavelet becomes twice as wide in the time domain, and
has a frequency band that is half as narrow and twice as low.
This actually decreases the resolution of the transformed signal
in the time domain two-fold, increasing it twice as much in the
frequency domain. Thus, the signal frequency band from the pre-
vious level is split into two halves at every next level, into a higher

band which contains higher frequencies and describes the finer
changes, or details, and a lower band that contains lower fre-
quencies and actually represents an approximation of the signal
from the previous level. This technique is also known as wavelet
decomposition of the signal.

Before the application of DWT, it is necessary to choose the
type of the basic wavelet as well as the number of levels into
which the signal will be decompose. After analysis of several types
of the basic wavelets, the fourth-order Daubechies wavelet (Rao
and Bopardikar, 1998) was selected for further analysis within
this work since it has good localizing properties both in the time
and frequency domains (Kalayci and Özdamar, 1995; Petrosian
et al., 2000) Due to its shape and smoothing feature this type
of the basic wavelet has already shown good capabilities in the
field of EEG signal processing. The discrete wavelet decomposi-
tion was performed at four levels that resulted into five sub-bands
of clinical interest. The standard deviation and the average rela-
tive power of the DWT coefficients in each of the sub-bands were
extracted as representative features in time-frequency domain.

Non-linear Analysis
EEG signals, as the result of the activities of an extremely complex
and non-linear system, in addition to the fairly well-known and
previously described linear techniques, can also be analyzed using
some of the non-linear techniques. By using linear techniques,
any non-linearity that can be found in the signal is only approxi-
mated, which can result in the loss of certain pieces of potentially
relevant information. If that is the case, the use of non-linear
techniques is preferred since they are more reliable for non-linear
analyses, despite the fact that they imply weak signal stationar-
ity (Varsavsky et al., 2011), and the fact that they need some-
what longer segments, which leads to their being computationally
more demanding than linear techniques.

Let x[n] again represent the signal segment which is to be ana-
lyzed, where n = 1 · · ·N. Also, let m denote the lag for which
we can define two new sub-segments x[n], the first xk containing
samples starting from k up to N − m and the second xk+m with
samples starting from k + m to N. Both of these sub-segments
contain N − k − m + 1 samples and can be represented
opposite one another in the phase space with a lag m and the
so-called embedding dimension 2. In case of three sub-segments:
xk+2m, xk+m and xk, the embedding dimension of the phase
space would be 3. The lagged phase space provides a completely
different view of signal evolution in time, where we can note that
the signal gravitates to a certain part of the phase space, known
as the attractor. With the aim of constructing lagged phase space,
i.e., the signal attractor, it is necessary to previously define the
values of the lag and the embedding dimension, which although
significantly smaller than the real dimension of the non-linear
system space, provides an approximation of the signal complex-
ity and non-linearity (Andrzejak et al., 2001). The lag m should
be large enough so that these sub-segments would overlap as little
as possible, that is, share as little mutual information as possible,
but at the same time sufficiently small so that the sub-segments
could be long enough for any further useful analysis. An optimal
lag is obtained by determining themutual information coefficient
the sub-segments for different values of the lag m. The mutual
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information coefficient is defined by Williams (1997):

infom =
Ns∑

i= 1

Ns∑

j= 1

p
(
xk [i] , xk+m[j]

)
log2

p
(
xk[i], xk+m[j]

)

p (xk [i]) p
(
xk+m[j]

) (10)

where Ns represents the number of areas in which the signal is
discretized based on the amplitude and p is the corresponding
probability that the sub-segment belongs to a certain area. The
first local minimum shown in the graph representing the depen-
dence of themutual information coefficient on lag determines the
optimal lagmo.

After determining the optimal lag, the minimum embedding
dimension of the lagged phase space is estimated using Cao’s
technique (Cao, 1997). In the phase space with a lag mo and
embedding dimension d, the original segment is represented
by its phase portraits, which all together make up the attractor
defined by the following points in the lagged phase space:

yd[i] =
[
x[i] x [i+mo] · · · x

[
i+mo(d − 1)

]]
(11)

where i = 1, 2, · · · , N − mo(d − 1). According to the tech-
nique developed by Cao, if d is the right dimension, then the two
points are also close to each other in phase space dimension d,
as well as in the phase space of dimension d + 1 and are referred
to as real neighbors (Cao, 1997). Dimension increases gradually
until the number of false neighbors reaches zero, that is, until the
Cao’s embedding function defined by:

ed = 1

N − mod

N−mod∑

i= 1

∥∥yd+1[i] − yd+1[ni, d]
∥∥

∥∥yd[i] − yd[ni, d]
∥∥ (12)

becomes constant, where i = 1, 2, · · · , N − mod and yd[ni, d]
represents the nearest neighbor of yd[i] in the d-dimensional
phase space with a lag mo. In fact, the minimum embed-
ding dimension dmin is determined when the ratio between the
ed+1/ed approaches the value of 1. Since this ratio may approach
1 in some other cases, e.g., for completely random signals, an
additional check is also carried out where the Cao’s embedding
function is redefined and given by:

e∗d = 1

N − mod

N−mod∑

i=1

∣∣x
[
i+mod

]
− x

[
ni, d +mod

]∣∣ (13)

where x
[
ni, d +mod

]
is the nearest neighbor of x

[
i+mod

]
. The

constant value of the ratio e∗
d+1/e

∗
d
for different values of the

embedding dimension indicates that we are dealing with a ran-
dom signal. The signal is not random, i.e., it is deterministic if
this ratio differs from 1 for at least one value of the embedding
dimension, which in that case is also the minimum value.

The correlation dimension is a measure of the complexity of
the signal attractor in the lagged phase space. This dimension,
unlike most others better known dimensions, may have a frac-
tional value and could thus characterize the dimension, that is,
the complexity of the attractors with more precision than the
embedding dimension; however, it is always less than or equal
to the embedding dimension.

Let Cε be the correlational sum of the signal segment with N
samples within the radius ε in its phase space with a lag mo and
minimum embedding dimension dmin, i.e., M = N − modmin

points ydmin
given by Williams (1997):

Cε = lim
M→∞

1

M2

M∑

i= 1

M∑

j= 1

H(ε −
∥∥ydmin

[i] − ydmin
[j]
∥∥) (14)

where H is the Heaviside step function that results in 1 if ydmin
[j]

is within the radius ε of ydmin
[i], i.e.,:

ε −
∥∥ydmin

[i] − ydmin
[j]
∥∥ > 0 (15)

otherwise it is 0. The correlation dimension dcorr is the approx-
imated slope of the natural logarithm of the correlation sum as
a function of ε. Given that the total number of possible dis-
tances between two points in a lagged phase space equalsM(M −
1)/2, the correlation dimension could directly be obtained by the
Takens estimator (Takens, 1981; Cao, 1997) using:

dcorr =−


 2

M (M − 1)

M∑

i= 1

M∑

j= 1

log

(∥∥ydmin
[i] − ydmin

[
j
]∥∥

ε

)
 (16)

The largest Lyapunov exponent λmax represents a measure of
both chaotic behavior of the attractor and the divergence of the
trajectories in phase space, i.e., the predictability of the signal.
Attractor divergence is the distance between two closely posi-
tioned points in a phase space after a certain period of time of
k samples, which is also known as the prediction length. Based
on chaos theory, i.e., the so-called butterfly effect, two points
close in the phase space of a chaotic system may have com-
pletely different trajectories. Thus, the divergence of the trajec-
tories implies a chaotic system, and vice versa. The Lyapunov
exponent actually characterizes the exponential growth of that
divergence. The number of Lyapunov exponents is equal to the
embedding dimension, and each of these Lyapunov exponents
represents the rate of a contracting (λ < 0) or expanding attrac-
tor (λ > 0) in a certain direction of the phase space. In the case
of a chaotic system, the trajectories must diverge in at least one
dimension, which means that at least one Lyapunov exponent
must be greater than zero, when it is, at the same time, the largest
Lyapunov exponent. If several Lyapunov exponents are positive,
then the largest among them indicates the direction of the max-
imum expansion of the attractor and its chaotic behavior. The
mean of the trajectory divergence after k samples and a sampling
period Ts can be calculated by the Wolf ’s technique (Wolf et al.,
1985; Rosenstein et al., 1993) using:

dT = 1

(M − k)

M−k∑

i= 1

∥∥ydmin
[i+ k] − ydmin

[ni + k]
∥∥

∥∥ydmin
[i] − ydmin

[ni]
∥∥ (17)

where ydmin
[i] and ydmin

[ni] represent two close points on differ-
ent trajectories in the phase space. The largest Lyapunov expo-
nent λmax is in this case an approximation of the slope of the
natural logarithmic trajectory divergence as a function of the
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number of samples k, i.e., dT = d0e
kTsλmax where d0 stands for

the initial divergence. In addition, there is another very similar
more practical technique for the evaluation of the largest Lya-
punov exponent proposed by Sato et al. where we first calculate
the prediction error for several different values of the number of
samples k using:

pk =
1

(M − k)

M−k∑

i=1

log2

∥∥ydmin

[
i+ k

]
− ydmin

[ni + k]
∥∥

∥∥ydmin
[i] − ydmin

[ni]
∥∥ (18)

after which the λmax is determined as the slope of the middle and
approximately linear part of the prediction error pk as a function
of kTs.

We extract both the correlation dimension and the largest
Lyapunov exponent as features that describe complexity and
chaotic behavior of the attractor in the lagged phase space. By
choosing the radius ε, the phase space is divided into parts of the
dimension ε. While the correlation dimension shows how many
points can be found in the surrounding areas of the phase space,
the Lyapunov exponent describes the distance between each of
the trajectories that terminate in different parts of the phase space
but start from the same one. In other words, both of these fea-
tures give us an idea of how complex and predictable EEG signal
is, which, of course, they both interpret and quantify in their own
characteristic way.

Dimension Reduction in Feature Space
Let an n-dimensional random vector X be transformed through
the application of a certain linear transformation into an
n-dimensional random vector Y = ATX where A is the trans-
formational square matrix of the dimension n. Then the mean
vector and the covariance matrix of the random vector Y are
MY = ATMX and 6Y = AT6XA. Based on that, the distance
function is:

d2Y (Y) = (Y − MY )
T6−1

Y (Y − MY ) = (X − MX)
T6−1

X

(X − MX) = d2X(X) (19)

that is, the distance function does not change with the linear
transformation. If we were to perform the translation of the
coordinate system for the mean vector MX we would obtain the
random vector Z = X − MX whose mean vector is zero and its
covariance matrix is the same as 6X . If we wanted to deter-
mine the random vector Z which maximizes the distance func-
tion d2Z (Z) = ZT6−1Z under the condition that ZTZ = 1, it is
necessary to minimize the following criterion:

J = ZT6−1Z − µ

(
ZTZ − 1

)
(20)

where µ is the Lagrange multiplier. By using a partial derivate
∂J/∂Z and by equating it with zero, we obtain the following:

∂J/∂Z = 26−1Z − 2µZ H⇒ 6Z = λZ (21)

where λ = 1/µ. With the aim of obtaining a non-zero solution
which satisfies the equation:

6Z = λZ ⇐⇒ (6 − λI)Z = 0 (22)

it is further necessary to find such a parameter λ which satisfies
the following so-called characteristic equation of a matrix6:

|6 − λI| = 0 (23)

Every λ which satisfies this characteristic equation is known as
eigenvalue of the matrix 6 while the vector Z related to specific
eigenvalue is known as an eigenvector. When 6 is a symmetric
n × n matrix, then there are n real eigenvalues λ1, λ2, . . . , λn
and n real eigenvectors 81, 82, . . . , 8n which are mutually
orthogonal and for which 68 = 83 and 8T8 = I where
8 = [81 82 · · ·8n] is the square matrix of the eigenvectors, 3
the diagonal matrix of the eigenvalues:

3 =



λ1 · · · 0
...

. . .
...

0 · · · λn


 (24)

while I is the identity matrix.
If the matrix 8 is used as a transformation matrix during the

linear transformation Y = 8TX, then the covariance matrix of
the random vector Y will be 6Y = 8T6X8 = 3. This kind
of transformation is orthonormal since for the transformation
matrix8 holds8T8 = I. In addition, during all these orthonor-
mal transformations, the Euclidean distance does not change,
that is ‖Y‖2 = YTY = XT8T8X = XTX = ‖X‖2.

Let X be an n-dimensional random vector of the extracted
features which could be represented using n linear independent
vectors in the following way:

X =
n∑

i= 1

yi8i = 8Y (25)

where 8 = [81 82 · · · 8n] and Y =
[
y1 y2 · · · yn

]
that is 8i

are the basis vectors of the new n-dimensional space, and the new
coordinates yi are the scalar products of the basis vectors 8i and
the random vector X. Assuming that the columns of the matrix8
or in other words the basis vectors8i are orthogonal, the coordi-
nates of the random vector X in the new space can be obtained in
the following way:

yi = 8T
i X. (26)

Thus, Y represents a mapped random vector and the orthonor-
mal transformation of the original random vectorX. The random
vector X approximated using only the m (m < n) basis vectors,
i.e., the mapped features, could be represented in the following
way:

X̂(m) =
m∑

i= 1

yi8i +
n∑

i=m+1

bi8i (27)

where the approximation error becomes:

1X(m) = X − X̂(m) =
n∑

i=m+1

(yi − bi)8i (28)
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and the mean squared error:

ε2(m) = E
{∥∥1X(m)

∥∥2
}
=

n∑

i=m+1

E
{
(yi − bi)

2
}

(29)

has its own minimal value for bi = E
{
yi
}
= 8T

i E {X}. The opti-
mal mean squared error can then be presented in the following
form:

ε2opt(m) =
n∑

i=m+1

E
{
(yi − E

{
yi
}
)
2
}

=
n∑

i=m+1

8T
i E
{
(X − E {X})(X − E {X})T

}
8i

=
n∑

i=m+1

8T
i 6X8i =

n∑

i=m+1

λi (30)

where 6X is the covariance matrix of the random vector X and
λi are its eigenvalues. Thus, the minimal mean squared error of
approximation is also equal to the sum of the eigenvalues of the
leftout coordinates, which actually means that we should leave
out coordinates with the smallest eigenvalues. The mapping of
the random vector X into the space made up by the eigenvec-
tors of its covariance matrix6X is known as the Karhunen-Loeve
(KL) expansion. When reducing the dimension of the feature
space using the KL expansion technique we should bear in mind
that the performance of each feature is characterized by its eigen-
value. Thus, by rejecting features we should first reject those with
the smallest eigenvalue, i.e., with the smallest variance in the
new feature space. For example, in the case of dimension reduc-
tion from two to one shown in Figure 3 the feature y2 would be
rejected as less informative even though it has better discrimina-
tory potential than y1. Also the coordinates yi aremutually uncor-
related considering that the covariance matrix of the random
vector Y is diagonal, i.e.,:

6Y = 8T6X8 = 3 = diag {λ1λ2 · · · λn} . (31)

Unlike the previously outlined method, the reduction of dimen-
sion based on scatter matrices (Fukunaga, 1990; Djurovic, 2006)
is of special significance for the new detection technique since it
takes into consideration the very purpose of the reduction, that
is, the classification of the random vectors. Let L be the number
of classes which should be classified and Mi and 6i, i = 1 · · · L
the mean vectors and the covariance matrices of these classes,
respectively. Then the within-class scatter matrix can be defined
by:

SW =
L∑

i= 1

PiE
{
(X − Mi) (X − Mi)

T/ωi

}
=

L∑

i= 1

Pi6i (32)

and the between-class scatter matrix as:

SB =
L∑

i= 1

Pi (Mi − M0) (Mi − M0)
T (33)

FIGURE 3 | Different approaches to dimension reduction in feature

space, the KL expansion technique which rejects the feature y2 and

the technique based on scatter matrices which rejects the feature y1.

where M0 is the joint vector of mathematical expectation for all
the classes together, that is:

M0 = E {X} =
L∑

i= 1

PiMi. (34)

In addition the mixed scatter matrix can be defined by:

SM = E
{
(X − M0) (X − M0)

T
}
= SW + SB. (35)

Then the problem of dimension reduction is reduced to the iden-
tification of the n × m transformation matrix A which maps the
random vector X of dimension n onto the random vector Y =
ATX of dimension m and at the same time maximizes the crite-
ria J = tr(S−1

W SB). This criteria is invariant to non-singular linear
transformations and results into transformationmatrix that takes
the following form:

A = [91 92 · · · 9m] (36)

where 9i, i = 1, . . . ,m are the eigenvectors of the matrix S−1
2 S1

which correspond to the greatest eigenvalues, i.e., (S−1
W SB)9i =

λi9i, i = 1, . . . , n, λ1 ≥ λ2 ≥ · · · ≥ λn. Dimension
reduction based on scatter matrices applied to the case shown in
Figure 3 would result into selection of the feature y2 that is much
better choice than the feature y1 selected by the KL expansion
technique, of course in terms of more accurate classification.

Design of Quadratic Classifiers
Quadratic classifiers are already known to be very good robust
solutions to the problems of classification of random vectors
whose statistical features are either unknown or change over
time. Additionally, quadratic classifiers allow visual insight into
the classification results. We design a piecewise quadratic clas-
sifier for detection of epileptiform activity, i.e., two quadratic
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classifiers, able to separate all three classes of the EEG signals of
interest as shown in Figure 2. The quadratic classifiers have the
same structure defined by the following equation:

h (Y) = YTQY + VTY + ν0

=
[
y1 y2

] [ q11 q12
q21 q22

] [
y1
y2

]
+ [ν1 ν2]

[
y1
y2

]
+ ν0
(37)

where y1 and y2 are two features in the reduced feature space.
The matrixQ, the vectorV and scalar ν0 are the unknowns which
are also need to be determined optimally. The quadratic equation
(37) can be represented in a linear form as:

h (Y) =
[
q11 q12 q22 ν1 ν2

]




y21
2y1y2
y22
y1
y2



+ ν0 = VT

z Z + ν0. (38)

In order to also achieve the largest possible between-class and
shortest within-class scattering during the dimension reduction
in the feature space, for the optimization criterion we have
selected the following function (Fukunaga, 1990):

f = P1η1
2 + P2η2

2

P1σ 1
2 + P2σ22

(39)

where P1 and P2 are probabilities and

ηl = E
{
h(Z)/ωl

}
= E

{
VT
z Z + ν0/ωl

}
= VT

z Ml + ν0 (40)

σl
2 = var

{
h(Z)/ωl

}
= var

{
VT
z Z + ν0/ωl

}
= VT

z 6lVz. (41)

Ml and 6l are the mean vectors and covariance matrices, respec-
tively, of the random vector Z for each of the two classes l that
need to be classified. By optimizing the function f , for the opti-
mal vectorVz , i.e., matrixQ and vectorV from Equation (37), we
have:

Vz =




q11
q12
q22
ν1

ν2



= [P161 + P262]

−1 (M2 − M1) (42)

and for the optimal scalar:

ν0 =− VT
z (P1M1 + P2M2) (43)

which finishes the design of the quadratic classifiers as well as the
new technique for detection of epileptiform activity.

Statistical performances such as sensitivity, specificity and
accuracy of the designed piecewise quadratic classifier, i.e., the
new technique for detection of epileptiform activity, is estimated
based on the classification results. The sensitivity is defined as a
ratio between the number of correctly classified segments and
the total number of the segments for each of the classes sepa-
rately. The specificity is also calculated for each of these three

classes separately and represents the ratio between the number
of correctly classified features of the other two classes and the
total number of the segments of these two classes. The accuracy is
calculated as the ratio between the total number of correctly clas-
sified segments and the total number of the segments in all three
classes together.

Results

Feature Extraction
In total 30 features for each of 300 analyzed segments of the EEG
signals were extracted. All the features together with their mean
values and standard deviations for all three different classes of
EEG signals of interest are presented in Table 1. The extracted
features refer to the adequate clinical sub-bands since these sub-
bands had better discrimination characteristics compared with
the whole frequency band between 0 and 60Hz. The separability
index as a measure of the discriminatory potential was also cal-
culated for all the extracted features. In this case, the separability
index is the criteria J = tr(S−1

W SB) where SW and SB are earlier
defined within- and between-class scatter matrices, respectively.
Based on these matrices, a higher separability index corresponds
to better separability between different classes of the EEG signals.
Based on these 30 features, each original segment of the EEG sig-
nals from time domain can be presented now by its feature vector
X = [x1x2 · · · x30]T , i.e., by the point in the feature space with
dimension of 30.

The total variation is the only one feature that we extracted in
the time domain. In Table 1, it can be noticed that the total varia-
tion has a certain potential for the detection of epileptiform activ-
ity in EEG signals. However, the total variation is not that much
reliable despite the fact that is a pretty well estimated having in
mind the duration of each of the analyzed segments.

The periodogram represents a very important feature of the
signal in the frequency domain given that based on it we can
get a relative contribution of either any individual frequency or a
specific frequency band to the total power of the analyzed signal.
The periodograms of one epileptic and two non-epileptic (from
both unhealthy and healthy tissue) segments of the EEG signals
are shown in Figure 4 where it can be noticed that the EEG sig-
nal power of is shifting from lower to higher frequencies in the
presence of epileptiform activity.

Using the discrete wavelet transform (DWT) we can
completely and independently extract higher and lower frequen-
cies from the signal. All that can be done with different res-
olution in the time domain, i.e., higher resolution in the time
domain for higher frequencies and lower resolution in the time
domain for lower frequencies. The EEG signal segments were
analyzed at four levels, i.e., the discrete wavelet decomposition
was performed at four levels as presented in Figure 5. At the
first level of decomposition, the original frequency band of the
EEG signals (0–60Hz) was divided into its higher (30–60Hz)
and lower part (0–30Hz), i.e., the details and the approxima-
tion of the signals at the first decomposition level, respectively.
Then at the second decomposition level, the frequency band of
the approximation from the first level was additionally divided
into its higher (15–30Hz) and lower (0–15Hz) part, i.e., the
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TABLE 1 | Normalized features extracted from different frequency sub-bands.

Index Feature Non-epileptic Non-epileptic Epileptic Separa-bility

of healthy tissue of unhealthy tissue

µ σ µ σ µ σ J

x1 Total variation—delta 0.011 0.002 0.011 0.003 0.019 0.005 1.253

x2 Total variation—theta 0.027 0.004 0.022 0.006 0.028 0.006 0.300

x3 Total variation—àlpha 0.044 0.005 0.034 0.011 0.042 0.011 0.215

x4 Total variation—beta 0.075 0.008 0.057 0.024 0.062 0.023 0.150

x5 Total variation—gamma 0.149 0.019 0.102 0.047 0.103 0.041 0.335

x6 Relative power FFT—delta 0.446 0.090 0.628 0.147 0.267 0.220 0.720

x7 Relative power FFT—theta 0.159 0.049 0.236 0.119 0.390 0.224 0.417

x8 Relative power FFT—alpha 0.162 0.043 0.086 0.066 0.134 0.057 0.316

x9 Relative power FFT—beta 0.221 0.075 0.046 0.024 0.205 0.151 0.641

x10 Relative power FFT—gamma 0.012 0.010 0.004 0.003 0.004 0.005 0.264

x11 St. dev. coeff. DWT—delta 2.825 0.275 3.362 0.290 2.507 0.549 0.810

x12 St. dev. coeff. DWT—theta 1.795 0.180 1.709 0.366 2.181 0.505 0.300

x13 St. dev. coeff. DWT—alpha 1.266 0.140 0.766 0.175 1.275 0.288 1.276

x14 St. dev. coeff. DWT—beta 0.556 0.122 0.267 0.072 0.466 0.146 1.057

x15 St. dev. coeff. DWT—gamma 0.154 0.039 0.085 0.028 0.115 0.040 0.596

x16 Relative power DWÒ—delta 0.501 0.097 0.708 0.118 0.408 0.175 0.873

x17 Relative power DWÒ—theta 0.203 0.039 0.190 0.081 0.311 0.132 0.347

x18 Relative power DWÒ—alpha 0.202 0.043 0.077 0.035 0.213 0.097 0.913

x19 Relative power DWÒ—beta 0.081 0.038 0.020 0.011 0.060 0.039 0.613

x20 Relative power DWÒ—gamma 0.013 0.007 0.005 0.003 0.008 0.006 0.291

x21 Correlation dimension—delta 6.979 3.443 6.494 1.605 5.763 1.489 0.045

x22 Correlation dimension—theta 4.621 0.594 4.288 0.925 4.206 0.884 0.048

x23 Correlation dimension—alpha 4.184 0.442 3.701 0.886 3.230 0.833 0.272

x24 Correlation dimension—beta 3.635 0.359 3.097 0.940 2.348 0.832 0.490

x25 Correlation dimension—gamma 6.729 1.248 6.374 1.838 4.003 1.994 0.493

x26 Largest Lyapunov exp.—delta 3.282 0.873 2.910 0.856 4.203 1.102 0.327

x27 Largest Lyapunov exp.—theta 8.213 1.935 8.188 1.914 8.286 1.933 0.000

x28 Largest Lyapunov exp.—alpha 17.58 2.165 17.57 2.160 17.58 2.377 0.000

x29 Largest Lyapunov exp.—beta 32.91 5.991 32.65 5.977 33.04 5.091 0.001

x30 Largest Lyapunov exp.—gamma 11.71 2.985 11.62 2.965 11.89 5.210 0.001

details and the approximation of the signals at the second decom-
position level, respectively. After all four decomposition lev-
els, the original band was divided into its five sub-bands, i.e.,
four sub-bands with the details and one sub-band with the
approximation. All these five sub-bands approximately corre-
spond to the earlier defined clinical sub-bands. Power distribu-
tion of the EEG signals in the time-frequency domain is quite
well described by the DWT coefficients. However, in order to
reduce the dimension of the problem and make easier further
classification we calculated certain statistics of these coefficients
in each sub-band such as the standard deviation and the average
relative power, i.e., the square of the absolute values of the DWT
coefficients.

Given that the EEG signal also roughly represents a dynam-
ics of a very complex non-linear system such as the brain, the
non-linear analysis based on the chaos theory was used in order
to extract the information that could not been extracted by any
of previously described linear techniques. It is interesting to see

that unlike the other feature extraction techniques in the field, a
complete agreement about if at all and how to perform a non-
linear analysis of the EEG signals has not been achieved yet.
Thus, quite often it is possible to find contradictory results of
such experiments in the literature. For example, the correlation
dimension and the largest Lyapunov exponent have completely
different values in Hively et al. (1999), Adeli and Ghosh-Dastidar
(2010) and Iasemidis and Sackellares (1991). The feature extrac-
tion techniques and non-linear analysis implemented and used in
this research are exclusively based on the chaos theory described
in the methods part. In addition, there are no any further sub-
jective adjustments applied to the EEG signals, which provides
a high level of reproductivity of the obtained results at any
time.

At first, the optimal lag and the embedding dimension were
determined in order to reconstruct a segment of the EEG signals
in its own lagged phase space. The optimal lagmo was obtained as
the first local minimum of the function of themutual information
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coefficients. The value of the optimal lag of the most of ana-
lyzed segments varied between 5 and 7. The minimum embed-
ding dimension dmin was determined using Cao’s technique, i.e.,
based on the saturation of the embedding function ed, for exam-
ple as presented in Figure 6 in the case of one segment. In other
words when a further increase in the embedding dimension does
not result in more than 5% of increase in the embedding func-
tion. The value of the embedding function of all 300 segments
processed approached 1. In fact, this confirms that there is a cer-
tain level of chaos present in the segments of the EEG signals.
That chaos is not random but deterministic given that the value
of the redefined embedding function e∗

d
is not constant for all val-

ues of the embedding dimension as it can be seen in Figure 6.

FIGURE 4 | Periodogram of epileptic (in red) and non-epileptic

(unhealthy in blue and healthy tissue in green) segments of EEG

signals where a shift in the EEG signal power from lower to higher

frequencies in the presence of epileptiform activity is evident.

The value of theminimum embedding dimension varied between
4 and 10.

After reconstruction of the EEG signals in the lagged phase
space, the correlation dimension of attractor was estimated using

FIGURE 6 | Embedding function ed (upper) which approaches 1 and

thus confirms a presence of a certain level of chaos in EEG signals and

redefined embedding function e*
d
(lower) which is not constant for all

values of the embedding dimension m confirming that chaos is not

random but deterministic.

FIGURE 5 | Four-level decomposition of EEG signal that corresponds to five sub-bands of clinical interest which have better discriminatory

characteristics compared with the entire frequency band of 0–60Hz.
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the Taken’s estimator. After a few tests the value of radius ε in the
phase space was set to 5% of the total size of the attractor since the
higher values resulted into to many points, and the smaller ones
into insufficient number of points for a good estimation of the
correlation dimension. From Table 1, it can be concluded that
the correlation dimension as a non-linear feature has a poten-
tial for detection of epileptiform activity in EEG signals. It is also
obvious that the attractor complexity, i.e., the chaotic behavior of
the EEG signals, is lower in presence of epileptiform activity. The
values of the correlation dimension in all cases were higher than
the embedding dimension of the lagged phase space, which is in
accordance with the chaos theory.

The largest Lyapunov exponent as a measure of signal
predictability was estimated using Sato’s technique. At first, the
prediction error as a function of number of samples k was deter-
mined as shown in Figure 7 in the case of one segment. Then,
the largest Lyapunov exponent was estimated based on the func-
tion’s slope in its medium part. As it can be seen in Table 1,
the largest Lyapunov exponent has smaller discrimination abil-
ity compared with the correlation dimension. Additionally, it can
be also noticed that the presence of epileptiform activity reduces
the predictability of the EEG signals since the largest Lyapunov
exponent is slightly higher in that case.

Dimension Reduction in Feature Space
After the feature extraction from all the segments of the EEG
signals, obviously none of the individually extracted features is
sufficiently reliable for detection of epileptiform activity in EEG
signals. This fact represents the main reason to perform the fea-
ture extraction in a few different domains of interest, i.e., time,
frequency, time-frequency domain and non-linear analysis. The
assumption is that the each of them contains some new infor-
mation about the EEG signal, i.e., the information which is not
present in any other domain and thus later contributes to more
accurate classification and detection. Therefore, a better separa-
bility between the classes of epileptic and non-epileptic segments
is expected after an optimal combination of the features from
different domains than in the case of using only features from

FIGURE 7 | Prediction error p of one segment of EEG signal as a

function of the number of samples k. Its slope in the middle part
determines the largest Lyapunov exponent as a measure of the exponential
divergence of nearby phase space trajectories.

one domain as it is the case with almost all the literature in the
field.

Both the KL expansion technique and the dimension reduc-
tion technique based on the scatter matrices were tested on the
features from all the domains. The obtained results, i.e., adequate
separability indexes before and after the dimension reduction in
the feature space are presented in Table 2. The reduction tech-
nique based on the scatter matrices gives better results in all the
domains of interest and also results into the separability index
that is, as expected, greater than any individual separability index
given in Table 1.

In Table 2, one can see that out of all the analyzed fea-
tures, the highest separability index and the best discrimina-
tion characteristics between epileptic and non-epileptic segments
have the features obtained in time-frequency domain after the
DWT. However, the other features despite their lower separabil-
ity indexes are also useful for later classification that is concluded
based on an additional analysis whose results are presented in
Table 3. It can be noticed that starting from the features in time
domain the separability index increases by a gradual inclusion of
the features from other domains.

Unlike the previous figures, Figure 8 shows 50 original
nineteen-dimensional feature vectors X, which correspond to
50 segments from each of the three classes of the EEG signals,
mapped into their new reduced two-dimensional feature space.
All these 150 two-dimensional vectors Y will be later used in
the next section for the design of appropriate classifiers while
the rest of 150 segments and their corresponding feature vectors
will be used to test the performance of the designed classifiers as
well as the total accuracy of the new technique for detection of
epileptiform activity in EEG signals.

TABLE 2 | Separability indexes after application of two different

techniques for dimension reduction in feature space.

Features analyzed Dimension Separability index

Before After KL By the scatter

expansion matrices

Time domain (x1−5) 5 2 1.93 2.13

Frequency domain (x6−10) 5 2 1.25 2.16

Time-frequency domain (x11−15) 10 2 1.40 4.78

Non-linear analysis (x16−20) 10 2 1.07 1.15

TABLE 3 | Separability indexes after the reduction based on the scatter

matrices and gradual involvement of features from different domains.

Features analyzed Dimension Separability index

Before After

Time domain (x1−5) 5 2 2.13

Including frequency domain (x1−10) 10 2 3.52

Including time-frequency domain (x1−20) 20 2 6.74

Including non-linear analysis (x1−30) 30 2 8.78
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Classification
After the reduction of the feature space dimension to two, the
next step is the design of appropriate classifiers that can separate
epileptic from non-epileptic segments of the EEG signals in the
reduced feature space shown in Figure 8. This represents the last
step in design of the new technique for detection of epileptiform
activity in EEG signals. Having inmind the nature of the EEG sig-
nals and possible changes in their statistical properties it is very
desired to use robust classifiers. Based on Figure 8 it can be con-
cluded that quadratic classifiers represent quite logical choice for
classification even though these three classes of the EEG signals
are also piecewise linearly separable but with a much higher clas-
sification error. In total two quadratic classifiers were designed
following the procedure described in Section Design of Quadratic
Classifiers.

As it can be seen in Figure 9, the first classifier separates the
non-epileptic segments of the EEG signals of healthy brain tissue
(in green) from the non-epileptic segments of unhealthy tissue
(in blue) as well as from the epileptic segments (in red). This
classifier is defined using the following equation:

h(Y) =
2∑

i= 1

2∑

j= 1

qijyiyj +
2∑

i= 1

νiyi + ν0 (44)

where the unknown parameters are q11 =− 4870.8, q12 =
q21 =− 239.9, q22 =− 174.9, ν1 =− 29.2, ν2 =− 174.9 and
ν0 =− 2.3. After that, the second classifier which separates the
remaining two unseparated classes of the EEG signals segments,
i.e., the epileptic and the non-epileptic segments of unhealthy
brain tissue, was designed. The parameters of the Equation (44)
for this classifier are q11 =− 436.7, q12 = q21 =− 128.2, q22 =
444.6, ν1 =− 237.9, ν2 =− 57.2 and ν0 = 0.5 while the
classifier itself is shown in Figure 10.

FIGURE 8 | Epileptic (in red) and non-epileptic (unhealthy in blue and

healthy tissue in green) EEG signals in a new two-dimensional feature

space after dimension reduction based on scatter matrices.

The performance of the designed classifiers and thus the
new technique for detection of epileptiform activity in EEG sig-
nals was tested by classification of the remaining 150 segments
which were not previously used during the design procedure.
The obtained results are presented in Figure 11, where the piece-
wise quadratic classifier is just a combination of two quadratic
classifiers.

The classification results can also be represented by a con-
fusion matrix that is given in Table 4, where its each cell con-
tains number of classified features for each combination of three
classes of the EEG signals segments. Based on the confusion
matrix and Figure 11, it can be concluded that all the non-
epileptic segments of healthy tissue were correctly classified.

FIGURE 9 | The first quadratic classifier which separates non-epileptic

EEG signals of healthy tissue (in green) from non-epileptic (in blue) and

epileptic EEG signals of unhealthy tissue (in red) during the design and

training phase.

FIGURE 10 | The second quadratic classifier which separates epileptic

(in red) from non-epileptic EEG signals of unhealthy tissue (in blue)

during the design and training phase.
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FIGURE 11 | Piecewise quadratic classifier which separates epileptic

(in red) from non-epileptic (unhealthy in blue and healthy in green) EEG

signals of the test set.

TABLE 4 | Confusion matrix.

EEG signals (input/output) Non-epileptic Epileptic

Healthy Unhealthy

Non-epileptic of healthy brain tissue 50 0 0

Non-epileptic of unhealthy brain tissue 0 49 1

Epileptic 0 1 49

TABLE 5 | Statistical performances.

EEG signals Statistical performances [%]

Sensitivity Specificity Accuracy

Non-epileptic of healthy brain tissue 100 100 98.7

Non-epileptic of unhealthy brain tissue 98 99

Epileptic 98 99

However, the remaining two classes contained one segment each
which was incorrectly classified, i.e., classified as it belongs to the
other class. The statistical performances such as sensitivity, speci-
ficity and accuracy, of the designed piecewise quadratic classifiers
are presented in Table 5. As it can be seen, the total accuracy
of the new technique for detection of epileptiform activity in
EEG signals is 98.7%. Typically, quadratic classifiers are robust
and do not exhibit overtraining when the number of parame-
ters to be estimated is much less than the number of samples
as in this case. Anyway, it is a good practice to cross validate
this piecewise classifier in order to ensure its stability. A five-
fold cross validation was performed and it resulted in the cross-
validation loss, i.e., the error of the out-of-fold samples, of 1.7%.
Even though it is slightly higher than the classification error
of 1.3% it gives a confidence that the classifier is reasonably
accurate.

Discussion

Having in mind the results of other techniques available in the
literature, presented in Table 6 and tested on the identical seg-
ments of the EEG signals, the new technique demonstrated a very
good performance. The accuracy of the other techniques varied
between 85 and 99%. In addition to high accuracy achieved, it
should also be emphasized that all the segments of the analyzed
EEG signals were normalized before the feature extraction. In
that way we managed to overcome one of the main disadvantages
of the techniques from Table 6 in terms of real clinical appli-
cation, i.e., those techniques rely on the amplitude of the EEG
signals as one of the key discriminatory features. However, the
EEG signal amplitude has been found as unreliable in real clinical
applications since it varies significantly evenwith healthy individ-
uals, depending on other brain activities as well as other activities
of human body. Also, some other undesired effects, e.g., different
electrodes used for recording, different patients and their brain
tissues, on the detection technique has also been removed by nor-
malization. Unlike the techniques fromTable 6, which aremainly
based only on features from one of the domains, the new tech-
nique relies on carefully extracted features from all the domains
of interest including non-linear analysis as well. Because of that,
this technique is more robust and less sensitive on changes in the
EEG signals that dominantly impact the features from one or two
domains while at the same time are invisible in other domains
and do not have any relation with a presence of epileptiform
activity in EEG signals to be detected.

In order to further increase the detection accuracy of the new
technique during its real clinical application, a previous elimi-
nation of artifacts is very desirable immediately after acquisition
of the EEG signals, i.e., before any further processing and fea-
ture extraction. The artifacts removal can be performed very reli-
ably using some of already developed and available techniques
(Hyvarinen et al., 2001; Rosso et al., 2002). In addition, it is also
necessary to make a certain compromise in terms of duration of
the segments to be sequentially analyzed in real time. The seg-
ment duration should be subsequently adjusted depending on
both application and patient. Not only during the feature extrac-
tion and the dimension reduction in the feature space, but also
during the design of classifiers, a special attention has been paid
to the robustness of the detection technique. This resulted in the
choice of quadratic classifiers which in addition to their simplicity
are known for a high level of robustness in the applications of this
type. Quadratic classifiers have also one more important feature
that is possibility of visualization of the classification results in
two-dimensional space. Namely, despite the fact that the mapped
features y1 and y2 as a linear combination of the original fea-
tures xi extracted from the different domains cannot be anymore
associated to certain properties of the EEG signals, they still can
provide some further useful insights. For example, in Figure 11

it can be noticed that the feature y1 can help during determina-
tion of the damage level of the brain tissue, while the feature y2
indicates either presence or absence of epileptic EEG signal.

As part of our future work we plan an additional testing on
other bigger and mainly commercially available data bases of the
EEG signals (e.g., http://epilepsy-database.eu) containing much
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TABLE 6 | Other techniques for detection of epileptic EEG signals.

Authors and year Feature extraction Classification Accuracy

Nigam and Graupe, 2004 Non-linear filter Diagnostic neural networks 97.2

Kannathal et al., 2005a Non-linear analysis Surrogate data analysis 90.0

Kannathal et al., 2005b Entropy Adaptive neuro-fuzzy inference system 92.2

Guler and Ubeyli, 2005 Lyapunov exponents Recurrent neural networks 96.8

Ubeyli, 2006 Lyapunov exponents Artificial neural networks 95.0

Sadati et al., 2006 Wavelet transform Adaptive neuro-fuzzy network 85.9

Subasi, 2007b Wavelet transform Expert models 95.0

Tzallas et al., 2007 Time-frequency domain analysis Artificial neural networks 99.3

Chua et al., 2008 Power spectral density Gaussian mixture model 93.1

Ghosh-Dastidar et al., 2008 Principal component analysis Artificial neural networks 99.3

Ocak, 2008 Wavelet transform, approximate entropy and genetic algorithm Learning vector quantization 98.0

Mousavi et al., 2008 Wavelet transform and autoregressive model Artificial neural networks 96.0

Ubeyli, 2008 Wavelet transform Expert models 93.2

Chandaka et al., 2009 Crosscorrelation Support vectro machines 96.0

Ocak, 2009 Wavelet transform and approximate entropy Surrogate data analysis 96.7

Guo et al., 2009 Wavelet transform and relative wavelet energy Artificial neural networks 95.2

Naghsh-Nilchi and Aghashahi, 2010 Eigenvector methods Artificial neural networks 97.5

Guo et al., 2011 Genetic programming K-nearest neighbor classifier 93.5

Orhan et al., 2011 Wavelet transform Cauterization and artificial neural networks 96.7

Gajić et al., 2014 Wavelet transform and dimension reduction based on scatter matrices Quadratic classifiers 99.0

more interictal, preictal and ictal EEG data with the aim of fur-
ther development and adaptation of the new technique for use in
a real clinical environment. We will also try to access its potential
in the field of emotion detection (e.g., happiness, sadness, depres-
sion, alertness, etc.) as well as detection of abnormal activities
associated with some other brain disorders such as Alzheimer’s
disease and schizophrenia.
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