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Abstract. The paper is devoted to study of the inverse problem of the boundary spectral assignment of
the Sturm-Liouville with a delay.

−y′′(x) + q(x)y(α · x) = λy(x), q ∈ AC[0, π], α ∈ (0, 1] (1)

with separated boundary conditions:

y(0) = y(π) = 0 (2)

y(0) = y′(π) = 0 (3)

It is argued that if the sequence of eigenvalues is given λ(1)
n and λ(2)

n tasks (1-2) and (1-3) respectively,
then the delay factor α ∈ (0, 1) and the potential q ∈ AC[0, π] are unambiguous. The potential q is composed
by means of trigonometric Fourier coefficients. The method can be easily transferred to the case of α = 1
i.e. to the classical Sturm-Liouville problem.

1. Introduction

Inverse problems in the spectral theory of operators, especially differential operators, have been studied
since the 1930s until now. The monographs [2, 5] deal with this topic. A separate chapter of this study
deals with the inverse tasks for the boundary problems of the generated equations with a delay. Papers [1,
3, 14, 15] are latest results in this field. Papers [4, 6, 7, 8, 9, 10, 11, 12, 13] are devoted to this issue. Results in
these papers are obtained by solving the integral equation of Fredholm type. In order to make the solution
unique, strict conditions for the given parameters are imposed. In this paper, a different approach is used
and by means of the Fourier analysis method, a new solution to the inverse task has been found, which
improves previous solutions.
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markovic@ucfu.kg.ac.rs (Olivera Marković)
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2. Defining the task

We look at the boundary value problem

−y′′(x) + q(x)y(α · x) = λy(x), q ∈ AC[0, π], α ∈ (0, 1) (1)

with separated boundary conditions:
y(0) = y(π) = 0 (2)

Whenα = 1, the boundary value problem (1-2) is classical and as such it was studied in the mid-twentieth
century.

The coefficient α and the function q are called the parameters of the boundary task (1-2). The question
is: Which spectral characteristics of task (1-2) uniquely define the parameters α and q? This paper gives an
answer to that question.

3. Solution to the direct spectral task

Equation (1) with the boundary condition y(0) = 0 is equivalent to the integral equation:

y(x, z) = sin zx +
1
z

∫ x

0
q(t) sin z(x − t)y(αt, z)dt; z2 = λ (3)

Let us introduce labels ∫
Dl

x

=

∫ x

0

∫ αt1

0
. . .

∫ αtl−1

0
, Q(Tl) =

l∏
i=1

q(ti), dTl =

l∏
i=1

dti,

Sl(Tl) =
l−1∏
i=1

sin z(αti − ti+1)

Using the method of successive approximations to the equation (3) we obtain the solution in the form of

y(x, z) = sin zx +
1
z

x∫
0

q(t) sin z(x − t) sin zαtdt +
∞∑

l=2

1
zl

∫
Dl

x

Q(Tl) sin z(x − t1)Sl(Tl) sin zαtldTl (4)

Lemma 3.1. Function (4) is an entire function of variable z, ∀x ∈ [0, π].

Proof. Since lim
z→0

y(x, z) = 0, ∀x ∈ [0, π], point z = 0 is the apparent singularity. Members

ul(x, z) =
1
zl

∫
Dl(x)

Ql(Tl) sin z(x − t1)Sl(Tl) sin zαtldTl

l = 2, 3, . . . , of the series (4) are entire functions in C.

Let us prove that the series (4) has uniform convergence on C, for each fixed x ∈ [0, π].
Since Ql(Tl) = q(t1)q(t2) · · · q(tl), the equality is Ql(t1, t2, . . . , tl) = Ql(tk1 tk2 · · · tkl ), where (k1, · · ·, kl) is an

arbitrary permutation of the set {1, 2, · · ·,n}. From the theory of integral it is true that∣∣∣∣∣∣
∫ x

0

∫ t1

0
. . .

∫ tl−1

0
Q(Tl)dTl

∣∣∣∣∣∣ =
∣∣∣∣∣1l!

∫ x

0

∫ x

0
...

∫ x

0
Q(Tl)dTl

∣∣∣∣∣ ≤ ||q||lL1[0,π]

l!
.

It is easy to check the inequality

| sin z(x − t1)Sl(Tl) sin zαtl| ≤ ex|Im(z)|, x ∈ [0, π].
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Therefore, in each ring δ ≤ |z| ≤ ∆, 0 < δ < ∆ < ∞ it is true that

|ul(x, z)| ≤ eπ|Im(z)| ·
( ||q||
δ

)l

· 1
l!
≤

( ||q||
δ

)l eπ∆

l!
.

So, series (4) converges uniformly on each ring, and hence on C.
For x = π from (4) we get the characteristic function

F(z, α) = sinπz +
1
z

π∫
0

q(t) sin z(π − t) sin zαtdt

+
1
z2

π∫
0

αt1∫
0

q(t1)q(t2) sin z(π − t1) sin z(αt1 − t2) sin zαt2dt2dt1

+
∞∑

l=3

1
zl

∫
Dl
π

Q(Tl) sin z(π − t1)Sl(Tl) sin zαtldTl

(5)

Function F is an entire function of the complex variable z according to Lemma 3.1.

Theorem 3.2. If q ∈ AC[0, π] and q′ ∈ L2[0, π] zeros zn(α), n ∈ N of function (5) have an asymptotic shape

zn(α) = ±
(
n +

C1(n, α)
n2 + o

(
C1(n, α)

n2

))
, n→∞ (6)

where

C1(n, α) =
q(π)

π(1 − α2)
(−1)n+1 sin nαπ +

(−1)n

π
O

( 1
ns

)
, s >

1
2

(7)

Proof. We use the elementary relation

I1(z, α) =

π∫
0

q(t) sin z(π − t) sin zαtdt =
1
2

π∫
0

q(t) cos z(π − (1 + α)t)dt − 1
2

π∫
0

q(t) cos z(π − (1 − α)t)dt.

We perform a partial integration and we get

π∫
0

q(t) sin z(π − t) sin zαtdt =
1
z2 (ξ1(α) sin zαπ − ξ2(α) sin zπ)

− 1
2z2

π∫
0

[
q′(t)
1 + α

sin z(π − (1 + α)t) − q′(t)
1 − α sin z(π − (1 − α)t)

]
dt

(8)

where

ξ1(α) =
q(π)

1 − α2 , ξ2(α) =
αq(0)
1 − α2 (9)

We will use the label

I2(z, q′, α) =

π∫
0

[
q′(t)
1 + α

sin z(π − (1 + α)t) − q′(t)
1 − α sin z(π − (1 − α)t)

]
dt (10)

If we write (5) in the form of

F(z, α) = sinπz +
1
z

I1(z, α) + ∆(z, α),

it is easy to check that

∆(z, α) = O
( 1

z4

)
Re(z)→∞ (11)
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Using (8), (10) and (11) we obtain

F(z, α) = sinπz +
1
z2 (ξ1(α) sin zαπ − ξ2(α) sinπz) − 1

2z2 I2(z, q′, α) +O
( 1

z4

)
, Re(z)→∞ (∗)

Since q′ ∈ L2[0, π] is, it is true that I2(z, q′, α) = O( 1
ns ), s > 1

2 . The function F is odd, and from F(zn) = 0 it
follows that F(−zn) = 0. Suppose the zeros zn of function F have an asymptotic shape

zn(α) = n +
C1(n, α)

n2 + o
(

C1(n, α)
n2

)
, n→∞ (12)

If we include sinπzn = (−1)nπC1

n2 + o
(C1

n2

)
and sinαπzn = sin nαπ +O

( 1
n2

)
in (∗) we will get

0 = F(zn, α) =
1
n2

[
(−1)nπC1(n, α) + ξ1(α) sin nαπ − 1

2
I2(n, q′, α)

]
+ o

(
I2(n, q′, α)

n2

)
, n→∞

Consequently,

C1(n, α) =
ξ1(α)
π

(−1)n+1 sin nαπ +
(−1)n

2π
I2(n, q′, α) (13)

This completes the proof.

Eigenvalues λn(α) of the task (1-2) are squares of zeros function F(z, α). It is therefore

λn(α) = n2 +
1
n

[
2ξ1(α)
π

(−1)n+1 sin nαπ +
(−1)n

π
I2(n, q′, α)

]
+ o

(
I2(n, q′, α)

n

)
(14)

Let us introduce the function q̃ in the segment [−π, π] as follows:

q̃(θ, α) =


0, θ ∈ [−π,−απ)

1
(1 + α)2 q′

(
π − θ
1 + α

)
, θ ∈ (−απ, απ)

1
(1 + α)2 q′

(
π − θ
1 + α

)
− 1

(1 − α)2 q′
(
π − θ
1 − α

)
, θ ∈ (απ, π)

(15)

Since q′ ∈ L2[0, π] is, this equation (15) should be understood almost everywhere, i.e. at all points where
the derivative function q exists. Then there is a

I2(n, q′α) =
∫ π

−π
q̃(θ) sin nθdθ, q̃ ∈ L2[−π, π]

and (14) becomes

λn(α) = n2 +
1
n

[
2ξ1(α)
π

(−1)n+1 sin nαπ +
(−1)n

π

∫ π

−π
q̃(θ) sin nθdθ

]
+ o


∫ π
−π q̃(θ) sin nθdθ

n

 (16)

We ask: Does the given sequence of eigenvalues λn, n = 0, 1, 2, . . . uniquely determine the parameter of
delay α.

Theorem 3.3. If a sequence of eigenvalues of the task (1-2) with the asymptotic shape of the type (16), the coefficient
of delay α ∈ (0, 1) is unambiguously determined.
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Proof. Let us consider sequences ∆2λn and ∆1λn defined with

∆2λn = [λn+2 − (n + 2)2](n + 2) − [λn−2 − (n − 2)2](n − 2) (17)

and
∆1λn = [λn+1 − (n + 1)2](n + 1) − [λn−1 − (n − 1)2](n − 1) (18)

Based on (16) it applies that

∆2λn =
2ξ1

π
(−1)n+1[sin(n + 2)απ − sin(n − 2)απ] +O

( 1
ns

)
∆1λn =

2ξ1

π
(−1)n[sin(n + 1)απ − sin(n − 1)απ] +O

( 1
ns

)
i.e.

∆2λn = (−1)n+1 4ξ1

π
cos nαπ sin 2απ +O

( 1
ns

)
∆1λn = (−1)n 4ξ1

π
cos nαπ sinαπ +O

( 1
ns

)
Let us choose the subsequence nk of the sequence n, n ∈ N where ∆1λnk , 0. Then the sequence

∆λnk =
∆2λnk

∆1λnk

= − cosαπ +O
( 1

ns

)
, k = 1, 2, . . .

is well defined. It also applies that

cosαπ = − lim
k→∞
∆λnk = d

Since the d ∈ (−1, 1) it follows that

α =
1
π

arccos d and α ∈ (0, 1) (19)

This proves the determination of coefficient α.
Next, let us take the subsequence 2kl−1, (l ∈ N) of the sequence of odd integers such that sin(2kl−1)απ ,

0 (∀l ∈ N). Then from (16) it easily follows that

ξ1 = lim
l→∞

π(2kl − 1)
2 sin(2kl − 1)απ

(λ2kl−1 − (2kl − 1)2),

so that
q(π) = (1 − α2)ξ1.

Thus, the asymptotic sequence λn uniquely determines the numbers α and q(π).
Let us analyze the direct task (1-2) further in order to observe the determination of potential q based on

the given sequence of numbers λn, n ∈ N0 which has the asymptotic shape of type (16).
The entire function (5) can be represented by its zeros ±zn, n ∈ N0 in the form of an infinite product.

F(z, α) = Az
∞∏

n=1

(
1 − z2

λn

)
=

A
π

∞∏
n=1

n2

λn
· πz

∞∏
n=1

[(
1 − z2

n2

)
+
λn − n2

n2

]
where A is indefinite parameter. If we put B = A

π

∏∞
n=1

n2

λn
, then we have

F(z, α) = Bπz

 ∞∏
n=1

(
1 − z2

n2

)
+

∞∑
j=1

∏
n, j

(
1 − z2

n2

)
λ j − j2

j2
+

∞∑
l=2

∑
j1< j2<···< jl

∏
n, j1,..., jl

(
1 − z2

n2

) l∏
i=1

λ ji − j2i
j2i

 =
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= B

sinπz +

 ∞∑
n=1

λn − n2

n2 − z2

 sinπz + ψ(z, α)

 , z ∈ C \ Z (20)

From (5) and (20) it follows that B = 1, i.e.

A = π
∞∏

n=1

λn

n2 (21)

We will continue to use these labels

ξ(z, α) =
∞∑

l=2

∑
1≤ j1< j2<···< jl

l∏
i=1

λ ji − j2i
j2i − z2

, z ∈ C \ Z

ψ(z, α) = ξ(z, α) sinπz

S1(α) =
∞∑

n=1

(λn − n2)

S∗1(α) =
∞∑

n=1

(
λn − n2 − C1(n, α)

n

)

bm (̃q, π) =
∫ π

−απ
q̃(θ) sin mθdθ

am (̃q, π) =
∫ π

−απ
q̃(θ) cos mθdθ

βm(̃q, k) = k
∫ π

−απ
bm(̃q, θ)shkθdθ

αm(̃q, k) = k
∫ π

−απ
am(̃q, θ)chkθdθ



(22)

Using (21) the equation (20) becomes

∞∑
n=1

λn − n2

n2 − z2 =

(
π
∞∏

n=1

λn

n2

)
z
∞∏

n=1

(
1 − z2

λn

)
sinπz

− 1 − ξ(z, α), z ∈ C \ Z (23)

By analogy with the Levitan transformation in [9], we write

∞∑
n=1

λn − n2

n2 − z2 =

∞∑
n=1

λn − n2 − C1(n, α)
n

n2 − z2 +

∞∑
n=1

C1(n, α)
n(n2 − z2)

=

∞∑
n=1

C1(n, α)
n(n2 − z2)

− 1
z2 S∗1(α) +

1
z2

∞∑
n=1

(
λn − n2 − C1(n, α)

n

)
n2

n2 − z2

Since q̃ ∈ L2[−π, π], it is true that∫ π

−απ
q̃(θ) sin nθdθ = O

( 1
ns

)
, s >

1
2
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so,

λn − n2 − C1(n, α)
n

= O
( 1

n2

)
Therefore, it is

1
z2

∞∑
n=1

(
λn − n2 − C1(n, α)

n

)
n2

n2 − z2 ∼
1
z2

∑ 1
n2 − z2 =

1
z2

( 1
2z2 −

π
2z

cosπz
sinπz

)
= O

(ctgπz
z3

)
, z→∞ (24)

Furthermore, based on the known relations

∞∑
n=1

(−1)n+1 cos nx
n2 − z2 =

π
2z

cos zx
sinπz

− 1
2z2

by means of integration we get

∞∑
n=1

(−1)n+1 sin nx
n(n2 − z2)

=
π

2z2 sinπz
sin zx − x

2z2 (25)

Based on (24) and (25) we obtain

∞∑
n=1

λn − n2

n2 − z2 = −ξ1(α)π
2z2

sinαπz
sinπz

+
απξ1(α)

2z2 − 1
2z2

π∫
−απ

θq̃(θ)dθ

− 1
z2 sinπz

bz(̃q, π) − 1
z2 S∗1(α) +O

(ctgπz
z3

)
, (z→∞)

(26)

The first forced regularized trace of the operator (1-2) is obtained analogously to the calculation of the
first trace (see (9)) and it is true that

S∗1(α) =
απξ1(α)

2
+ ξ2(α) +

1
π

∫ π

−π
θq̃(θ)dθ (27)

On the basis of (20), (21), (26) and (27), we come to the relationπ ∞∏
n=1

λn

n2 · z
∞∏

n=1

(
1 − z2

λn

)
− sinπz

 (−2z2) − 2ξ2 · sinπz =

π∫
−π

q̃(θ, α) sin zθdθ +O
(cosπz

z

)
, (z→∞) (28).

Relation (28) has a central role in this paper. Namely, it connects the given sequence of eigenvalues λn

of the operator (1-2) with the function
π∫
−π

q̃(θ, α) sin zθdθwhich is the generator of Fourier coefficients of the

auxiliary function q̃ in the segment [−π, π].
Putting zk = 4k + 1

2 and letting k→∞, from (28) we get

ξ2 = − lim
k→∞

(
4k +

1
2

)2
π ∞∏

n=1

λn

n

(
4k +

1
2

) ∞∏
n=1

1 −
(4k + 1

2 )2

λn

 − 1


As α is already determined, we have

q(0) =
1 − α2

α
ξ2.

Thus, the left side of (28) is a known entire function in the whole complex plane. Its asymptotic behavior
will have a key role on straight lines z = m + ik, k→ +∞, m ∈ N0.
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Let us introduce the following real sequences

um,k =

∞∏
n=1

(
1 − m2 − k2

λn

)
+

∞∑
l=1

(−1)l
∑

1≤k1<...<k2l

2l∏
s=1

2mk
λks

∏
n,k1...k2l

(
1 − m2 − k2

λn

)
(29)

vm,k =

∞∑
l=1

(−1)l−1
∑

1≤k1<...<k2l−1

2l−1∏
s=1

2mk
λks

∏
n,k1...k2l−1

(
1 − m2 − k2

λn

)
(30)

For z = m + ik, the left side of (28) becomes

Um,k + iVm,k =

{
(−2π)

∞∏
n=1

λn

n2 [(m3 − 3mk2)um,k − (3mk2 − k3)vm,k] + 2(−1)m+1mk shkπ
}

+i
{
(m3 − 3mk2)vm,k + (3mk2 − k3)um,k + 2(m2 − k2 − ξ2)(−1)m shkπ

} (31)

Using tags (22) the right side of (28) takes the form of

chkπ
∫ π

−π
q̃(θ, α) sin mθdθ − βm (̃q, k) + i

(
shkπ

∫ π

−π
q̃(θ, α) cos mθdθ − αm (̃q, k)

)
+O

(
m − ik

m2 + k2 chkπ
)

(32)

From (31) and (32) it follows that∫ π

−π
q̃(θ, α) sin mθdθ = lim

k→∞

Um,k

chkπ
, m ∈ N (33)∫ π

−π
q̃(θ, α) cos mθdθ = lim

k→∞

Vm,k

shkπ
, m ∈ N0 (34)

A more detailed analysis of the coefficients structure a−m =
∫ π

−π
q̃(θ, α) cos mθdθ and b−m =

∫ π

−π
q̃(θ, α) sin mθdθ

may prove that it is true that a−m = o
(

1√
m

)
and b−m = o

(
1√
m

)
, m→∞.

Let us put am =
1
π

a−m, bm =
1
π

b−m. In the points of a continuous function q̃ at (−π, π) it is true that

q̃(θ) =
a0

2
+

∞∑
m=1

am cos mθ + bm sin mθ (35)

According to (15) this means that

q′(x) = (1 + α)2 a0

2
+

∞∑
n=1

(1 + α)2(−1)m cos m(1 + α)x + (1 + α)2(−1)m+1bm sin m(1 + α)x, x ∈
(1 − α

1 + α
π, π

)
(36)

and

q′(x) −
(1 + α

1 − α

)2

q′
(1 + α

1 − αx
)
= (1 + α)2 a0

2
+

+
∞∑

m=1
(1 + α)2(−1)m[am cos m(1 + α)x − bm sin m(1 + α)x], x ∈

(
0,

1 − α
1 + α

π
) (37)

Since
(
0,

1 − α
1 + α

π
)
=
∞∪

l=1

((1 − α
1 + α

)l+1

π,
(1 − α

1 + α

)l

π

)
, for l = 1, the function q′ is defined on the interval(1 − α

1 + α
π, π

)
, and in (37) q′

(1 + α
1 − αx

)
is known. So, with (36) the function q′(x), x ∈

((1 − α
1 + α

)2

π,
(1 − α

1 + α

)
π

)
is

defined.
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Applying the procedure of expressing function values q′ on the interval
((1 − α

1 + α

)l+1

π,
(1 − α

1 + α

)l

π

)
by its

values on the interval
((1 − α

1 + α

)l

π,
(1 − α

1 + α

)l−1

π

)
, l ∈ N and the relation (36), we conclude that the function q′

is uniquely determined in terms of metric in L2[0, π]. As the values of the function q in points x = 0 and
x = π are known from the asymptotic sequence λn, thus the values in the interval (0, π) are obtained by the
integration series (36) and (37).

The previous discussion proves the main result.

Inversion theorem 3.4. Given the sequence of eigenvalues λn of the operator (1-2), its identification components α
and q are uniquely determined.

Comment. The described method of solving the inverse task for the operator D(α), α ∈ (0, 1) is also
applicable to the case D = D(0), i.e. the classical Sturm-Liouville spectral task.
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