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We construct a sequence {𝜙
𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z, 𝑖 = 1, . . . , 𝑟}which constitutes a 𝑝-frame for the weighted shift-invariant space𝑉𝑝

𝜇
(Φ) =

{∑
𝑟

𝑖=1
∑

𝑗∈Z 𝑐𝑖(𝑗)𝜙𝑖(⋅ − 𝑗) | {𝑐𝑖(𝑗)}𝑗∈Z ∈ ℓ
𝑝

𝜇
, 𝑖 = 1, . . . , 𝑟}, 𝑝 ∈ [1,∞], and generates a closed shift-invariant subspace of 𝐿𝑝

𝜇
(R). The

first construction is obtained by choosing functions 𝜙
𝑖
, 𝑖 = 1, . . . , 𝑟, with compactly supported Fourier transforms 𝜙

𝑖
, 𝑖 = 1, . . . , 𝑟.

The second construction, with compactly supported 𝜙
𝑖
, 𝑖 = 1, . . . , 𝑟, gives the Riesz basis.

1. Introduction and Preliminaries

The shift-invariant spaces 𝑉𝑝

𝜇
(Φ), 𝑝 ∈ [1,∞], quoted in the

abstract, are used in the wavelet analysis, approximation the-
ory, sampling theory, and so forth.They have been extensively
studied by many authors [1–18]. The aim of this paper is to
construct 𝑉𝑝

𝜇
(Φ), 𝑝 ∈ [1,∞], spaces with specially chosen

functions 𝜙
𝑖
, 𝑖 = 1, . . . , 𝑟, which generate its 𝑝-frame. These

results extend and correct the construction obtained in [19].
For the first construction, we take functions 𝜙

𝑖
, 𝑖 = 1, . . . , 𝑟, so

that the Fourier transforms are compactly supported smooth
functions. Also, we derive conditions for the collection {𝜙

𝑖
(⋅−

𝑗) | 𝑗 ∈ Z, 𝑖 = 1, . . . , 𝑟} to form a Riesz basis for 𝑉𝑝

𝜇
(Φ). We

note that the properties of the constructed frame guarantee
the feasibility of a stable and continuous reconstruction
algorithm in 𝑉𝑝

𝜇
(Φ) [20]. We generalize these results for a

shift-invariant subspace of 𝐿𝑝
𝜇
(R𝑑
). The second construction

is obtained by choosing compactly supported functions 𝜙
𝑖
,

𝑖 = 1, . . . , 𝑟. In this way, we obtain the Riesz basis.
This paper is organized as follows. In Section 2 we quote

some basic properties of certain subspaces of the weighted 𝐿𝑝
and ℓ𝑝 spaces. In Section 3 we derive conditions for functions

of the form 𝜙
𝑖
(⋅) = 𝜃(⋅ + 𝑘

𝑖
𝜋), 𝑘

𝑖
∈ Z, 𝑖 = 1, 2, . . . , 𝑟, 𝑟 ∈ N,

to form a Riesz basis for 𝑉𝑝

𝜇
(Φ). We also show that using

functions of the form 𝜙
𝑖
(⋅) = 𝜃(⋅ + 𝑖𝜋), 𝑖 = 1, . . . , 𝑟, where

𝜃 is compactly supported smooth function whose length of
support is less than or equal to 2𝜋, we cannot construct a
𝑝-frame for the shift-invariant space 𝑉𝑝

𝜇
(Φ). In Section 4 we

construct a sequence {𝜙
𝑖
(⋅−𝑗) | 𝑗 ∈ Z, 𝑖 = 0, . . . , 𝑟}, where 𝑟 ∈

2N or 𝑟 ∈ 3N, which constitutes a 𝑝-frame for the weighted
shift-invariant space𝑉𝑝

𝜇
(Φ). Our construction shows that the

sampling and reconstruction problem in the shift-invariant
spaces is robust in the sense of [1]. In Section 5 we construct
𝑝-Riesz basis by using compactly supported functions 𝜙

𝑖
, 𝑖 =

1, . . . , 𝑟.

2. Basic Spaces

Let a function𝜔 be nonnegative, continuous, symmetric, and
submultiplicative; that is, 𝜔(𝑥+𝑦) ≤ 𝜔(𝑥)𝜔(𝑦), 𝑥, 𝑦 ∈ R𝑑; let
a function 𝜇 be 𝜔-moderate; that is, 𝜇(𝑥 + 𝑦) ≤ 𝐶𝜔(𝑥)𝜇(𝑦),
𝑥, 𝑦 ∈ R𝑑. Functions 𝜇 and 𝜔 are called weights. We consider
the weighted function spaces 𝐿𝑝

𝜇
and the weighted sequence
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spaces ℓ𝑝
𝜇
(Z𝑑
) with 𝜔-moderate weights 𝜇 (see [19]). Let 𝑝 ∈

[1,∞). Then (with obvious modification for 𝑝 = ∞)

L
𝑝

𝜔
=

{{{

{{{

{

𝑓 |
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝𝜔

= (∫
[0,1]
𝑑

( ∑

𝑗∈Z𝑑

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑗)
󵄨󵄨󵄨󵄨 𝜔 (𝑥 + 𝑗))

𝑝

𝑑𝑥)

1/𝑝

< +∞

}}}

}}}

}

,

𝑊
𝑝

𝜔
:=

{{{{

{{{{

{

𝑓 |
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑝𝜔

= ( ∑

𝑗∈Z𝑑

sup
𝑥∈[0,1]

𝑑

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑗)
󵄨󵄨󵄨󵄨
𝑝
𝜔(𝑗)

𝑝
)

1/𝑝

< +∞

}}}}

}}}}

}

.

(1)

In what follows, we use the notation Φ = (𝜙
1
, . . . , 𝜙

𝑟
)
𝑇.

Define ‖Φ‖H = ∑
𝑟

𝑖=1
‖𝜙

𝑖
‖H, where H = 𝐿

𝑝

𝜔
, L𝑝

𝜔
or𝑊𝑝

𝜔
, 𝑝 ∈

[1,∞]. WithF𝜙 = 𝜙 we denote the Fourier transform of the
function 𝜙; that is, 𝜙(𝜉) = ∫

R𝑑
𝜙(𝑥)𝑒

−𝑖𝜋𝑥⋅𝜉 d𝑥, 𝜉 ∈ R𝑑.
Let 𝑐 = {𝑐

𝑖
}
𝑖∈N ∈ ℓ

𝑝

𝜇
and 𝑓, 𝑔 ∈ 𝐿𝑝

𝜔
, 𝑝 ∈ [1,∞]. We

define, as in [1], the semiconvolution 𝑓∗󸀠𝑐 as (𝑓∗󸀠𝑐)(𝑥) =
∑

𝑗∈Z𝑑 𝑐𝑗𝑓(𝑥 − 𝑗), 𝑥 ∈ R
𝑑, and ⟨𝑓, 𝑔⟩ = ∫

R𝑑
𝑓(𝑥)𝑔(𝑥) d𝑥.

The concept of a 𝑝-frame is introduced in [1].
It is said that a collection {𝜙

𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z𝑑

, 𝑖 = 1, . . . , 𝑟}

is a 𝑝-frame for 𝑉𝑝

𝜇
(Φ) if there exists a positive constant 𝐶

(dependent uponΦ, 𝑝, and 𝜔) such that

𝐶
−1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝𝜇

≤

𝑟

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{∫

R𝑑
𝑓 (𝑥) 𝜙𝑖 (𝑥 − 𝑗) d𝑥}

𝑗∈Z𝑑

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝𝜇

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝𝜇
, 𝑓 ∈ 𝑉

𝑝

𝜇
(Φ) .

(2)

Recall [21] that the shift-invariant spaces are defined by

𝑉
𝑝

𝜇
(Φ) :=

{

{

{

𝑓 ∈ 𝐿
𝑝

𝜇
| 𝑓 (⋅) =

𝑟

∑
𝑖=1

∑

𝑗∈Z𝑑

𝑐
𝑖

𝑗
𝜙
𝑖
(⋅ − 𝑗) ,

{𝑐
𝑖

𝑗
}
𝑗∈Z𝑑

∈ ℓ
𝑝

𝜇
, 𝑖 = 1, . . . , 𝑟

}

}

}

.

(3)

Remark 1 (see [22]). Let Φ ∈ 𝑊
1

𝜔
and let 𝜇 be 𝜔-moderate.

Then 𝑉𝑝

𝜇
(Φ) is a subspace (not necessarily closed) of 𝐿𝑝

𝜇
and

𝑊
𝑝

𝜇
for any 𝑝 ∈ [1,∞]. Clearly (2) implies that ℓ𝑝

𝜇
and𝑉𝑝

𝜇
(Φ)

are isomorphic Banach spaces.

Let Φ = (𝜙
1
, . . . , 𝜙

𝑟
)
𝑇. Let

[Φ̂, Φ̂] (𝜉) = [

[

∑

𝑘∈Z𝑑

𝜙
𝑖 (𝜉 + 2𝑘𝜋) 𝜙𝑗 (𝜉 + 2𝑘𝜋)

]

]1≤𝑖≤𝑟,1≤𝑗≤𝑟

,

(4)

where we assume that 𝜙
𝑖
(𝜉)𝜙

𝑗
(𝜉) is integrable for any 1 ≤ 𝑖,

𝑗 ≤ 𝑟. Let 𝐴 = [𝑎(𝑗)]
𝑗∈Z𝑑 be an 𝑟 × ∞ matrix and 𝐴𝐴𝑇 =

[∑
𝑗∈Z𝑑 𝑎𝑖(𝑗)𝑎𝑖󸀠(𝑗)]1≤𝑖,𝑖󸀠≤𝑟. Then rank𝐴 = rank𝐴𝐴𝑇.
We recall results from [1, 19] which are needed in the

sequel.

Lemma 2 (see [1]). The following statements are equivalent.

(1) rank[Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z𝑑 is a constant function on R𝑑.

(2) rank[Φ̂, Φ̂](𝜉) is a constant function on R𝑑.
(3) There exists a positive constant𝐶 independent of 𝜉 such

that

𝐶
−1
[Φ̂, Φ̂] (𝜉) ≤ [Φ̂, Φ̂] (𝜉) [Φ̂, Φ̂] (𝜉)

𝑇

≤ 𝐶 [Φ̂, Φ̂] (𝜉) , 𝜉 ∈ [−𝜋, 𝜋]
𝑑
.

(5)

The next theorem [19] derives necessary and sufficient
conditions for an indexed family {𝜙

𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z𝑑

, 𝑖 =

1, . . . , 𝑟} to constitute a 𝑝-frame for 𝑉𝑝

𝜇
(Φ), which is equiva-

lent with the closedness of this space in 𝐿𝑝
𝜇
. Thus, it is shown

that under appropriate conditions on the frame vectors, there
is an equivalence between the concept of 𝑝-frames, Banach
frames, and the closedness of the space they generate.

Theorem 3 (see [19]). Let Φ = (𝜙
1
, . . . , 𝜙

𝑟
)
𝑇
∈ (𝑊

1

𝜔
)
𝑟, 𝑝

0
∈

[1,∞], and let 𝜇 be 𝜔-moderate. The following statements are
equivalent.

(i) 𝑉𝑝0
𝜇
(Φ) is closed in 𝐿𝑝0

𝜇
.

(ii) {𝜙
𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z𝑑

, 𝑖 = 1, . . . , 𝑟} is a 𝑝
0
-frame for

𝑉
𝑝0
𝜇
(Φ).

(iii) There exists a positive constant 𝐶 such that

𝐶
−1
[Φ̂, Φ̂] (𝜉) ≤ [Φ̂, Φ̂] (𝜉) [Φ̂, Φ̂] (𝜉)

𝑇

≤ 𝐶 [Φ̂, Φ̂] (𝜉) , 𝜉 ∈ [−𝜋, 𝜋]
𝑑
.

(6)

(iv) There exist positive constants 𝐶
1
and 𝐶

2
(depending on

Φ and 𝜔) such that

𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝0𝜇

≤ inf
𝑓=∑
𝑟

𝑖=1
𝜙𝑖∗
󸀠
𝑐
𝑖

𝑟

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑐

𝑖

𝑗
}
𝑗∈Z𝑑

󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑝0𝜇

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝0𝜇
, 𝑓 ∈ 𝑉

𝑝0

𝜇
(Φ) .

(7)
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(v) There exists Ψ = (𝜓
1
, . . . , 𝜓

𝑟
)
𝑇
∈ (𝑊

1

𝜔
)
𝑟, such that

𝑓 =

𝑟

∑
𝑖=1

∑

𝑗∈Z𝑑

⟨𝑓, 𝜓
𝑖
(⋅ − 𝑗)⟩ 𝜙

𝑖
(⋅ − 𝑗)

=

𝑟

∑
𝑖=1

∑

𝑗∈Z𝑑

⟨𝑓, 𝜙
𝑖
(⋅ − 𝑗)⟩ 𝜓

𝑖
(⋅ − 𝑗) , 𝑓 ∈ 𝑉

𝑝0

𝜇
(Φ) .

(8)

Corollary 4 (see [19]). Let Φ = (𝜙
1
, . . . , 𝜙

𝑟
)
𝑇
∈ (𝑊

1

𝜔
)
𝑟, 𝑝

0
∈

[1,∞], and let 𝜇 be 𝜔-moderate.

(i) If {𝜙
𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z𝑑

, 𝑖 = 1, . . . , 𝑟} is a 𝑝
0
-frame for

𝑉
𝑝0
𝜇
(Φ), then the collection {𝜙

𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z𝑑

, 𝑖 =

1, . . . , 𝑟} is a 𝑝-frame for 𝑉𝑝

𝜇
(Φ) for any 𝑝 ∈ [1,∞].

(ii) If𝑉𝑝0
𝜇
(Φ) is closed in 𝐿𝑝0

𝜇
and𝑊𝑝0

𝜇
, then𝑉𝑝

𝜇
(Φ) is closed

in 𝐿𝑝
𝜇
and𝑊𝑝

𝜇
for any 𝑝 ∈ [1,∞].

(iii) If (7) holds for 𝑝
0
, then it holds for any 𝑝 ∈ [1,∞].

3. Construction of Frames Using
a Band-Limited Function

Considering the length of the support of a function 𝜃, we have
different cases for the rank of matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z.
First, we consider the next claim.
Let 𝜃 ∈ 𝐶

∞

0
(R) be a nonnegative function such that

𝜃(𝑥) > 0, 𝑥 ∈ (−𝜋, 𝜋), and supp 𝜃 ⊆ [−𝜋, 𝜋]. Moreover, let

𝜙
𝑘 (𝜉) = 𝜃 (𝜉 + 𝑘𝜋) , 𝑘 ∈ Z, (9)

and Φ = (𝜙
𝑖
, 𝜙

𝑖+1
, . . . , 𝜙

𝑖+𝑟
)
𝑇, 𝑖 ∈ Z, 𝑟 ∈ N.

Then the rank of matrix [Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z is not a constant

function on R and it depends on 𝜉 ∈ R.
As a matter of fact, by the Paley-Wiener theorem, 𝜙

𝑖
∈

S(R) ⊂ 𝑊1

𝜇
(R), 𝑖 ∈ Z. For any 𝑖 ∈ Z, matrix [𝜙

𝑖
, 𝜙

𝑖
](𝜉) =

∑
𝑗∈Z |𝜃(𝜉 + 𝑖𝜋 + 2𝑗𝜋)|

2, 𝜉 ∈ R, has the rank 0 or 1, depending
on 𝜉. Moreover, we have [𝜙

2𝑖
, 𝜙

2𝑖
](𝜋) = 0 and [𝜙

2𝑖
, 𝜙

2𝑖
](0) > 0.

Because of that, the rank of the matrix [Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z is not

a constant function on R and it depends on 𝜉 ∈ R.

Theorem 5. Let 𝜃 ∈ 𝐶∞

0
(R) be a non-negative function such

that 𝜃(𝑥) > 0, 𝑥 ∈ (−𝜋−𝜀, 𝜋+𝜀), and supp 𝜃 = [−𝜋−𝜀, 𝜋+𝜀],
where 0 < 𝜀 < 1/4. Moreover, let

𝜙
𝑖 (𝜉) = 𝜃 (𝜉 + 𝑘𝑖𝜋) , 𝑘

𝑖
∈ Z, 𝑖 = 1, 2, . . . , 𝑟, (10)

and Φ = (𝜙
1
, 𝜙

2
, . . . , 𝜙

𝑟
)
𝑇.

(1) If |𝑘
2
− 𝑘

1
| = 2 and |𝑘

𝑖
− 𝑘

𝑗
| ≥ 2 for different 𝑖, 𝑗 ≤ 𝑟,

then

rank [Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= 𝑟, 𝜉 ∈ R. (11)

(2) If |𝑘
2
−𝑘

1
| = 2 and, at least for 𝑘

𝑖1
and 𝑘

𝑖2
, it holds that

|𝑘
𝑖1
− 𝑘

𝑖2
| = 1, where 1 ≤ 𝑖

1
, 𝑖

2
≤ 𝑟, then rank[Φ̂(𝜉 +

2𝑗𝜋)]
𝑗∈Z is not a constant function on R.

Proof. By the Paley-Wiener theorem, 𝜙
𝑖
∈ S(R) ⊂ 𝑊1

𝜇
(R),

𝑖 = 1, . . . , 𝑟. All possible cases are described in the following
lemmas.

Lemma 6. Let Φ = (𝜙
𝑘1
, 𝜙

𝑘2
)
𝑇, 𝑘

2
− 𝑘

1
= 2, 𝑘

1
, 𝑘

2
∈ Z. The

rank of matrix [Φ̂(𝜉+2𝑗𝜋)]
𝑗∈Z is a constant function onR and

equals 2.

Proof. We have the next two cases.
(1

∘
) If 𝜉 ∈ (−𝜋− 𝜀−𝑘

1
𝜋+2ℓ𝜋, −𝜋+ 𝜀−𝑘

1
𝜋+2ℓ𝜋), ℓ ∈ Z,

for matrix [Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z we obtain 2 ×∞matrix

[
⋅ ⋅ ⋅ 0 0 𝑎

1
𝑏
1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
2
𝑏
2
0 0 ⋅ ⋅ ⋅

] , (12)

for some 𝑎𝑖, 𝑏𝑖 > 0, 𝑖 = 1, 2. It is obvious that rank[Φ̂(𝜉 +
2𝑗𝜋)]

𝑗∈Z = 2, 𝜉 ∈ (−𝜋 − 𝜀 − 𝑘1𝜋 + 2ℓ𝜋, −𝜋 + 𝜀 − 𝑘1𝜋 + 2ℓ𝜋),
ℓ ∈ Z.
(2

∘
) For 𝜉 ∈ [−𝜋 + 𝜀 − 𝑘

1
𝜋 + 2ℓ𝜋, 𝜋 − 𝜀 − 𝑘

1
𝜋 + 2ℓ𝜋],

ℓ ∈ Z, there are only two nonzero values 𝑎1 and 𝑎2 which are
in different columns of matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z. Since

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [
⋅ ⋅ ⋅ 0 0 𝑎

1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
2
0 0 ⋅ ⋅ ⋅

]
2×∞

, (13)

it has the rank 2 for all 𝜉 ∈ [−𝜋+𝜀−𝑘
1
𝜋+2ℓ𝜋, 𝜋−𝜀−𝑘

1
𝜋+2ℓ𝜋],

ℓ ∈ Z.
We conclude that the rank of matrix [Φ̂(𝜉+2𝑗𝜋)]

𝑗∈Z,Φ =
(𝜙

𝑘1
, 𝜙

𝑘2
)
𝑇, 𝑘

2
− 𝑘

1
= 2, 𝑘

1
, 𝑘

2
∈ Z, is a constant function on

R and equals 2.

Lemma7. Therank ofmatrix [Φ̂(𝜉+2𝑗𝜋)]
𝑗∈Z is not a constant

function on R if Φ = (𝜙
𝑘1
, 𝜙

𝑘2
)
𝑇, 𝑘

2
− 𝑘

1
= 1, 𝑘

1
, 𝑘

2
∈ Z.

Proof. Wehave four different cases formatrix [Φ̂(𝜉+2𝑗𝜋)]
𝑗∈Z.

Suppose, without losing generality, that 𝑘
1
∈ 2Z.

(1
∘
) If 𝜉 ∈ (−𝜋 − 𝜀 + 2ℓ𝜋, −𝜋 + 𝜀 + 2ℓ𝜋), ℓ ∈ Z, then

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [
⋅ ⋅ ⋅ 0 𝑎

1
𝑏
1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
2
0 0 ⋅ ⋅ ⋅

] ,

𝑎
1
, 𝑎

2
, 𝑏

1
> 0,

(14)

and rank[Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z = 2, for all 𝜉 ∈ (−𝜋 − 𝜀 + 2ℓ𝜋, −𝜋 +

𝜀 + 2ℓ𝜋), ℓ ∈ Z.
(2

∘
) For 𝜉 ∈ [−𝜋+𝜀+2ℓ𝜋, −𝜀+2ℓ𝜋], ℓ ∈ Z, nonzero values

𝑎
1 and 𝑎2 are in the same column of matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z.
For any choice of a 2 × 2 matrix, we get that the determinant
equals 0. So we obtain

rank [⋅ ⋅ ⋅ 0 𝑎
1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
2
0 ⋅ ⋅ ⋅

] = 1, (15)

for all 𝜉 ∈ [−𝜋 + 𝜀 + 2ℓ𝜋, −𝜀 + 2ℓ𝜋], ℓ ∈ Z.
(3

∘
) If 𝜉 ∈ (−𝜀 + 2ℓ𝜋, 𝜀 + 2ℓ𝜋), ℓ ∈ Z, then

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [
⋅ ⋅ ⋅ 0 0 𝑎

1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑏
2
𝑎
2
0 ⋅ ⋅ ⋅

] , (16)
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for some 𝑎1, 𝑎2, 𝑏2 > 0, has the rank 2, for all 𝜉 ∈ (−𝜀+2ℓ𝜋, 𝜀+
2ℓ𝜋), ℓ ∈ Z.
(4

∘
) For 𝜉 ∈ [𝜀+2ℓ𝜋, 𝜋−𝜀+2ℓ𝜋], ℓ ∈ Z, there are two non-

zero values 𝑎1 and 𝑏2 in different columns of matrix [Φ̂(𝜉 +
2𝑗𝜋)]

𝑗∈Z and the block with these elements determines the
rank 2 for all 𝜉 ∈ [−𝜀 + 2ℓ𝜋, 𝜋 − 𝜀 + 2ℓ𝜋], ℓ ∈ Z.

Considering possible cases, we conclude that rank[Φ̂(𝜉 +
2𝑗𝜋)]

𝑗∈Z,Φ = (𝜙𝑘1 , 𝜙𝑘2)
𝑇, 𝑘

2
− 𝑘

1
= 1, 𝑘

1
, 𝑘

2
∈ Z, depends on

𝜉 ∈ R and equals 1 or 2. This rank is a nonconstant function
on R.

Proof of Theorem 5. (1) Using Lemmas 6 and 7, it is obvious
that if |𝑘

2
− 𝑘

1
| = 2 and |𝑘

𝑖
− 𝑘

𝑗
| ≥ 2 for different 𝑖, 𝑗 ≤ 𝑟,

then the position of the first non-zero element in each row of
matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z is unique for each row. So the rank of
matrix [Φ̂(𝜉+2𝑗𝜋)]

𝑗∈Z is a constant function onR and equals
𝑟 for all 𝜉 ∈ R.

(2) If |𝑘
2
−𝑘

1
| = 2 and, at least for 𝑘

𝑖1
and 𝑘

𝑖2
, it holds that

|𝑘
𝑖1
− 𝑘

𝑖2
| = 1, 1 ≤ 𝑖

1
, 𝑖

2
≤ 𝑟, then, in the row with the index 𝑖

2

(suppose, without losing generality, that 𝑖
2
∈ 2Z + 1), we will

have a new column with a non-zero element for 𝜉 ∈ (−𝜋− 𝜀+
2ℓ𝜋, −𝜋 + 𝜀 + 2ℓ𝜋), ℓ ∈ Z, but for 𝜉 ∈ [𝜀 + 2ℓ𝜋, 𝜋 − 𝜀 + 2ℓ𝜋],
ℓ ∈ Z, the positions of all non-zero elements in that row will
appear in the previous columns. It is obvious that the rank of
the matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z depends on 𝜉 ∈ R and is not the
same for all 𝜉 ∈ R.

As a consequence of Theorems 3 and 5(1), we have the
following result.

Theorem8. Let the functions 𝜃 andΦ satisfy all the conditions
of Theorem 5(1). Then space 𝑉𝑝

𝜇
(Φ) is closed in 𝐿𝑝

𝜇
for any 𝑝 ∈

[1,∞], and the family {𝜙
𝑖
(⋅−𝑗) | 𝑗 ∈ Z, 1 ≤ 𝑖 ≤ 𝑟} is a 𝑝-Riesz

basis for 𝑉𝑝

𝜇
(Φ) for any 𝑝 ∈ [1,∞].

The following theorem is a generalisation of Theorem 5
and can be proved in the same way, so we omit the proof.

Theorem 9. Let 𝜃 ∈ 𝐶∞

0
(R) be a positive function such that

𝜃(𝑥) > 0, 𝑥 ∈ (𝑎, 𝑏), 𝑏 > 𝑎, and supported by [𝑎, 𝑏] where
𝑏 − 𝑎 > 2𝜋. Moreover, let
𝜙
𝑖 (𝜉) = 𝜃 (𝜉 + 𝑘𝑖𝜋) , 𝑘

𝑖
∈ Z, 𝑖 = 1, 2, . . . , 𝑟, 𝑟 ∈ N,

(17)

and Φ = (𝜙
1
, 𝜙

2
, . . . , 𝜙

𝑟
)
𝑇.

(1) If |𝑘
2
− 𝑘

1
| = 2 and |𝑘

𝑖
− 𝑘

𝑗
| ≥ 2 for different 𝑖, 𝑗 ≤ 𝑟,

then
rank [Φ̂ (𝜉 + 2𝑗𝜋)]

𝑗∈Z
= 𝑟, 𝜉 ∈ R. (18)

(2) If |𝑘
2
−𝑘

1
| = 2 and, at least for 𝑘

𝑖1
and 𝑘

𝑖2
, it holds that

|𝑘
𝑖1
− 𝑘

𝑖2
| = 1, where 1 ≤ 𝑖

1
, 𝑖

2
≤ 𝑟, then rank[Φ̂(𝜉 +

2𝑗𝜋)]
𝑗∈Z is not a constant function on R.

4. Construction of Frames Using
Several Band-Limited Functions

Firstly, we consider two smooth functions with proper com-
pact supports.

Lemma 10. Let 𝜃 ∈ 𝐶∞

0
(R), 𝜓 ∈ 𝐶∞

0
(R) be positive functions

such that

𝜃 (𝑥) > 0, 𝑥 ∈ (−𝜀, 2𝜋 + 𝜀) ,

𝜓 (𝑥) > 0, 𝑥 ∈ (𝜀, 2𝜋 − 𝜀) ,

supp 𝜃 = [−𝜀, 2𝜋 + 𝜀] ,

supp𝜓 = [𝜀, 2𝜋 − 𝜀] , 0 < 𝜀 <
1

4
.

(19)

Moreover, let 𝜙
1
(𝜉) = 𝜃(𝜉), 𝜙

2
(𝜉) = 𝜓(𝜉), 𝜉 ∈ R, and Φ =

(𝜙
1
, 𝜙

2
)
𝑇. Then rank[Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z = 1, 𝜉 ∈ R.

Proof. Note that 𝜙
𝑖
∈ S(R) ⊂ 𝑊1

𝜇
(R), 𝑖 = 1, 2.

We have the following two cases.
(1

∘
) If 𝜉 ∈ (−𝜀 + 2ℓ𝜋, 𝜀 + 2ℓ𝜋), ℓ ∈ Z, then matrix

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [
⋅ ⋅ ⋅ 0 𝑎 𝑏 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅
] ,

𝑎, 𝑏 > 0,

(20)

has a constant rank equal to 1.
(2

∘
) For 𝜉 ∈ (𝜀 + 2ℓ𝜋, 2𝜋 − 𝜀 + 2ℓ𝜋), ℓ ∈ Z, the rank of

matrix

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [
⋅ ⋅ ⋅ 0 𝑐 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑑 0 ⋅ ⋅ ⋅
] , (21)

where 𝑐, 𝑑 are non-zero values, is equal to 1. An equivalent
matrix is obtained for 𝜉 = 𝜀 + 2ℓ𝜋 and 𝜉 = −𝜀 + 2ℓ𝜋, so we
conclude that rank[Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z = 1, for 𝜉 ∈ [𝜀 + 2ℓ𝜋, 2𝜋 −
𝜀 + 2ℓ𝜋], ℓ ∈ Z.

Considering these two cases, the rank of matrix [Φ̂(𝜉 +
2𝑗𝜋)]

𝑗∈Z is a constant function onR, rank[Φ̂(𝜉+2𝑗𝜋)]𝑗∈Z = 1,
𝜉 ∈ R.

Using functions 𝜃 and 𝜓 from Lemma 10, in the next
lemma we construct the 𝑝-frame with four functions.

Lemma 11. Let the functions 𝜃 and 𝜓 satisfy all the conditions
of Lemma 10. Moreover, let

𝜙
𝑘 (𝜉) = 𝜃 (𝜉 + 2𝑘𝜋) , 𝜙

𝑘+2 (𝜉) = 𝜓 (𝜉 + 2𝑘𝜋) ,

𝑘 = 0, 1,
(22)

and Φ = (𝜙
0
, 𝜙

1
, 𝜙

2
, 𝜙

3
)
𝑇. Then rank[Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z = 2,
𝜉 ∈ R.

Proof. The proof is similar to the proof of Lemma 10.
(1

∘
) If 𝜉 ∈ (−𝜀 + 2ℓ𝜋, 𝜀 + 2ℓ𝜋), ℓ ∈ Z, then matrix

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
=
[
[
[

[

⋅ ⋅ ⋅ 0 0 𝑎
1
𝑏
1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
2
𝑏
2
0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅

]
]
]

]

, (23)

where 𝑎𝑖, 𝑏𝑖 > 0, 𝑖 = 1, 2, has a constant rank equal to 2.
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(2
∘
) For 𝜉 ∈ [𝜀 + 2ℓ𝜋, 2𝜋 − 𝜀 + 2ℓ𝜋], ℓ ∈ Z, we have

rank [Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
=
[
[
[

[

⋅ ⋅ ⋅ 0 0 𝑐
1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 𝑑
1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑐
2
0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑑
2
0 0 ⋅ ⋅ ⋅

]
]
]

]

= 2,

(24)

where 𝑐𝑖, 𝑑𝑖 > 0, 𝑖 = 1, 2.
We conclude that the rank of matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z is a
constant function on R equal to 2.

Lemma 10 can be easily generalised for an even number
of functions 𝜙

𝑖
, 𝑖 = 0, . . . , 2𝑟 − 1, with compactly supported

𝜙
𝑖
, 𝑖 = 0, . . . , 2𝑟 − 1. The proof of the next theorem is similar

to the previous proofs.

Theorem 12. Let the functions 𝜃 and 𝜓 satisfy all the condi-
tions of Lemma 10. Moreover, let

𝜙
𝑘 (𝜉) = 𝜃 (𝜉 + 2𝑘𝜋) , 𝜙

𝑘+𝑟 (𝜉) = 𝜓 (𝜉 + 2𝑘𝜋) ,

𝑘 = 0, . . . , 𝑟 − 1, 𝑟 ∈ N,
(25)

and Φ = (𝜙
0
, 𝜙

1
, . . . , 𝜙

2𝑟−1
)
𝑇.

The following statements hold.

(1∘) rank[Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z = 𝑟 for all 𝜉 ∈ R.

(2∘) 𝑉𝑝

𝜇
(Φ) is closed in 𝐿𝑝

𝜇
for any 𝑝 ∈ [1,∞].

(3∘) {𝜙
𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z, 0 ≤ 𝑖 ≤ 2𝑟 − 1} is a 𝑝-frame for

𝑉
𝑝

𝜇
(Φ) for any 𝑝 ∈ [1,∞].

Now we consider three functions with compact supports.

Lemma 13. Let the function 𝜃 satisfies all the conditions of
Lemma 10, and let 𝜏 ∈ 𝐶∞

0
(R) and 𝜔 ∈ 𝐶∞

0
(R) be positive

functions such that

𝜏 (𝑥) > 0, 𝑥 ∈ (𝜀, 𝜋 − 𝜀) ∪ (𝜋 + 𝜀, 2𝜋 − 𝜀) ,

𝜔 (𝑥) > 0, 𝑥 ∈ (−3𝜋 − 𝜀, −𝜋 + 𝜀) ,

supp 𝜏 = [𝜀, 𝜋 − 𝜀] ∪ [𝜋 + 𝜀, 2𝜋 − 𝜀] ,

supp𝜔 = [−3𝜋 − 𝜀, −𝜋 + 𝜀] , 0 < 𝜀 <
1

4
.

(26)

Moreover, let 𝜙
1
(𝜉) = 𝜃(𝜉), 𝜙

2
(𝜉) = 𝜏(𝜉), 𝜙

3
(𝜉) = 𝜔(𝜉), 𝜉 ∈ R,

and Φ = (𝜙
1
, 𝜙

2
, 𝜙

3
)
𝑇. Then rank[Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z = 2, 𝜉 ∈ R.

Proof. Wehave four different forms formatrix [Φ̂(𝜉+2𝑗𝜋)]
𝑗∈Z

and in all we show that the rank of matrix is equal to 2.
Now we will show all possible cases. Denote with 𝑎𝑖, 𝑖 =

1, 2, 3, and 𝑏𝑖, 𝑖 = 1, 2, some positive values.
(1

∘
) Consider

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [

[

⋅ ⋅ ⋅ 0 𝑎
1
𝑏
1
0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 𝑎
2
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅

]

]

,

𝜉 ∈ (−𝜀 + 2ℓ𝜋, 𝜀 + 2ℓ𝜋) .

(27)

(2
∘
) Consider

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [

[

⋅ ⋅ ⋅ 0 𝑏
1
0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 𝑎
2
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
3
0 0 ⋅ ⋅ ⋅

]

]

,

𝜉 ∈ [𝜀 + 2ℓ𝜋, 𝜋 − 𝜀 + 2ℓ𝜋] .

(28)

(3
∘
) Consider

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [

[

⋅ ⋅ ⋅ 0 𝑏
1
0 0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 𝑎
2
𝑏
2
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅

]

]

,

𝜉 ∈ (𝜋 − 𝜀 + 2ℓ𝜋, 𝜋 + 𝜀 + 2ℓ𝜋) .

(29)

(4
∘
) Consider

[Φ̂ (𝜉 + 2𝑗𝜋)]
𝑗∈Z
= [

[

⋅ ⋅ ⋅ 0 𝑏
1
0 0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 0 0 𝑏
2
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝑎
3
0 0 0 ⋅ ⋅ ⋅

]

]

,

𝜉 ∈ [𝜋 + 𝜀 + 2ℓ𝜋, 2𝜋 − 𝜀 + 2ℓ𝜋] .

(30)

Remark 14. In Lemma 13 the support of the function 𝜔must
have an empty intersection with the supports of 𝜃 and 𝜏. In
the opposite case, that is, supp 𝜃 ∩ supp 𝜏 ∩ supp𝜔 ̸= 0, the
rank of the matrix [Φ̂(𝜉+2𝑗𝜋)]

𝑗∈Z is a non-constant function
on R.

Lemma 13 can be easily generalised for functions 𝜙
𝑖
, 𝑖 =

0, . . . , 3𝑟 − 1, with compactly supported 𝜙
𝑖
, 𝑖 = 0, . . . , 3𝑟 −

1. The proof of the next theorem is similar to the previous
proofs.

Theorem 15. Let the functions 𝜃, 𝜏, and 𝜔 satisfy all the
conditions of Lemma 13. Moreover, let

𝜙
𝑘 (𝜉) = 𝜃 (𝜉 + 2𝑘𝜋) ,

𝜙
𝑘+𝑟 (𝜉) = 𝜏 (𝜉 + 2𝑘𝜋) ,

𝜙
𝑘+2𝑟 (𝜉) = 𝜔 (𝜉 + 2𝑘𝜋) ,

(31)

𝑘 = 0, . . . , 𝑟 − 1, 𝑟 ∈ N, and Φ = (𝜙
0
, 𝜙

1
, . . . , 𝜙

3𝑟−1
)
𝑇.

The following statements hold.

(1∘) rank[Φ̂(𝜉 + 2𝑗𝜋)]
𝑗∈Z = 2𝑟 for all 𝜉 ∈ R.

(2∘) 𝑉𝑝

𝜇
(Φ) is closed in 𝐿𝑝

𝜇
for any 𝑝 ∈ [1,∞].

(3∘) {𝜙
𝑖
(⋅ − 𝑗) | 𝑗 ∈ Z, 0 ≤ 𝑖 ≤ 3𝑟 − 1} is a 𝑝-frame for

𝑉
𝑝

𝜇
(Φ) for any 𝑝 ∈ [1,∞].

5. Construction of Frames of Functions with
Finite Regularities and Compact Supports

We will recall the well-known construction of the 𝐵-spline
functions in order to justify the rank properties of the corre-
sponding matrices.
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Let 𝐻(𝑥), 𝑥 ∈ R, be the characteristic function of the
semiaxis 𝑥 ≥ 0; that is, 𝐻(𝑥) = 0 if 𝑥 < 0 and 𝐻(𝑥) = 1 if
𝑥 ≥ 0 (Heaviside’s function).We construct a sequence {𝜙

𝑛
}
𝑛∈N

in the following way. Let 𝜙
1
(𝑥) := (𝐻(𝑥)−𝐻(𝑥−𝑎))/𝑎, 𝑎 > 0,

𝜙
2
:= 𝜙

1
∗ 𝜙

1
, 𝜙

3
:= 𝜙

1
∗ 𝜙

1
∗ 𝜙

1
, . . .; that is,

𝜙
𝑛
:= 𝜙

1
∗ 𝜙

1
∗ ⋅ ⋅ ⋅ ∗ 𝜙

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1 times

, 𝑛 ∈ N, (32)

where ∗ denotes the convolution of the functions.
We obtain

𝜙
2 (𝑥) =

1

𝑎2
(𝑥𝐻 (𝑥) − 2 (𝑥 − 𝑎)𝐻 (𝑥 − 𝑎)

+ (𝑥 − 2𝑎)𝐻 (𝑥 − 2𝑎)) ,

𝜙
3 (𝑥) =

1

2!𝑎3
(𝑥

2
𝐻(𝑥) − 3(𝑥 − 𝑎)

2
𝐻(𝑥 − 𝑎) + 3(𝑥 − 2𝑎)

2

×𝐻 (𝑥 − 2𝑎) − (𝑥 − 3𝑎)
2
𝐻(𝑥 − 3𝑎)) ,

𝜙
4 (𝑥) =

1

3!𝑎4
(𝑥

3
𝐻(𝑥) − 4(𝑥 − 𝑎)

3
𝐻(𝑥 − 𝑎)

+ 6(𝑥 − 2𝑎)
3
𝐻(𝑥 − 2𝑎) − 4(𝑥 − 3𝑎)

3

×𝐻 (𝑥 − 3𝑎) + (𝑥 − 4𝑎)
3
𝐻(𝑥 − 4𝑎)) .

(33)

Continuing in this manner, for all 𝑛 ∈ N, we have

𝜙
𝑛 (𝑥) =

1

𝑎𝑛 (𝑛 − 1)!

× ((
𝑛

0
)𝑥

𝑛−1
𝐻(𝑥) − (

𝑛

1
) (𝑥 − 𝑎)

𝑛−1

× 𝐻 (𝑥 − 𝑎) + (
𝑛

2
) (𝑥 − 2𝑎)

𝑛−1

× 𝐻 (𝑥 − 2𝑎) − (
𝑛

3
) (𝑥 − 3𝑎)

𝑛−1
𝐻(𝑥 − 3𝑎)

+ ⋅ ⋅ ⋅ + (−1)
𝑛−1
(
𝑛

𝑛 − 1
) (𝑥 − (𝑛 − 1) 𝑎)

𝑛−1

× 𝐻 (𝑥 − (𝑛 − 1) 𝑎) + (−1)
𝑛
(
𝑛

𝑛
)

× (𝑥 − 𝑛𝑎)
𝑛−1
𝐻(𝑥 − 𝑛𝑎) ) .

(34)

Calculating the Fourier transform of functions 𝜙
𝑛
, 𝑛 ∈ N, we

get

𝜙
1 (𝜉) =

−𝑖

𝑎
V ⋅ 𝑝 ⋅ (

1

𝜉
) (𝑒

𝑖𝑎𝜉
− 1) ,

𝜙
2 (𝜉) =

(−𝑖)
2

𝑎2
V ⋅ 𝑝 ⋅ (

1

𝜉2
) (𝑒

𝑖𝑎𝜉
− 1)

2

,

𝜙
3 (𝜉) =

(−𝑖)
3

𝑎3
V ⋅ 𝑝 ⋅ (

1

𝜉3
) (𝑒

𝑖𝑎𝜉
− 1)

3

.

(35)

Continuing in this manner, we obtain 𝜙
𝑛
(𝜉) = (−𝑖)

𝑛
/𝑎

𝑛V ⋅ 𝑝 ⋅
(1/𝜉

𝑛
)(𝑒

𝑖𝑎𝜉
− 1)

𝑛, 𝑛 ∈ N, where V ⋅ 𝑝⋅ denotes the principal
value.

Let Φ = (𝜙
1
, 𝜙

2
, . . . , 𝜙

𝑟
)
𝑇, 𝑟 ∈ N. matrix [Φ̂(𝜉 + 2𝑗𝜋)]

𝑗∈Z

has for all 𝜉 ∈ R the same rank as matrix

𝑅 (𝜉)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

⋅ ⋅ ⋅ 𝛼
−4𝜋
𝛽
−4𝜋

𝛼
−2𝜋
𝛽
−2𝜋

𝛼
0
𝛽
0
𝛼
2𝜋
𝛽
2𝜋
𝛼
4𝜋
𝛽
4𝜋
⋅ ⋅ ⋅

⋅ ⋅ ⋅ 𝛼
2

−4𝜋
𝛽
2

−4𝜋
𝛼
2

−2𝜋
𝛽
2

−2𝜋
𝛼
2

0
𝛽
2

0
𝛼
2

2𝜋
𝛽
2

2𝜋
𝛼
2

4𝜋
𝛽
2

4𝜋
⋅ ⋅ ⋅

⋅ ⋅ ⋅ 𝛼
3

−4𝜋
𝛽
3

−4𝜋
𝛼
3

−2𝜋
𝛽
3

−2𝜋
𝛼
3

0
𝛽
3

0
𝛼
3

2𝜋
𝛽
3

2𝜋
𝛼
3

4𝜋
𝛽
3

4𝜋
⋅ ⋅ ⋅

⋅ ⋅ ⋅ 𝛼
4

−4𝜋
𝛽
4

−4𝜋
𝛼
4

−2𝜋
𝛽
4

−2𝜋
𝛼
4

0
𝛽
4

0
𝛼
4

2𝜋
𝛽
4

2𝜋
𝛼
4

4𝜋
𝛽
4

4𝜋
⋅ ⋅ ⋅

...
...

...
...

...
⋅ ⋅ ⋅ 𝛼

𝑟

−4𝜋
𝛽
𝑟

−4𝜋
𝛼
𝑟

−2𝜋
𝛽
𝑟

−2𝜋
𝛼
𝑟

0
𝛽
𝑟

0
𝛼
𝑟

2𝜋
𝛽
𝑟

2𝜋
𝛼
𝑟

4𝜋
𝛽
𝑟

4𝜋
⋅ ⋅ ⋅

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(36)

where 𝛼𝑚
𝑘
= V ⋅ 𝑝 ⋅ (1/(𝜉 − 𝑘))𝑚 and 𝛽𝑚

𝑘
= (𝑒

𝑖𝑎(𝜉−𝑘)
− 1)

𝑚. Since
rank𝑅(𝜉) = 𝑟, 𝜉 ∈ R, we have the next result.

Theorem 16. Let Φ = (𝜙
𝑘
, 𝜙

𝑘+1
, . . . , 𝜙

𝑘+(𝑟−1)
)
𝑇, for 𝑘 ∈ Z, 𝑟 ∈

N. Then𝑉𝑝

𝜇
(Φ) is closed in 𝐿𝑝

𝜇
for any 𝑝 ∈ [1,∞] and {𝜙

𝑘+𝑠
(⋅ −

𝑗) | 𝑗 ∈ Z, 0 ≤ 𝑠 ≤ 𝑟 − 1} is a 𝑝-Riesz basis for 𝑉𝑝

𝜇
(Φ) for any

𝑝 ∈ [1,∞].

Remark 17. Let 𝑘 be a positive integer. We refer to [23] for the
𝐿
𝑝-approximation order 𝑘. Shift-invariant spaces generated

by a finite number of compactly supported functions in
𝐿
𝑝
(R), 1 ≤ 𝑝 ≤ ∞, were studied in [23] by Jia, who gave

a characterization of the approximation order providing such
shift-invariant spaces.Theorem 3 in [23] shows that the shift-
invariant space generatedwith the family of splines, whichwe
constructed in Section 5, provides 𝐿𝑝-approximation order 𝑘.

Remark 18. (1) We refer to [3, 20] for the 𝛾-dense set 𝑋 =

{𝑥
𝑗
| 𝑗 ∈ 𝐽}. Let 𝜙

𝑘
(𝑥) = F−1

(𝜃(⋅ − 𝑘𝜋))(𝑥), 𝑥 ∈ R.
Following the notation of [20], we put 𝜓

𝑥𝑗
= 𝜙

𝑥𝑗
, where

{𝑥
𝑗
| 𝑗 ∈ 𝐽} is 𝛾-dense set determined by 𝑓 ∈ 𝑉

2
(𝜙) =

𝑉
2
(F−1

(𝜃)).Theorems 3.1, 3.2, and 4.1 in [20] give conditions
and explicit form of 𝐶

𝑝
> 0 and 𝑐

𝑝
> 0 such that inequality

𝑐
𝑝
‖𝑓‖

𝐿
𝑝

𝜇
≤ (∑

𝑗∈𝐽
|⟨𝑓, 𝜓

𝑥𝑗
⟩𝜇(𝑥

𝑗
)|
𝑝
)
1/𝑝
≤ 𝐶

𝑝
‖𝑓‖

𝐿
𝑝

𝜇
holds. This

inequality guarantees the feasibility of a stable and continuous
reconstruction algorithm in the signal spaces 𝑉𝑝

𝜇
(Φ) [20].

(2) Since the spectrum of the Gram matrix [Φ̂, Φ̂](𝜉),
where Φ is defined in Theorem 16, is bounded and bounded
away from zero (see [7]), it follows that the family {Φ(⋅ − 𝑗) |
𝑗 ∈ Z} forms a 𝑝-Riesz basis for 𝑉𝑝

𝜇
(Φ).

(3) Frames of the above sections may be useful in
applications since they satisfy assumptions of Theorems 3.1
and 3.2 in [4]. They show that error analysis for sampling
and reconstruction can be tolerated or that the sampling and
reconstruction problem in shift-invariant space is robust with
respect to appropriate set of functions 𝜙

𝑘1
, . . . , 𝜙

𝑘𝑟
.
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[17] K. Gröchenig, “Describing functions: atomic decompositions
versus frames,” Monatshefte für Mathematik, vol. 112, no. 1, pp.
1–42, 1991.

[18] R. Q. Jia and C. A. Micchelli, “On linear independence for
integer translates of a finite number of functions,” Proceedings
of the Edinburgh Mathematical Society, vol. 36, no. 1, pp. 69–85,
1993.
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