Filomat 26:5 (2012), 1075–1080 DOI 10.2298/FIL1205075D Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Asymptotic similarity relation and generalized inverse

Dragan Djurčić^a, Valentina Konjokrad^b, Rale M. Nikolić^c

^aUniversity of Kragujevac, Technical faculty in Čačak, Svetog Save 65, 32000 Čačak, Serbia ^bUniversity of East Sarajevo, Faculty of Philosophy, Alekse Šantića 1, 71420 Pale, Bosnia and Herzegovina ^cUniversity of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia

Abstract. In this paper we discuss relationships among asymptotic similarity, weak asymptotic equivalence and the generalized inverse in the class \mathcal{A} of all nondecreasing unbounded positive functions on a halfaxis $[a, +\infty)$ (a > 0). As a main result, we prove proper characterizations of some classes of functions in Karamata's theory of regular and rapid variation.

1. Introduction

Karamata's theory of regular variability (see e.g. [15]) is obtained from the serious research of Tauberian type problems (see e.g. [16]). Soon after, it becomes a very important part of asymptotic analysis, with many applications in other fields of mathematics (see e.g. [3]). The main object in Karamata's theory of regular variability is the class of *O*-regularly varying functions (class *ORV*).

A function $f : [a, +\infty) \rightarrow (0, +\infty)$ (a > 0) belongs to the class *ORV* if it is measurable and satisfy the following asymptotic condition (so-called Tauberian condition, [1]):

$$\underline{k}_{f}(\lambda) = \lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} > 0,$$
(1)

for every $\lambda > 0$.

A function $f \in ORV$ is regularly varying in the sense of Karamata if $\underline{k}_f(\lambda)$ is differentiable for all $\lambda > 0$, thus if there is a $\rho \in \mathbb{R}$ such that

$$\underline{k}_{f}(\lambda) = \lambda^{\rho} \tag{2}$$

for every $\lambda > 0$; then ρ is called *the index of variability of f*.

The class of all regularly varying functions in the sense of Karamata is denoted *RV*. Any function $f \in RV$ having index of variability $\rho = 0$ is called *slowly varying in the sense of Karamata*. The class of slowly varying functions in the sense of Karamata is denoted *SV*. It is well-known that $SV \subsetneq RV \subsetneq ORV$, and classes *SV* and *RV* represent the most utilized objects of Karamata's theory of regular variability (see, e.g. [17]).

Communicated by Qamrul Hasan Ansari and Ljubiša D.R. Kočinac

²⁰¹⁰ Mathematics Subject Classification. Primary 26A12

Keywords. Regular variation, generalized inverse, relation of asymptotic similarity

Received: 27 November 2011; Accepted: 24 May 2012

This research is supported by the Ministry of Science of Republic of Serbia

Email addresses: dragandj@tfc.kg.ac.rs (Dragan Djurčić), first.author@email.address (Valentina Konjokrad),

ralevb@open.telekom.rs (Rale M. Nikolić)

A function $f : [a, +\infty) \rightarrow (0, +\infty)$ for some a > 0 is called *positively increasing* (i.e. belongs to the class *PI*) if it is measurable and there is a $\lambda_0 > 1$ such that

$$\underline{k}_f(\lambda_0) > 1. \tag{3}$$

A function $f : [a, +\infty) \to (0, +\infty)$, a > 0, is called *rapidly varying in the sense of de Haan* with index $+\infty$ (i.e. belongs to the class R_{∞}) if it is measurable and

$$\underline{k}_{f}(\lambda) = +\infty \tag{4}$$

for every $\lambda > 1$.

We have $R_{\infty} \subsetneq PI$. The classes R_{∞} and PI are important objects in quantitative analysis of divergent processes of moderate and rapid increase (see [5, 7, 14]).

Let *f* and *g* be two positive functions on $[a, +\infty)$, a > 0. They are called *weakly asymptotically equivalent* and denoted $f(x) \approx g(x)$ as $x \to +\infty$, if

$$0 < \lim_{x \to +\infty} \frac{f(x)}{g(x)} \le \lim_{x \to +\infty} \frac{f(x)}{g(x)} < +\infty.$$
(5)

Let $f : [a, +\infty) \to (0, +\infty)$, a > 0, and let $\{f\} = \{g : [a, +\infty) \to (0, +\infty) \mid f(x) \asymp g(x), \text{ as } x \to +\infty\}$. Then $g \in \{f\}$ is called *asymptotically similar to f* if

$$0 < \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f(x)}{g(x)} < +\infty,$$
(6)

which is denoted by $f(x) \neq g(x)$, as $x \to +\infty$.

Let $f : [a, +\infty) \to (0, +\infty)$, a > 0, and let $\langle f \rangle = \{g \in \{f\} \mid f(x) \neq g(x), \text{ for } x \to +\infty\}$. If $f : [a, +\infty) \to (0, +\infty)$, for some a > 0, define

$$[f]_{\sim} = \{g : [a, +\infty) \to (0, +\infty) \mid f(x) \sim g(x), \ x \to +\infty\},\$$

where $f(x) \sim g(x), x \rightarrow +\infty$, is the strong asymptotic equivalence relation defined by

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$$

Then $[f]_{\sim} \subsetneq \langle f \rangle \subsetneq \{f\}$.

In this paper we shall discuss the class of functions $\mathcal{A} = \{f : [a, +\infty) \to (0, +\infty), \text{ for some } a > 0 \mid f \text{ nondecreasing and unbounded}\}$, as well as the operator $f^{\leftarrow}(x) = \inf\{y > a \mid f(y) > x\}$ $(f \in \mathcal{A}, x \ge f(a))$.

2. Main results

The next results are continuation of research published in [2, 8–12].

Proposition 2.1. Let $f \in \mathcal{A}$. Also, let $f \in R_{\infty}$, or f is regularly varying function in the sense of Karamata with index of variability $\rho > 0$. Then $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ for every $g \in \mathcal{A} \cap \langle f \rangle$.

Proof. First assume $f \in \mathcal{A} \cap RV_{\rho}$ for some $\rho > 0$ and let $g \in \mathcal{A} \cap \langle f \rangle$. Then there is an $\alpha = \alpha(g) > 0$ such that $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \alpha$. For any $\varepsilon > 1$ we have

$$\frac{\alpha}{\varepsilon} \le \frac{f(x)}{g(x)} \le \varepsilon \cdot \alpha$$

for all sufficiently large *x*. Hence we obtain

$$f^{\leftarrow}(x) \ge g^{\leftarrow}\left(\frac{x}{\varepsilon \cdot \alpha}\right)$$
 and $f^{\leftarrow}(x) \le g^{\leftarrow}\left(\frac{\varepsilon}{\alpha} \cdot x\right)$

for all sufficiently large *x*.

For the same *x* we have

$$\frac{g^{\leftarrow}(\frac{x}{\varepsilon \cdot \alpha})}{g^{\leftarrow}(x)} \le \frac{f^{\leftarrow}(x)}{g^{\leftarrow}(x)} \le \frac{g^{\leftarrow}(\frac{\varepsilon}{\alpha} \cdot x)}{g^{\leftarrow}(x)}$$

Since $g \in \langle f \rangle$, we find $g \in RV_{\rho}$ and we obtain

$$(\varepsilon \cdot \alpha)^{-1/\rho} \leq \lim_{x \to +\infty} \frac{f^{\leftarrow}(x)}{g^{\leftarrow}(x)} \leq \overline{\lim_{x \to +\infty}} \frac{f^{\leftarrow}(x)}{g^{\leftarrow}(x)} \leq \left(\frac{\varepsilon}{\alpha}\right)^{1/\rho}$$

If in the previous inequalities we let $\varepsilon \to 1_+$, it follows that $\lim_{x \to +\infty} \frac{f^{\leftarrow}(x)}{g^{\leftarrow}(x)} = \alpha^{-1/\rho}$, so that $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$.

Next let $f \in \mathcal{A} \cap R_{\infty}$ and $g \in \mathcal{A} \cap \langle f \rangle$. Then $g \in \{f\}$ and by some results from [10] it follows that $\lim_{x \to +\infty} \frac{f^{\leftarrow}(x)}{g^{\leftarrow}(x)} = 1$, i.e. $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$. \Box

Proposition 2.2. If $f \in \mathcal{A}$ and $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ for every $g \in \mathcal{A} \cap \langle f \rangle$, then $f \in R_{\infty} \cup \bigcup_{\rho>0} R_{\rho}$. The same conclusion holds for every $g \in \langle f \rangle$.

Proof. Let $f \in \mathcal{A}$ and let $g_1(x) = \alpha \cdot f(x)$ for $x \ge a$, where $\alpha > 0$ is arbitrary fixed number. Since $g_1 \in \mathcal{A} \cap \langle f \rangle$, it follows that $g_1^{\leftarrow} \in \langle f^{\leftarrow} \rangle$, i.e. there is a $\beta = \beta(\alpha) \in (0, +\infty)$ such that

$$\lim_{x \to +\infty} \frac{f^{\leftarrow}(\frac{1}{\alpha} \cdot x)}{f^{\leftarrow}(x)} = \lim_{x \to +\infty} \frac{g_1^{\leftarrow}(x)}{f^{\leftarrow}(x)} = \beta.$$

Since $f^{\leftarrow} \in \mathcal{A}$, it follows that $f^{\leftarrow} \in RV_{\rho}$ for some $\rho \ge 0$. If $\rho = 0$, then by [13] we get $f \in R_{\infty}$. If $\rho > 0$, then $f \in RV_{1/\rho}$ (the well-known result which can be found in [3]). Next, let $g \in \mathcal{A} \cap \langle f \rangle$ be fixed. Then

$$\lim_{x \to +\infty} \frac{g(\gamma x)}{g(x)} = \lim_{x \to +\infty} \frac{f(\gamma x)}{f(x)}$$

for every $\gamma > 0$, and hence $g \in R_{\infty} \cup RV_{1/\rho}$ for some $\rho \in (0, +\infty)$. \Box

Proposition 2.3. *If* $f \in \mathcal{A} \cap RV$ *with index of variability* $\rho \ge 0$ *, then* $g \in \langle f \rangle$ *whenever* $g \in \mathcal{A}$ *and* $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ *.*

Proof. Let $f \in \mathcal{A} \cap RV_{\rho}$ for some $\rho \ge 0$. Then $f^{\leftarrow} \in R_{\infty}$, or f^{\leftarrow} is regularly varying in the sense of Karamata with positive index of variability (see, e.g. [3]). Next, assume $g \in \mathcal{A}$ and $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$. Since $g^{\leftarrow} \in \mathcal{A}$ and $f^{\leftarrow} \in \mathcal{A}$, Proposition 2.1 yields $(f^{\leftarrow}(x))^{\leftarrow} \rtimes (g^{\leftarrow}(x))^{\leftarrow}$ as $x \to +\infty$. Since $f \in RV_{\rho}$ for $\rho \ge 0$, and $f \in \mathcal{A}$, by [12] we immediately obtain $\lim_{x\to+\infty} \frac{(f^{\leftarrow}(x))^{\leftarrow}}{f(x)} = 1$. Since $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$, we have that $g^{\leftarrow} \in R_{\infty}$, or g^{\leftarrow} is regularly varying in the sense of Karamata with positive index of variability and $g \in RV_{\rho}$ for some $\rho \ge 0$. Hence $\lim_{x\to+\infty} \frac{(g^{\leftarrow}(x))^{\leftarrow}}{g(x)} = 1$, and we finally obtain $g \in \langle f \rangle$. \Box

Proposition 2.4. *If* $f \in \mathcal{A}$ *and* $g \in \langle f \rangle$ *whenever* $g \in \mathcal{A}$ *and* $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ *, then* $f \in RV$ *with index of variability* $\rho \ge 0$ *. The same conclusion holds for every* $g \in \langle f \rangle$ *.*

1077

Proof. Assume $f \in \mathcal{A}$ and define $g_1(x) = f(\alpha x)$, for $x \ge a$, where $\alpha > 1$ is an arbitrary fixed number. We find that $g_1^{\leftarrow}(x) = \frac{1}{\alpha} \cdot f^{\leftarrow}(x)$ for all sufficiently large x, and hence $g_1^{\leftarrow} \in \langle f^{\leftarrow} \rangle$, i.e. $g_1 \in \langle f \rangle$. Therefore,

$$\lim_{x \to +\infty} \frac{g_1(x)}{f(x)} = \lim_{x \to +\infty} \frac{f(\alpha x)}{f(x)} = \beta$$

for some $\beta \in (0, +\infty)$, where β is a function of $\alpha > 1$. Accordingly, $f \in RV_{\rho}$ for some $\rho \ge 0$. Next, let $g \in \mathcal{A}$ be an arbitrary and fixed function and suppose $g \in \langle f \rangle$. Then analogously to the proof of Proposition 2.2 one can prove that $g \in RV_{\rho}$ for some $\rho \ge 0$. \Box

Combining the results from Propositions 2.1, 2.2, 2.3 and 2.4, the next corollary can be obtained. Notice that it can be also obtained by some results in [4] and [6].

Corollary 2.5. Let $f \in \mathcal{A} \cap RV$ with index of variability $\rho > 0$. Then $g \in \langle f \rangle$ for every $g \in \mathcal{A}$ if and only if $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$. If $f \in \mathcal{A}$ and f is not regularly varying in the sense of Karamata with index of variability $\rho > 0$, then there is a $g \in \mathcal{A}$ such that $g \in \langle f \rangle$ and $g^{\leftarrow} \notin \langle f^{\leftarrow} \rangle$, or $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ and $g \notin \langle f \rangle$.

By this corollary we will prove Proposition 2.6, Proposition 2.8, Corollary 2.9 and Corollary 2.10.

Proposition 2.6. *Let* $f \in \mathcal{A}$.

- (a) If $f \in R_{\infty}$ then $g^{\leftarrow} \in [f^{\leftarrow}]_{\sim} \subsetneq \langle f^{\leftarrow} \rangle$ for every $g \in \{f\}$;
- (b) If $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ whenever $g \in \mathcal{A} \cap \{f\}$, then $f \in RV_{\rho} \cup R_{\infty}$ for some $\rho > 0$;.
- (c) If $f \in RV_{\rho}$, $\rho > 0$ then there is a $g \in \mathcal{A}$ such that $g \in \{f\}$ and $g^{\leftarrow} \notin \langle f^{\leftarrow} \rangle$.

Proof. (a) Follows from some results in [10].

(b)According to assumptions and Proposition 2.2 we have $f \in RV_{\rho} \cup R_{\infty}$ for some $\rho > 0$.

(c) Assume that $f \in \mathcal{A} \cap RV_{\rho}$, $\rho > 0$. Then there is a continuous and strictly increasing function $f_1 \in \mathcal{A} \cap RV_{\rho}$, $\rho > 0$, such that $f_1(x) \sim f(x)$, as $x \to +\infty$ (see, e.g. [3]).

Contrary to the statement, assume that $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$ whenever $g \in \{f\} \cap \mathcal{A}$. Since $f^{\leftarrow} \in RV_{1/\rho}$ we have that $g^{\leftarrow} \in RV_{1/\rho}$ and so $g \in RV_{\rho}$.

We find that $g \in \mathcal{A}$ and $1 \leq \frac{f_1(x)}{g(x)} < 2$ for all $x \geq a$, so $g \in \{f\}$. However, $g \notin RV$ because $\frac{g(x+1)}{g(x)} \rightarrow 1$ for $x \rightarrow +\infty$. Namely, consider the sequence (α_n) defined by $\alpha_n = a_{n+1} - \min\{1/2, a_{n+1} - a_n\}, n \in \mathbb{N}$. Since $\alpha_n \rightarrow +\infty$, as $n \rightarrow +\infty$ and $\frac{g(\alpha_n + 1)}{g(\alpha_n)} \geq 2$, for every $n \in \mathbb{N}$, we find that $\lim_{n \to +\infty} \frac{g(x+1)}{g(x)} \geq 2$. Since $g \in RV \subsetneq IRV$ we have $\lim_{x \to +\infty} \frac{g(x+1)}{g(x)} = 1$, which contradicts to $g \in RV_\rho$. \Box

Remark 2.7. The characterization of *f* obtained in Proposition 2.6 is true for every $g \in \{f\}$.

Proposition 2.8. Let $f \in \mathcal{A}$.

- (a) If $f \in PI$, then $g^{\leftarrow} \in \{f^{\leftarrow}\}$ for every $g \in \langle f \rangle \cap \mathcal{A}$.
- (b) If $g^{\leftarrow} \in \{f^{\leftarrow}\}$ whenever $g \in \langle f \rangle \cap \mathcal{A}$, then $f \in PI$. The same conclusion holds for every $g \in \langle f \rangle$.

Proof. (a) Obviously, $f^{\leftarrow} \in ORV$ and $g \in \langle f \rangle$. Then $g \in \{f\}$, and according to [9] we find that $g^{\leftarrow} \in \{f^{\leftarrow}\}$.

(b) For an arbitrary fixed $\alpha > 0$ define $g(x) = \alpha \cdot f(x), x \ge a$. Then $g \in \mathcal{A} \cap \langle f \rangle, g^{\leftarrow}(x) = f^{\leftarrow}(\frac{1}{\alpha}x)$ for all sufficiently large x, and

$$0 < m(\alpha) \le \lim_{x \to +\infty} \frac{g^{\leftarrow}(x)}{f^{\leftarrow}(x)} = \lim_{x \to +\infty} \frac{f^{\leftarrow}(\frac{1}{\alpha})}{f^{\leftarrow}(x)} \le \lim_{x \to +\infty} \frac{g^{\leftarrow}(x)}{f^{\leftarrow}(x)} = \lim_{x \to +\infty} \frac{f^{\leftarrow}(\frac{1}{\alpha}x)}{f^{\leftarrow}(x)} \le M(\alpha) < +\infty$$

Since $f^{\leftarrow} \in ORV$, by [9] we finally get $f \in PI$. \Box

Corollary 2.9. *Let* $f \in \mathcal{A}$ *.*

- (a) If $f \in ORV$, then $g \in \{f\}$ whenever $g \in \mathcal{A}$ and $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$.
- (b) If $g \in \{f\}$, whenever $g \in \mathcal{A}$ and $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$, then $f \in ORV$. The same conclusion holds for every $g \in \{f\}$.

Proof. (a) Since $f^{\leftarrow} \in PI$, by Proposition 2.8 (a) we have that $(g^{\leftarrow}(x))^{\leftarrow} \asymp (f^{\leftarrow}(x))^{\leftarrow}$, as $x \to +\infty$. Since $f \in ORV$ and for every $\beta > 1$ we have $1 \le \frac{(f^{\leftarrow}(x))^{\leftarrow}}{f(x)} \le \frac{f(\beta x)}{f(x)}$ for all sufficiently large x, it follows

$$1 \leq \lim_{x \to +\infty} \frac{(f^{\leftarrow}(x))^{\leftarrow}}{f(x)} \leq \overline{\lim_{x \to +\infty}} \frac{(f^{\leftarrow}(x))^{\leftarrow}}{f(x)} \leq \overline{\lim_{x \to +\infty}} \frac{f(\beta x)}{f(x)} = \overline{k}_f(\beta) < +\infty.$$

Hence $(f^{\leftarrow}(x))^{\leftarrow} \approx f(x)$ as $x \to +\infty$. Next, since $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$, there is an $\alpha > 0$ such that $g^{\leftarrow}(x) = h(x) \cdot f^{\leftarrow}(x)$ for all sufficiently large x, where $h(x) \to \alpha$ as $x \to +\infty$. Accordingly, for $\gamma > \gamma_0 \ge 1$ we have

$$\lim_{x \to +\infty} \frac{g^{\leftarrow}(\gamma x)}{g^{\leftarrow}(x)} \ge \lim_{x \to +\infty} \frac{f^{\leftarrow}(\gamma x)}{f^{\leftarrow}(x)} > 1,$$

and hence $g^{\leftarrow} \in PI$, i.e. $g \in ORV$. Similarly as in previous part of the proof we find that $(g^{\leftarrow}(x))^{\leftarrow} \approx g(x)$ as $x \to +\infty$. Therefore $f(x) \approx g(x)$ as $x \to +\infty$.

(b) Let $g^{\leftarrow}(x) = \alpha \cdot f^{\leftarrow}(x)$ for $x \ge a$ and some $\alpha > 0$. Further, define $h^{\leftarrow}(x) = (h^{\leftarrow}(x))^{\leftarrow}$ for $h \in \mathcal{A}$ and all sufficiently large x. Then we have

$$(g^{\leftarrow}(x))^{\leftarrow} = f^{\Leftarrow} \Big(\frac{1}{\alpha}x\Big)$$

for all sufficiently large *x*, so

$$\overline{\lim_{x \to +\infty}} \frac{f^{\Leftarrow}(\frac{1}{\alpha}x)}{f^{\Leftarrow}(x)} = \overline{\lim_{x \to +\infty}} \frac{g^{\Leftarrow}(x)}{f^{\Leftarrow}(x)} \le M(\alpha) < +\infty.$$

Therefore, $(f^{\leftarrow}(x))^{\leftarrow} \in ORV$, and consequently $f \in ORV$, because $(f^{\leftarrow}(x))^{\leftarrow} \approx f(x)$, as $x \to +\infty$. Similarly, $g \in ORV$ for every $g \in \{f\}$. \Box

Corollary 2.10. *Let* $f \in \mathcal{A}$ *.*

- (a) If $f \in SV$, then $g \in [f]_{\sim} \subsetneq \langle f \rangle$ whenever $g \in \mathcal{A}$ and $g^{\leftarrow} \in \{f^{\leftarrow}\}$.
- (b) If $g \in \langle f \rangle$ whenever $g \in \mathcal{A}$ and $g^{\leftarrow} \in \{f^{\leftarrow}\}$, then $f \in SV \cup RV_{\rho}$, $\rho > 0$.
- (c) For every $f \in RV_{\rho}$, $\rho > 0$, there is a $g \in \mathcal{A} \setminus \langle f \rangle$ such that $g^{\leftarrow} \in \{f^{\leftarrow}\}$.

Proof. (a) If $f \in SV$, then $f^{\leftarrow} \in R_{\infty}$ and by [10] it follows that $(g^{\leftarrow}(x))^{\leftarrow} \sim (f^{\leftarrow}(x))^{\leftarrow}$ as $x \to +\infty$. Since $f \in SV$, we have $(f^{\leftarrow}(x))^{\leftarrow} \sim f(x)$ for $x \to +\infty$, accordingly to [12]. Similarly, we have $g^{\leftarrow} \in R_{\infty}$, and hence by [13] we obtain $g \in SV$ and $(g^{\leftarrow}(x))^{\leftarrow} \sim g(x)$ when $x \to +\infty$. This means that $g \in [f] \subsetneq \langle f \rangle$.

(b) Since $g \in \langle f \rangle$ whenever $g^{\leftarrow} \in \{f^{\leftarrow}\}$, so $g \in \langle f \rangle$ whenever $g^{\leftarrow} \in \langle f^{\leftarrow} \rangle$. By Proposition 2.4 it follows that $f \in SV \cup RV_{\rho}, \rho > 0$. The same conclusion holds for every $g \in \langle f \rangle$.

(c) Finally, let $f \in \mathcal{A} \cap RV_{\rho}$, $\rho > 0$. Then there is a continuous and strictly increasing function $F \in \mathcal{A} \cap RV_{1/\rho}$, $\rho > 0$, such that $F(x) \sim f^{\leftarrow}(x)$, as $x \to +\infty$.

Contrarily to the statement, assume that $g \in \langle f \rangle$ whenever $g \in \mathcal{A}$ and $g^{\leftarrow} \in \{f^{\leftarrow}\}$. Since $f \in RV_{\rho}$ we have that $g \in RV_{\rho}$, so $g^{\leftarrow} \in RV_{1/\rho}$.

Next, define the sequence $a_1 < a_2 < \cdots$ by $a_1 = a$ and $a_n = F^{-1}(2 \cdot F(a_{n-1}))$ $(n \ge 2)$. Then $g^{\leftarrow}(x) = F(a_n)$ $(a_n \le x < a_{n+1})$ $(n \in N)$.

Hence we find $1 \le \frac{F(x)}{g^{\leftarrow}(x)} < 2$ for all $x \ge a$, so $g^{\leftarrow} \in \{f^{\leftarrow}\}$ and $g^{\leftarrow} \notin RV$, since $\frac{g^{\leftarrow}(x+1)}{g^{\leftarrow}(x)} \to 1$ when $x \to +\infty$. But this, similarly as in the proof of Proposition 2.6, contradicts to $g^{\leftarrow} \in RV_{1/\rho}$. \Box

Remark 2.11. If in the proof of Corollary 2.10 (b) we take: $g(x) = a_1 (F(a_1)/2 \le x < F(a_1))$ and $g(x) = a_n (F(a_n) \le x < F(a_{n+1}))$ $(n \ge 2, x \ge a)$, then $g \in \mathcal{A}$.

Remark 2.12. The characterization of *f* obtained in Corollary 2.10 is true for every $g \in \langle f \rangle$.

References

- V.G. Avakumović, Uber einen O-Inversionsatz (in Serbian), Rad Jugoslav. Akad. Znan. Umetn. (Razreda Mat.–Prir. 79) 254 (1936) 167–186 (German abstract Bull. Intern. Acad. Yougoslavie (Zagreb) 29-30 (1936) 101–117).
- [2] A.A. Balkema, J.L. Geluk, L. de Haan, An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. 30 (1979) 385–416.
- [3] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.
- [4] V.V. Buldygin, O.I. Klesov, J.G. Steinebach, Some properties of asymptotic quasi-inverse function and their applications, I, Theor. Prob. Math. Stat. 70 (2005) 11–28.
- [5] V.V. Buldygin, O.I. Klesov, J.G. Steinebach, *PRV* property and the *φ*-asymptotic behavior of solutions of stochastic differential equations, Lith. Math. J. 47 (2007) 361–278.
- [6] V.V. Buldygin, O.I. Klesov, J.G. Steinebach, On some properties of asymptotically quasi-inverse function, Teor. Imovirn. Mat. Stat. 77 (2007) 13–27 (in Ukrainian; English transl.: Theor. Prob. Math. Stat. 77 (2008) 15–30.
- [7] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327 (2007) 1297–1306.
 [8] D. Djurčić, I. Mitrović, M. Janjić, The weak and the strong equivalence relation and the asymptotic inversion, Filomat 25:4 (2011) 29–36.
- [9] D. Djurčić, R. Nikolić, A. Torgašev, The weak asymptotic equivalence and the generalized inverse, Lith. Math. J. 50 (2010) 34-42.
- [10] D. Djurčić, R. M. Nikolić, A. Torgašev, The weak and the strong asymptotic equivalence relations and the generalized inverse, Lith. Math. J. 51 (2011) 472–476.
- [11] D. Djurčić, A. Torgašev, Strong asymptotic equivalence and inversion of functions in the class K_c, J. Math. Anal. Appl. 255 (2001) 383–390.
- [12] D. Djurčić, A. Torgašev, S. Ješić, The strong asymptotic equivalence and the generalized inverse, Siber. Math. J. 49 (2008) 786–795.
 [13] D. Djurčić, A. Torgašev, Some asymptotic relations for the generalized inverse, J. Math. Anal. Appl. 325 (2007) 1397–1402.
- [14] L. de Haan, On Regular Variation and its Applications to the Weak Vonvergence of Sample Extremes, Math. Centre Tracts 32, CWI, Amsterdam, 1970.
- [15] J. Karamata, Sur un mode de croissance réguliere des functions, Mathematica (Cluj) 4 (1930) 38–53.
- [16] J. Karamata, Sur un mode de croissance réguliere. Théorèmes fondamentaux, Bull. Soc. Math. France 61 (1933) 55–62.
- [17] E. Seneta, Functions of Regular Variation, Lecture Notes Math. 506, Springer, New York, 1976.