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Abstract. In this paper we discuss relationships among asymptotic similarity, weak asymptotic equivalence
and the generalized inverse in the class A of all nondecreasing unbounded positive functions on a half-
axis [a,+∞) (a > 0). As a main result, we prove proper characterizations of some classes of functions in
Karamata’s theory of regular and rapid variation.

1. Introduction

Karamata’s theory of regular variability (see e.g. [15]) is obtained from the serious research of Tauberian
type problems (see e.g. [16]). Soon after, it becomes a very important part of asymptotic analysis, with
many applications in other fields of mathematics (see e.g. [3]). The main object in Karamata’s theory of
regular variability is the class of O-regularly varying functions (class ORV).

A function f : [a,+∞) → (0,+∞) (a > 0) belongs to the class ORV if it is measurable and satisfy the
following asymptotic condition (so-called Tauberian condition, [1]):

k f (λ) = lim
x→+∞

f (λx)
f (x)

> 0, (1)

for every λ > 0.
A function f ∈ ORV is regularly varying in the sense of Karamata if k f (λ) is differentiable for all λ > 0, thus

if there is a ρ ∈ R such that

k f (λ) = λρ (2)

for every λ > 0; then ρ is called the index of variability of f .
The class of all regularly varying functions in the sense of Karamata is denoted RV. Any function f ∈ RV

having index of variability ρ = 0 is called slowly varying in the sense of Karamata. The class of slowly varying
functions in the sense of Karamata is denoted SV. It is well-known that SV  RV  ORV, and classes SV
and RV represent the most utilized objects of Karamata’s theory of regular variability (see, e.g. [17]).
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A function f : [a,+∞)→ (0,+∞) for some a > 0 is called positively increasing (i.e. belongs to the class PI)
if it is measurable and there is a λ0 > 1 such that

k f (λ0) > 1. (3)

A function f : [a,+∞) → (0,+∞), a > 0, is called rapidly varying in the sense of de Haan with index +∞ (i.e.
belongs to the class R∞) if it is measurable and

k f (λ) = +∞ (4)

for every λ > 1.
We have R∞  PI. The classes R∞ and PI are important objects in quantitative analysis of divergent

processes of moderate and rapid increase (see [5, 7, 14]).
Let f and g be two positive functions on [a,+∞), a > 0. They are called weakly asymptotically equivalent

and denoted f (x) ≍ g(x) as x→ +∞, if

0 < lim
x→+∞

f (x)
g(x)

≤ lim
x→+∞

f (x)
g(x)

< +∞. (5)

Let f : [a,+∞) → (0,+∞), a > 0, and let { f } = {g : [a,+∞) → (0,+∞) | f (x) ≍ g(x), as x → +∞}. Then
g ∈ { f } is called asymptotically similar to f if

0 < lim
x→+∞

f (x)
g(x)

= lim
x→+∞

f (x)
g(x)

< +∞, (6)

which is denoted by f (x)≍– g(x), as x→ +∞.
Let f : [a,+∞)→ (0,+∞), a > 0, and let ⟨ f ⟩ = {g ∈ { f } | f (x)≍– g(x), for x→ +∞}. If f : [a,+∞)→ (0,+∞),

for some a > 0, define

[ f ]∼ = {g : [a,+∞)→ (0,+∞) | f (x) ∼ g(x), x→ +∞},

where f (x) ∼ g(x), x→ +∞, is the strong asymptotic equivalence relation defined by

lim
x→+∞

f (x)
g(x)

= 1.

Then [ f ]∼  ⟨ f ⟩  { f }.
In this paper we shall discuss the class of functions A = { f : [a,+∞) → (0,+∞), for some a > 0 | f

nondecreasing and unbounded}, as well as the operator f←(x) = inf{y > a | f (y) > x} ( f ∈ A, x ≥ f (a)).

2. Main results

The next results are continuation of research published in [2, 8–12].

Proposition 2.1. Let f ∈ A. Also, let f ∈ R∞, or f is regularly varying function in the sense of Karamata with
index of variability ρ > 0. Then g← ∈ ⟨ f←⟩ for every g ∈ A ∩ ⟨ f ⟩.

Proof. First assume f ∈ A∩ RVρ for some ρ > 0 and let g ∈ A∩ ⟨ f ⟩. Then there is an α = α(g) > 0 such that

lim
x→+∞

f (x)
g(x)

= α. For any ε > 1 we have

α
ε
≤ f (x)

g(x)
≤ ε · α
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for all sufficiently large x. Hence we obtain

f←(x) ≥ g←
( x
ε · α
)

and f←(x) ≤ g←
( ε
α
· x
)
,

for all sufficiently large x.
For the same x we have

g←( x
ε·α )

g←(x)
≤ f←(x)

g←(x)
≤

g←( εα · x)
g←(x)

.

Since g ∈ ⟨ f ⟩, we find g ∈ RVρ and we obtain

(ε · α)−1/ρ ≤ lim
x→+∞

f←(x)
g←(x)

≤ lim
x→+∞

f←(x)
g←(x)

≤
(
ε
α

)1/ρ
.

If in the previous inequalities we let ε→ 1+, it follows that lim
x→+∞

f←(x)
g←(x)

= α−1/ρ, so that g← ∈ ⟨ f←⟩.
Next let f ∈ A ∩ R∞ and g ∈ A ∩ ⟨ f ⟩. Then g ∈ { f } and by some results from [10] it follows that

lim
x→+∞

f←(x)
g←(x)

= 1, i.e. g← ∈ ⟨ f←⟩.

Proposition 2.2. If f ∈ A and g← ∈ ⟨ f←⟩ for every g ∈ A ∩ ⟨ f ⟩, then f ∈ R∞ ∪
∪
ρ>0 Rρ. The same conclusion

holds for every g ∈ ⟨ f ⟩.

Proof. Let f ∈ A and let g1(x) = α · f (x) for x ≥ a, where α > 0 is arbitrary fixed number. Since g1 ∈ A∩ ⟨ f ⟩,
it follows that g←1 ∈ ⟨ f←⟩, i.e. there is a β = β(α) ∈ (0,+∞) such that

lim
x→+∞

f←( 1
α · x)

f←(x)
= lim

x→+∞

g←1 (x)

f←(x)
= β.

Since f← ∈ A, it follows that f← ∈ RVρ for some ρ ≥ 0. If ρ = 0, then by [13] we get f ∈ R∞. If ρ > 0,
then f ∈ RV1/ρ (the well-known result which can be found in [3]). Next, let g ∈ A ∩ ⟨ f ⟩ be fixed. Then

lim
x→+∞

g(γx)
g(x)

= lim
x→+∞

f (γx)
f (x)
,

for every γ > 0, and hence g ∈ R∞ ∪ RV1/ρ for some ρ ∈ (0,+∞).

Proposition 2.3. If f ∈ A ∩ RV with index of variability ρ ≥ 0, theng ∈ ⟨ f ⟩ whenever g ∈ A and g← ∈ ⟨ f←⟩.

Proof. Let f ∈ A ∩ RVρ for some ρ ≥ 0. Then f← ∈ R∞, or f← is regularly varying in the sense of Karamata
with positive index of variability (see, e.g. [3]). Next, assume g ∈ A and g← ∈ ⟨ f←⟩. Since g← ∈ A and
f← ∈ A, Proposition 2.1 yields ( f←(x))← ≍–(g←(x))← as x → +∞. Since f ∈ RVρ for ρ ≥ 0, and f ∈ A, by

[12] we immediately obtain lim
x→+∞

( f←(x))←

f (x)
= 1. Since g← ∈ ⟨ f←⟩, we have that g← ∈ R∞, or g← is regularly

varying in the sense of Karamata with positive index of variability and g ∈ RVρ for some ρ ≥ 0. Hence

lim
x→+∞

(g←(x))←

g(x)
= 1, and we finally obtain g ∈ ⟨ f ⟩.

Proposition 2.4. If f ∈ A and g ∈ ⟨ f ⟩ whenever g ∈ A and g← ∈ ⟨ f←⟩, then f ∈ RV with index of variability
ρ ≥ 0. The same conclusion holds for every g ∈ ⟨ f ⟩.
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Proof. Assume f ∈ A and define g1(x) = f (αx), for x ≥ a, where α > 1 is an arbitrary fixed number. We find

that g←1 (x) =
1
α
· f←(x) for all sufficiently large x, and hence g←1 ∈ ⟨ f←⟩, i.e. g1 ∈ ⟨ f ⟩. Therefore,

lim
x→+∞

g1(x)
f (x)

= lim
x→+∞

f (αx)
f (x)

= β,

for some β ∈ (0,+∞), where β is a function of α > 1. Accordingly, f ∈ RVρ for some ρ ≥ 0. Next, let g ∈ A
be an arbitrary and fixed function and suppose g ∈ ⟨ f ⟩. Then analogously to the proof of Proposition 2.2
one can prove that g ∈ RVρ for some ρ ≥ 0.

Combining the results from Propositions 2.1, 2.2, 2.3 and 2.4, the next corollary can be obtained. Notice
that it can be also obtained by some results in [4] and [6].

Corollary 2.5. Let f ∈ A ∩ RV with index of variability ρ > 0. Then g ∈ ⟨ f ⟩ for every g ∈ A if and only if
g← ∈ ⟨ f←⟩. If f ∈ A and f is not regularly varying in the sense of Karamata with index of variability ρ > 0, then
there is a g ∈ A such that g ∈ ⟨ f ⟩ and g← < ⟨ f←⟩, or g← ∈ ⟨ f←⟩ and g < ⟨ f ⟩.

By this corollary we will prove Proposition 2.6, Proposition 2.8, Corollary 2.9 and Corollary 2.10.

Proposition 2.6. Let f ∈ A.

(a) If f ∈ R∞ then g← ∈ [ f←]∼  ⟨ f←⟩ for every g ∈ { f };
(b) If g← ∈ ⟨ f←⟩ whenever g ∈ A ∩ { f }, then f ∈ RVρ ∪ R∞ for some ρ > 0;.

(c) If f ∈ RVρ, ρ > 0 then there is a g ∈ A such that g ∈ { f } and g← < ⟨ f←⟩.
Proof. (a) Follows from some results in [10].

(b)According to assumptions and Proposition 2.2 we have f ∈ RVρ ∪ R∞ for some ρ > 0.

(c) Assume that f ∈ A ∩ RVρ, ρ > 0. Then there is a continuous and strictly increasing function
f1 ∈ A ∩ RVρ, ρ > 0, such that f1(x) ∼ f (x), as x→ +∞ (see, e.g. [3]).

Contrary to the statement, assume that g← ∈ ⟨ f←⟩whenever g ∈ { f } ∩A. Since f← ∈ RV1/ρ we have that
g← ∈ RV1/ρ and so g ∈ RVρ.

We find that g ∈ A and 1 ≤ f1(x)
g(x)

< 2 for all x ≥ a, so g ∈ { f }. However, g < RV because
g(x + 1)

g(x)
9 1

for x → +∞. Namely, consider the sequence (αn) defined by αn = an+1 − min{1/2, an+1 − an}, n ∈ N.

Since αn → +∞, as n → +∞ and
g(αn + 1)

g(αn)
≥ 2, for every n ∈ N, we find that lim

n→+∞

g(x + 1)
g(x)

≥ 2. Since

g ∈ RV  IRV we have lim
x→+∞

g(x + 1)
g(x)

= 1, which contradicts to g ∈ RVρ.

Remark 2.7. The characterization of f obtained in Proposition 2.6 is true for every g ∈ { f }.
Proposition 2.8. Let f ∈ A.

(a) If f ∈ PI, then g← ∈ { f←} for every g ∈ ⟨ f ⟩ ∩ A.

(b) If g← ∈ { f←} whenever g ∈ ⟨ f ⟩ ∩ A, then f ∈ PI. The same conclusion holds for every g ∈ ⟨ f ⟩.
Proof. (a) Obviously, f← ∈ ORV and g ∈ ⟨ f ⟩. Then g ∈ { f }, and according to [9] we find that g← ∈ { f←}.

(b) For an arbitrary fixed α > 0 define g(x) = α · f (x), x ≥ a. Then g ∈ A ∩ ⟨ f ⟩, g←(x) = f←(
1
α

x) for all
sufficiently large x, and

0 < m(α) ≤ lim
x→+∞

g←(x)
f←(x)

= lim
x→+∞

f←( 1
α )

f←(x)
≤ lim

x→+∞

g←(x)
f←(x)

= lim
x→+∞

f←( 1
αx)

f←(x)
≤M(α) < +∞.

Since f← ∈ ORV, by [9] we finally get f ∈ PI.
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Corollary 2.9. Let f ∈ A.

(a) If f ∈ ORV, then g ∈ { f } whenever g ∈ A and g← ∈ ⟨ f←⟩.
(b) If g ∈ { f }, whenever g ∈ A and g← ∈ ⟨ f←⟩, then f ∈ ORV. The same conclusion holds for every g ∈ { f }.

Proof. (a) Since f← ∈ PI, by Proposition 2.8 (a) we have that (g←(x))← ≍ ( f←(x))←, as x → +∞. Since

f ∈ ORV and for every β > 1 we have 1 ≤ ( f←(x))←

f (x)
≤

f (βx)
f (x)

for all sufficiently large x, it follows

1 ≤ lim
x→+∞

( f←(x))←

f (x)
≤ lim

x→+∞

( f←(x))←

f (x)
≤ lim

x→+∞

f (βx)
f (x)

= k f (β) < +∞.

Hence ( f←(x))← ≍ f (x) as x → +∞. Next, since g← ∈ ⟨ f←⟩, there is an α > 0 such that g←(x) = h(x) · f←(x)
for all sufficiently large x, where h(x)→ α as x→ +∞. Accordingly, for γ > γ0 ≥ 1 we have

lim
x→+∞

g←(γx)
g←(x)

≥ lim
x→+∞

f←(γx)
f←(x)

> 1,

and hence g← ∈ PI, i.e. g ∈ ORV. Similarly as in previous part of the proof we find that (g←(x))← ≍ g(x) as
x→ +∞. Therefore f (x) ≍ g(x) as x→ +∞.

(b) Let g←(x) = α · f←(x) for x ≥ a and some α > 0. Further, define h⇔(x) = (h←(x))← for h ∈ A and all
sufficiently large x. Then we have

(g←(x))← = f⇔
( 1
α

x
)

for all sufficiently large x, so

lim
x→+∞

f⇔( 1
αx)

f⇔(x)
= lim

x→+∞

g⇔(x)
f⇔(x)

≤M(α) < +∞.

Therefore, ( f←(x))← ∈ ORV, and consequently f ∈ ORV, because ( f←(x))← ≍ f (x), as x→ +∞. Similarly,
g ∈ ORV for every g ∈ { f }.

Corollary 2.10. Let f ∈ A.

(a) If f ∈ SV, then g ∈ [ f ]∼  ⟨ f ⟩ whenever g ∈ A and g← ∈ { f←}.
(b) If g ∈ ⟨ f ⟩ whenever g ∈ A and g← ∈ { f←}, then f ∈ SV ∪ RVρ, ρ > 0.

(c) For every f ∈ RVρ, ρ > 0, there is a g ∈ A \ ⟨ f ⟩ such that g← ∈ { f←}.

Proof. (a) If f ∈ SV, then f← ∈ R∞ and by [10] it follows that (g←(x))← ∼ ( f←(x))← as x→ +∞. Since f ∈ SV,
we have ( f←(x))← ∼ f (x) for x → +∞, accordingly to [12]. Similarly, we have g← ∈ R∞, and hence by [13]
we obtain g ∈ SV and (g←(x))← ∼ g(x) when x→ +∞. This means that g ∈ [ f ]  ⟨ f ⟩.

(b) Since g ∈ ⟨ f ⟩whenever g← ∈ { f←}, so g ∈ ⟨ f ⟩whenever g← ∈ ⟨ f←⟩. By Proposition 2.4 it follows that
f ∈ SV ∪ RVρ, ρ > 0. The same conclusion holds for every g ∈ ⟨ f ⟩.

(c) Finally, let f ∈ A ∩ RVρ, ρ > 0. Then there is a continuous and strictly increasing function F ∈
A ∩ RV1/ρ, ρ > 0, such that F(x) ∼ f←(x), as x→ +∞.

Contrarily to the statement, assume that g ∈ ⟨ f ⟩whenever g ∈ A and g← ∈ { f←}. Since f ∈ RVρ we have
that g ∈ RVρ, so g← ∈ RV1/ρ.

Next, define the sequence a1 < a2 < · · · by a1 = a and an = F−1
(
2 · F(an−1)

)
(n ≥ 2). Then g←(x) = F(an)

(an ≤ x < an+1) (n ∈ N).

Hence we find 1 ≤ F(x)
g←(x)

< 2 for all x ≥ a, so g← ∈ { f←} and g← < RV, since
g←(x + 1)

g←(x)
9 1 when

x→ +∞. But this, similarly as in the proof of Proposition 2.6, contradicts to g← ∈ RV1/ρ.
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Remark 2.11. If in the proof of Corollary 2.10 (b) we take: g(x) = a1 (F(a1)/2 ≤ x < F(a1)) and g(x) = an
(F(an) ≤ x < F(an+1)) (n ≥ 2, x ≥ a), then g ∈ A.

Remark 2.12. The characterization of f obtained in Corollary 2.10 is true for every g ∈ ⟨ f ⟩.

References
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