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Abstract

New types of systems of fuzzy relation inequalities and equations, called weakly linear, have been recently introduced
in [J. Ignjatović, M. Ćirić, S. Bogdanović, On the greatest solutions to weakly linear systems of fuzzy relation inequalities
and equations, Fuzzy Sets and Systems 161 (2010) 3081–3113.]. The mentioned paper dealt with homogeneous weakly
linear systems, composed of fuzzy relations on a single set, and a method for computing their greatest solutions has been
provided. This method is based on the computing of the greatest post-fixed point, contained in a given fuzzy relation,
of an isotone function on the lattice of fuzzy relations. Here we adapt this method for computing the greatest solutions
of heterogeneous weakly linear systems, where the unknown fuzzy relation relates two possibly different sets. We also
introduce and study quotient fuzzy relational systems and establish relationships between solutions to heterogeneous
and homogeneous weakly linear systems. Besides, we point out to applications of the obtained results in the state
reduction of fuzzy automata and computing the greatest simulations and bisimulations between fuzzy automata, as
well as in the positional analysis of fuzzy social networks.

Keywords: Fuzzy relations; fuzzy relational systems; fuzzy relation inequalities; fuzzy relation equations; matrix
inequalities; residuals of fuzzy relations; fuzzy equivalence relations; complete residuated lattices; post-fixed points

1. Introduction

Systems of fuzzy relation equations and inequalities were first studied by Sanchez, who used them in
medical research (cf. [38–41]). Later they found a much wider field of application, and nowadays they are
used in fuzzy control, discrete dynamic systems, knowledge engineering, identification of fuzzy systems,
prediction of fuzzy systems, decision-making, fuzzy information retrieval, fuzzy pattern recognition, image
compression and reconstruction, and in many other areas (cf., e.g., [17, 19, 21, 22, 28, 31, 32]).

Most frequently studied systems were the ones that consist of equations and inequalities with one side
containing the composition of an unknown fuzzy relation and a given fuzzy relation or fuzzy set, while the
other side contains only another given fuzzy relation or fuzzy set. Such systems are called linear systems.
Solvability and methods for computing the greatest solutions to linear systems of fuzzy relation equations
and inequalities were first studied in the above mentioned papers by Sanchez, who discussed linear sys-
tems over the Gödel structure. Later, linear systems over more general structures of truth values were
investigated, including those over complete residuated lattices (cf., e.g., [9, 17, 27, 33–36]).

More complex non-linear systems of fuzzy relation inequalities and equations, called weakly linear, have
been recently introduced and studied in [26]. Basically, weakly linear systems discussed in [26] consist of
inequalities and equations of the form Vi ◦ U ⊲⊳ U ◦ Vi and U 6 W, where Vi (i ∈ I) and W are given fuzzy
relations on a set A, U is an unknown fuzzy relation on A, ◦ denotes the composition of fuzzy relations, and
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⊲⊳ is one of 6, > and =. Besides, these systems can also include additional inequalities and equations of the
form Vi ◦U−1 ⊲⊳ U−1 ◦ Vi and U−1

6W, where U−1 denotes the converse (inverse, transpose) relation. Such
weakly linear systems, which include only fuzzy relations on a single set, are called homogeneous.

It has been proved in [26] that each homogeneous weakly linear system, with a complete residuated
lattice as the underlying structure of truth values, has the greatest solution, and an algorithm has been
provided for computing this greatest solution. This algorithm is based on the computing of the greatest
post-fixed point, contained in a given fuzzy relation, of an isotone function on the lattice of fuzzy relations,
and works whenever the underlying complete residuated lattice is locally finite, for example, when dealing
with Boolean and Gödel structure. Otherwise, some sufficient conditions under which the algorithm works
have been determined. The mentioned algorithm is iterative, and each its single step can be viewed as
solving a particular linear system, and for this reason these systems were called weakly linear.

In this paper we introduce and study heterogeneous weakly linear systems of fuzzy relation inequalities
and equations, which are composed of fuzzy relations on two possible different sets, and an unknown is a
fuzzy relation between these two sets. Namely, if Vi and Wi (i ∈ I) are respectively given fuzzy relations on
non-empty sets A and B, Z is a given fuzzy relation between A and B, and U is an unknown fuzzy relation
between A and B, by a heterogeneous weakly linear system we mean two systems consisting of inequalities
of the form U−1 ◦ Vi 6 Wi ◦ U−1, U 6 Z, and Vi ◦ U 6 U ◦Wi, U 6 Z, as well as four systems obtained by
combinations of these two systems (for U and U−1).

Our main results are the following. We prove that every heterogeneous weakly linear system has the
greatest solution (cf. Theorem 4.4). Then we define isotone and image-localized functionsφ(i) (i = 1, . . . , 6) on
the lattice of fuzzy relations between A and B such that each of the six heterogeneous weakly linear systems
can be represented in an equivalent form U 6 φ(i)(U), U 6 Z (cf. Theorem 4.5). Such representation enables
us to reduce the problem of computing the greatest solution to a heterogeneous weakly linear system to the
problem of computing the greatest post-fixed point, contained in the fuzzy relation Z, of the function φ(i).
For this purpose we use the iterative method developed in [26], adapted to the heterogeneous case. We also
show how the procedure can be modified to compute the greatest crisp solution of the system. After that, we
introduce the concept of the quotient fuzzy relational system with respect to a fuzzy equivalence, and we
proved several theorems analogous to the well-known homomorphism, isomorphisms and correspondence
theorems from universal algebra (cf. Theorems 6.1–6.5). Using this concept we establish natural relationships
between solutions to heterogeneous and homogeneous weakly linear systems (cf. Theorems 7.2–7.4).

The structure of the paper is as follows. In Section 2 we give definitions of basic notions and notation
concerning fuzzy sets and relations, and in Section 3 we recall some notions, notation and results from [9],
concerning uniform fuzzy relations and related concepts. After that, in Section 4 we recall the definitions of
homogeneous weakly linear systems, and then define the heterogeneous ones and prove their fundamental
properties. Section 5 presents an adaptation of the method developed in [26] for computing the greatest
solution to a heterogeneous weakly linear system. In Section 6 we discuss quotient fuzzy relational systems
and their main properties, and in Section 7 we study relationships between solutions to heterogeneous and
homogeneous weakly linear systems. Finally, Section 8 shows some applications of weakly linear systems
in the theory of fuzzy automata and social network analysis.

It is worth noting that weakly linear systems originate from the theory of fuzzy automata. Solutions to
homogeneous weakly linear systems have been used in [12, 13, 42] for reduction of the number of states,
and solutions to the heterogeneous systems have been used in [10, 11] in the study of simulations and
bisimulations between fuzzy automata.

2. Preliminaries

The terminology and basic notions in this section are according to [1, 2, 21, 22, 28].
We will use complete residuated lattices as the structures of membership (truth) values. Residuated

lattices are a very general algebraic structure and generalize many algebras with very important applications
(see for example [1, 2, 23, 25]). A residuated lattice is an algebraL = (L,∧,∨,⊗,→, 0, 1) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,

2



(L2) (L,⊗, 1) is a commutative monoid with the unit 1,

(L3) ⊗ and→ form an adjoint pair, i.e., they satisfy the adjunction property: for all x, y, z ∈ L,

x ⊗ y 6 z ⇔ x 6 y→ z. (1)

If, in addition, (L,∧,∨, 0, 1) is a complete lattice, then L is called a complete residuated lattice. Emphasizing
their monoidal structure, in some sources residuated lattices are called integral, commutative, residuated
ℓ-monoids [25].

The operations ⊗ (called multiplication) and → (called residuum) are intended for modeling the con-
junction and implication of the corresponding logical calculus, and supremum (

∨
) and infimum (

∧
) are

intended for modeling of the existential and general quantifier, respectively. An operation↔ defined by

x↔ y = (x→ y) ∧ (y→ x), (2)

called biresiduum (or biimplication), is used for modeling the equivalence of truth values.
The most studied and applied structures of truth values, defined on the real unit interval [0, 1] with

x ∧ y = min(x, y) and x ∨ y = max(x, y), are the Łukasiewicz structure (where x ⊗ y = max(x + y − 1, 0),
x → y = min(1 − x + y, 1)), the Goguen (product) structure (x ⊗ y = x · y, x → y = 1 if x 6 y, and = y/x
otherwise), and the Gödel structure (x⊗ y = min(x, y), x→ y = 1 if x 6 y, and = y otherwise). More generally,
an algebra ([0, 1],∧,∨,⊗,→, 0, 1) is a complete residuated lattice if and only if ⊗ is a left-continuous t-norm
and the residuum is defined by x → y =

∨
{u ∈ [0, 1] | u ⊗ x 6 y} (cf. [2]). Another important set of truth

values is the set {a0, a1, . . . , an}, 0 = a0 < · · · < an = 1, with ak ⊗ al = amax(k+l−n,0) and ak → al = amin(n−k+l,n).
A special case of the latter algebras is the two-element Boolean algebra of classical logic with the support
{0, 1}. The only adjoint pair on the two-element Boolean algebra consists of the classical conjunction and
implication operations. This structure of truth values we call the Boolean structure. A residuated lattice L
satisfying x ⊗ y = x ∧ y is called a Heyting algebra, whereas a Heyting algebra satisfying the prelinearity
axiom (x → y) ∨ (y → x) = 1 is called a Gödel algebra. If any finitelly generated subalgebra of a residuated
lattice L is finite, then L is called locally finite. For example, every Gödel algebra, and hence, the Gödel
structure, is locally finite, whereas the product structure is not locally finite.

If L is a complete residuated lattice, then for all x, y, z ∈ L and any {yi}i∈I ⊆ L the following holds:

x 6 y implies x ⊗ z 6 y ⊗ z, (3)

x 6 y ⇔ x→ y = 1, (4)

x ⊗
∨

i∈I

yi =
∨

i∈I

(x ⊗ yi), (5)

x ⊗
∧

i∈I

yi 6

∧

i∈I

(x ⊗ yi), (6)

For other properties of complete residuated lattices we refer to [1, 2].
In the further text L will be a complete residuated lattice. A fuzzy subset of a set A over L, or simply a

fuzzy subset of A, is any function from A into L. Ordinary crisp subsets of A are considered as fuzzy subsets
of A taking membership values in the set {0, 1} ⊆ L. Let f and 1 be two fuzzy subsets of A. The equality of
f and 1 is defined as the usual equality of functions, i.e., f = 1 if and only if f (x) = 1(x), for every x ∈ A.
The inclusion f 6 1 is also defined pointwise: f 6 1 if and only if f (x) 6 1(x), for every x ∈ A. Endowed with
this partial order the set F (A) of all fuzzy subsets of A forms a complete residuated lattice, in which the
meet (intersection)

∧
i∈I fi and the join (union)

∨
i∈I fi of an arbitrary family { fi}i∈I of fuzzy subsets of A are

functions from A into L defined by



∧

i∈I

fi


 (x) =

∧

i∈I

fi(x),



∨

i∈I

fi


 (x) =

∨

i∈I

fi(x),

and the product f ⊗ 1 is a fuzzy subset defined by f ⊗ 1(x) = f (x) ⊗ 1(x), for every x ∈ A.
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Let A and B be non-empty sets. A fuzzy relation between sets A and B (or a fuzzy relation from A to B) is any
function from A × B into L, that is to say, any fuzzy subset of A × B, and the equality, inclusion (ordering),
joins and meets of fuzzy relations are defined as for fuzzy sets. In particular, a fuzzy relation on a set A is any
function from A × A into L, i.e., any fuzzy subset of A × A. The set of all fuzzy relations from A to B will
be denoted by R(A,B), and the set of all fuzzy relations on a set A will be denoted by R(A). The converse
(in some sources called inverse or transpose) of a fuzzy relation R ∈ R(A,B) is a fuzzy relation R−1 ∈ R(B,A)
defined by R−1(b, a) = R(a, b), for all a ∈ A and b ∈ B. A crisp relation is a fuzzy relation which takes values
only in the set {0, 1}, and if R is a crisp relation of A to B, then expressions “R(a, b) = 1” and “(a, b) ∈ R” will
have the same meaning.

For non-empty sets A, B and C, and fuzzy relations R ∈ R(A,B) and S ∈ R(B,C), their composition R ◦ S
is an fuzzy relation from R(A,C) defined by

(R ◦ S)(a, c) =
∨

b∈B

R(a, b) ⊗ S(b, c), (7)

for all a ∈ A and c ∈ C. If R and S are crisp relations, then R ◦ S is the ordinary composition of relations, i.e.,

R ◦ S = {(a, c) ∈ A × C | (∃b ∈ B) (a, b) ∈ R & (b, c) ∈ S} ,

and if R and S are functions, then R ◦ S is an ordinary composition of functions, i.e., (R ◦ S)(a) = S(R(a)), for
every a ∈ A.

Let A, B, C and D be non-empty sets. Then for any R1 ∈ R(A,B), R2 ∈ R(B,C) and R3 ∈ R(C,D) we have

(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3), (8)

and consequently, the parentheses in (8) can be omitted, and for R0 ∈ R(A,B), R1,R2 ∈ R(B,C) and
R3 ∈ R(C,D) we have that

R1 6 R2 implies R−1
1 6 R−1

2 , R0 ◦ R1 6 R0 ◦ R2, and R1 ◦ R3 6 R2 ◦ R3. (9)

Finally, for all R,Ri ∈ R(A,B) (i ∈ I) and S, Si ∈ R(B,C) (i ∈ I) we have that

(R ◦ S)−1 = S−1 ◦ R−1, (10)

R ◦
(∨

i∈I

Si

)
=

∨

i∈I

(R ◦ Si),
(∨

i∈I

Ri

)
◦ S =

∨

i∈I

(Ri ◦ S), (11)

(∨

i∈I

Ri

)−1
=

∨

i∈I

R−1
i . (12)

We note that if A, B and C are finite sets of cardinality |A| = k, |B| = m and |C| = n, then R ∈ R(A,B) and
S ∈ R(B,C) can be treated as k ×m and m × n fuzzy matrices over L, and R ◦ S is the matrix product.

A fuzzy relation E on a set A is

(R) reflexive if E(a, a) = 1, for every a ∈ A;

(S) symmetric if E(a, b) = E(b, a), for all a, b ∈ A;

(T) transitive if E(a, b) ⊗ E(b, c) 6 E(a, c), for all a, b, c ∈ A.

If E is reflexive and transitive, then E ◦ E = E. A fuzzy relation on A which is reflexive, symmetric and
transitive is called a fuzzy equivalence relation. With respect to the ordering of fuzzy relations, the set E(A) of
all fuzzy equivalence relations on a set A is a complete lattice, in which the meet coincide with the ordinary
intersection of fuzzy relations, but in the general case, the join in E(A) does not coincide with the ordinary
union of fuzzy relations.

For a fuzzy equivalence relation E on A and a ∈ A we define a fuzzy subset Ea of A by:

Ea(x) = E(a, x), for every x ∈ A.

4



We call Ea an equivalence class of E determined by a. The set A/E = {Ea | a ∈ A} is called the factor set of A with
respect to E (cf. [1, 8]). Cardinality of the factor set A/E, in notation ind(E), is called the index of E. The same
notation we use for crisp equivalence relations, i.e., for an equivalence relation π on A, the related factor set
is denoted by A/π, the equivalence class of an element a ∈ A is denoted by πa, and the index of π is denoted
by ind(π).

The following properties of fuzzy equivalence relations will be useful in the later work.

Lemma 2.1. Let E be a fuzzy equivalence relation on a set A and let Ê be its crisp part. Then Ê is a crisp equivalence
relation on A, and for every a, b ∈ A the following conditions are equivalent:

(i) E(a, b) = 1;

(ii) Ea = Eb;

(iii) Êa = Êb;

(iv) E(a, c) = E(b, c), for every c ∈ A.

Consequently, ind(E) = ind(Ê).

Note that Êa denotes the crisp equivalence class of Ê determined by a.

A fuzzy equivalence relation E on a set A is called a fuzzy equality if for all x, y ∈ A, E(x, y) = 1 implies x = y.

In other words, E is a fuzzy equality if and only if its crisp part Ê is a crisp equality. For a fuzzy equivalence

relation E on a set A, a fuzzy relation Ẽ defined on the factor set A/E by

Ẽ(Ex,Ey) = E(x, y),

for all x, y ∈ A, is well-defined, and it is a fuzzy equality on A/E.

3. Uniform fuzzy relations

In this section we recall some notions, notation and results from [9], concerning uniform fuzzy relations
and related concepts.

Let A and B be non-empty sets and let E and F be fuzzy equivalence relations on A and B, respectively.
If a fuzzy relation R ∈ R(A,B) satisfies

(EX1) R(a1, b) ⊗ E(a1, a2) 6 R(a2, b), for all a1, a2 ∈ A and b ∈ B,

then it is called extensional with respect to E, and if it satisfies

(EX2) R(a, b1) ⊗ F(b1, b2) 6 R(a, b2), for all a ∈ A and b1, b2 ∈ B,

then it is called extensional with respect to F. If R is extensional with respect to E and F, and it satisfies

(PFF) R(a, b1) ⊗ R(a, b2) 6 F(b1, b2), for all a ∈ A and b1, b2 ∈ B,

then it is called a partial fuzzy function with respect to E and F.

Partial fuzzy functions were introduced by Klawonn [27], and studied also by Demirci [14, 15]. By the
adjunction property and symmetry, conditions (EX1) and (EX2) can be also written as

(EX1’) E(a1, a2) 6 R(a1, b)↔ R(a2, b), for all a1, a2 ∈ A and b ∈ B;

(EX2’) F(b1, b2) 6 R(a, b1)↔ R(a, b2), for all a ∈ A and b1, b2 ∈ B.
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For any fuzzy relation R ∈ R(A,B) we can define a fuzzy equivalence relation ER
A

on A by

ER
A(a1, a2) =

∧

b∈B

R(a1, b)↔ R(a2, b), (13)

for all a1, a2 ∈ A, and a fuzzy equivalence relation ER
B on B by

ER
B(b1, b2) =

∧

a∈A

R(a, b1)↔ R(a, b2), (14)

for all b1, b2 ∈ B. They will be called fuzzy equivalence relations on A and B induced by R, and in particular,
ER

A
will be called the kernel of R, and ER

B
the co-kernel of R. According to (EX1’) and (EX2’), ER

A
and ER

B
are

the greatest fuzzy equivalence relations on A and B, respectively, such that R is extensional with respect
to them.

A fuzzy relation R ∈ R(A,B) is called just a partial fuzzy function if it is a partial fuzzy function with
respect to ER

A
and ER

B
[9]. Partial fuzzy functions were characterized in [9] as follows:

Theorem 3.1. Let A and B be non-empty sets and let R ∈ R(A,B) be a fuzzy relation. Then the following conditions
are equivalent:

(i) R is a partial fuzzy function;

(ii) R−1 is a partial fuzzy function;

(iii) R−1 ◦ R 6 ER
B ;

(iv) R ◦ R−1
6 ER

A
;

(v) R ◦ R−1 ◦ R 6 R.

A fuzzy relation R ∈ R(A,B) is called anL-function if for each a ∈ A there exists b ∈ B such that R(a, b) = 1
[16], and it is called surjective if for each b ∈ B there exists a ∈ A such that R(a, b) = 1, i.e., if R is an
L-function. For a surjective fuzzy relation R ∈ R(A,B) we also say that it is a fuzzy relation of A onto B. If
R is an L-function and it is surjective, i.e., if both R and R−1 are L-functions, then R is called a surjective
L-function.

Let us note that a fuzzy relation R ∈ R(A,B) is an L-function if and only if there exists a function
ψ : A→ B such that R(a, ψ(a)) = 1, for all a ∈ A (cf. [15, 16]). A function ψ with this property we will call a
crisp description of R, and we will denote by CR(R) the set of all such functions.

An L-function which is a partial fuzzy function with respect to E and F is called a perfect fuzzy function
with respect to E and F. Perfect fuzzy functions were introduced and studied by Demirci [14, 15]. A fuzzy
relation R ∈ R(A,B) which is a perfect fuzzy function with respect to ER

A
and ER

B
will be called just a perfect

fuzzy function.
Let A and B be non-empty sets and let E be a fuzzy equivalence relation on B. An ordinary function

ψ : A→ B is called E-surjective if for any b ∈ B there exists a ∈ A such that E(ψ(a), b) = 1. In other words, ψ
is E-surjective if and only if ψ ◦ E♯ is an ordinary surjective function of A onto B/E, where E♯ : B→ B/E is a

function given by E♯(b) = Eb, for each b ∈ B. It is clear thatψ is an E-surjective function if and only if its image
Imψ has a non-empty intersection with every equivalence class of the crisp equivalence relation ker(E).

Let A and B be non-empty sets and let R ∈ R(A,B) be a partial fuzzy function. If, in addition, R is a
surjective L-function, then it will be called a uniform fuzzy relation [9]. In other words, a uniform fuzzy
relation is a perfect fuzzy function having the additional property that it is surjective. A uniform fuzzy
relation that is also a crisp relation is called a uniform relation. The following characterizations of uniform
fuzzy relations provided in [9] will be used in the further text.

Theorem 3.2. Let A and B be non-empty sets and let R ∈ R(A,B) be a fuzzy relation. Then the following conditions
are equivalent:

6



(i) R is a uniform fuzzy relation;

(ii) R−1 is a uniform fuzzy relation;

(iii) R is a surjective L-function and

R ◦ R−1 ◦ R = R; (15)

(iv) R is a surjective L-function and

ER
A = R ◦ R−1; (16)

(v) R is a surjective L-function and

ER
B = R−1 ◦ R; (17)

(vi) R is an L-function, and for all ψ ∈ CR(R), a ∈ A and b ∈ B we have that ψ is ER
B

-surjective and

R(a, b) = ER
B(ψ(a), b); (18)

(vii) R is an L-function, and for all ψ ∈ CR(R) and a1, a2 ∈ A we have that ψ is ER
B

-surjective and

R(a1, ψ(a2)) = ER
A(a1, a2). (19)

Corollary 3.3. [9] Let A and B be non-empty sets, and let ϕ ∈ F (A × B) be a uniform fuzzy relation. Then for all
ψ ∈ CR(ϕ) and a1, a2 ∈ A we have that

E
ϕ
A

(a1, a2) = E
ϕ
B

(ψ(a1), ψ(a2)). (20)

Let A and B be non-empty sets. According to Theorem 3.2, a fuzzy relation R ∈ R(A,B) is a uniform
fuzzy relation if and only if its inverse relation R−1 is a uniform fuzzy relation. Moreover, by (iv) and (v) of
Theorem 3.2, we have that the kernel of R−1 is the co-kernel of R, and conversely, the co-kernel of R−1 is the
kernel of R, that is

ER−1

B = ER
B and ER−1

A = ER
A.

The next theorem proved in [9] will be very useful in our further work.

Theorem 3.4. Let A and B be non-empty sets, let R ∈ R(A,B) be a uniform fuzzy relation, let E = ER
A

and F = ER
B

,

and let a function R̃ : A/E→ B/F be defined by

R̃(Ea) = Fψ(a), for any a ∈ A and ψ ∈ CR(R). (21)

Then R̃ is a well-defined function (it does not depend on the choice of ψ ∈ CR(R) and a ∈ A), it is a bijective function

of A/E onto B/F, and (R̃)−1 = R̃−1.

4. Weakly linear systems

Now we start with weakly linear systems of fuzzy relation inequalities and equations. First we recall
some concepts from [26].

Let A be a non-empty set (not necessarily finite), let {Vi}i∈I be a given family of fuzzy relations on A
(where I is also not necessarily finite), and let W be a given fuzzy relation on A.

In [26] the following systems of fuzzy relation inequalities and equations have been introduced:

U ◦ Vi 6 Vi ◦U (i ∈ I), U 6W ; (wl1-1)

Vi ◦U 6 U ◦ Vi (i ∈ I), U 6W ; (wl1-2)

U ◦ Vi = Vi ◦U (i ∈ I), U 6W ; (wl1-3)

7



U ◦ Vi 6 Vi ◦U, U−1 ◦ Vi 6 Vi ◦U−1, (i ∈ I), U 6W , U−1
6W ; (wl1-4)

Vi ◦U 6 U ◦ Vi, Vi ◦U−1
6 U−1 ◦ Vi, (i ∈ I), U 6W , U−1

6W ; (wl1-5)

U ◦ Vi = Vi ◦U, U−1 ◦ Vi = Vi ◦U−1 (i ∈ I), U 6W , U−1
6W ; (wl1-6)

where U is an unknown fuzzy relation on A. Clearly, a fuzzy relation R ∈ R(A) is a solution to (wl1-4) (resp.
(wl1-5), (wl1-6)) if and only if both R and R−1 are solutions to (wl1-1) (resp. (wl1-2), (wl1-3)), and moreover, a
symmetric fuzzy relation is a solution to (wl1-4) (resp. (wl1-5), (wl1-6)) if and only if it is solution to (wl1-1)
(resp. (wl1-2), (wl1-3)). Clearly, if W(a1, a2) = 1, for all a1, a2 ∈ A, then the inequality U 6W becomes trivial,
and it can be omitted. Systems (wl1-1)–(wl1-6) were called in [26] weakly linear. More precisely, in the present
paper we will call them homogeneous weakly linear systems. For the sake of convenience, for each t ∈ {1, . . . , 6},
system (wl1-t) will be denoted by WL1-t(A, I,Vi,W). If W(a1, a2) = 1, for all a1, a2 ∈ A, then system (wl1-t) is
denoted simply by WL1-t(A, I,Vi).

It has been proven in [26] that each of these systems has the greatest solution, and if the given fuzzy
relation W is a fuzzy quasi-order, then the greatest solutions to (wl1-1), (wl1-2) and (wl1-3) are also fuzzy
quasi-orders, and if W is a fuzzy equivalence, then the greatest solutions to (wl1-4), (wl1-5) and (wl1-6) are
fuzzy equivalences. In the same paper a method for computing these greatest solutions has been developed,
and it comes down to the computing of the greatest post-fixed point, contained in a given fuzzy relation,
of an isotone function on the lattice of fuzzy relations.

As we have already said, the purpose of this paper is to introduce the heterogeneous weakly linear sys-
tems, to prove that each of these heterogeneous systems also has the greatest solution (which may be empty),
and to show that the method from [26] can be adapted to compute the greatest solutions to heterogeneous
weakly linear systems.

In the further text, let A and B be non-empty sets (not necessarily finite), let {Vi}i∈I be a given family of
fuzzy relations on A and {Wi}i∈I a given family of fuzzy relations on B (where I is also not necessarily finite),
and let Z be a given fuzzy relation between A and B.

We will consider systems

U−1 ◦ Vi 6Wi ◦U−1 (i ∈ I), U 6 Z ; (wl2-1)

Vi ◦U 6 U ◦Wi (i ∈ I), U 6 Z ; (wl2-2)

and the systems obtained by combinations of (wl2-1) and (wl2-2) (for U and U−1)

U−1 ◦ Vi 6Wi ◦U−1 U ◦Wi 6 Vi ◦U (i ∈ I), U 6 Z; (wl2-3)

Vi ◦U 6 U ◦Wi Wi ◦U−1
6 U−1 ◦Vi (i ∈ I), U 6 Z; (wl2-4)

Vi ◦U = U ◦Wi (i ∈ I), U 6 Z; (wl2-5)

U−1 ◦ Vi =Wi ◦U−1 (i ∈ I), U 6 Z; (wl2-6)

where U is an unknown fuzzy relation between A and B. Systems (wl2-1)–(wl2-6) will be called heterogeneous
weakly linear systems. For the sake of convenience, for each t ∈ {1, . . . , 6}, system (wl2-t) will be denoted by
WL2-t(A,B, I,Vi,Wi,Z). If Z(a, b) = 1, for all a ∈ A and b ∈ B, then system (wl2-t) will be denoted simply by
WL2-t(A,B, I,Vi,Wi).

In a very simple way we can prove the following two propositions.

Proposition 4.1. Let A be a non-empty set, let {Vi}i∈I be a family of fuzzy relations on A, and let W be a fuzzy
relation on A. For an arbitrary fuzzy relation R ∈ R(A) the following is true:

(a) R is a solution to WL1−1(A, I,Vi,W) if and only if R−1 is a solution to WL1−2(A, I,V−1
i
,W−1);

(b) R is a solution to WL1−4(A, I,Vi,W) if and only if R is a solution to WL1−5(A, I,V−1
i
,W−1).

Proposition 4.2. Let A and B be non-empty sets, let {Vi}i∈I be a family of fuzzy relations on A and {Wi}i∈I a family
of fuzzy relations on B, and let Z be a fuzzy relation between A and B. For an arbitrary fuzzy relation R ∈ R(A,B)
the following is true:
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(a) R is a solution to WL2−1(A,B, I,Vi,Wi,Z) if and only if it is a solution to WL2−2(A,B, I,V−1
i
,W−1

i
,Z);

(b) R is a solution to WL2−3(A,B, I,Vi,Wi,Z) if and only if it is a solution to WL2−4(A,B, I,V−1
i
,W−1

i
,Z);

(c) R is a solution to WL2−5(A,B, I,Vi,Wi,Z) if and only if it is a solution to WL2−6(A,B, I,V−1
i
,W−1

i
,Z);

(d) R is a solution to WL2−3(A,B, I,Vi,Wi,Z) if and only if R−1 is a solution to WL2−4(B,A, I,Wi,Vi,Z).

The statement (a) in Proposition 4.1 says that systems (wl1-1) and (wl1-2) are dual, in the sense that for any
universally valid statement on the system (wl1-1) there is the corresponding universally valid statement on
the system (wl1-2), and vice versa. Similarly, there is a duality between systems (wl1-4) and (wl1-5), (wl2-1)
and (wl2-2), (wl2-3) and (wl2-4), and (wl2-5) and (wl2-6). For this reason, in the further text we will deal
mainly with the systems (wl1-1), (wl1-4), (wl2-1), (wl2-3) and (wl2-5).

It is also easy to verify that the following is true.

Proposition 4.3. Let R and S be fuzzy relations such that R is a solution to system WL2−3(A,B, I,Vi,Wi,Z) and S
is a solution to system WL2−3(B,C, I,Wi,Xi,Y). Then R ◦ S is a solution to system WL2−3(A,C, I,Vi,Xi,Z ◦ Y).

Now we prove the following fundamental theorem.

Theorem 4.4. All heterogeneous weakly linear systems have the greatest solutions (which may be empty).
If Z is a partial fuzzy function, then the greatest solutions to (wl2-3) and (wl2-4) are also partial fuzzy functions.

Proof. For each t ∈ {1, . . . , 6}, it is easy to check that the join (union) of an arbitrary family of fuzzy relations
which are solutions to the system (wl2-t) is also a solution to (wl2-t), and consequently, the join of all solutions
to (wl2-t) is the greatest solution to (wl2-t).

Next, let Z be a partial fuzzy function and R be the greatest solution to (wl2-t), where t = 3 or t = 4. Then
R ◦R−1 ◦R 6 Z ◦Z−1 ◦Z 6 Z, and by Proposition 4.3 we have that R ◦R−1 ◦R is also a solution to (wl2-t). As
R is the greatest solution to this system, we conclude that R ◦ R−1 ◦ R 6 R, which means that R is a partial
fuzzy function.

Next, let A and B be non-empty sets and let V ∈ R(A), W ∈ R(B) and Z ∈ R(A,B). The right residual of Z
by V is a fuzzy relation Z/V ∈ R(A,B) defined by

(Z/V)(a, b) =
∧

a′∈A

( V(a′, a)→ Z(a′, b) ), (22)

for all a ∈ A and b ∈ B, and the left residual of Z by W is a fuzzy relation Z\W ∈ R(A,B) defined by

(Z\W)(a, b) =
∧

b′∈B

( W(b, b′)→ Z(a, b′) ), (23)

for all a ∈ A and b ∈ B. In the case when A = B, these two concepts become the well-known concepts of right
and left residuals of fuzzy relations on a set (cf. [26]).

According to the well-known results by E. Sanchez (cf. [39–41]), the right residual Z/V of Z by V is the
greatest solution to the fuzzy relation inequality V ◦U 6 Z, where U is an unknown fuzzy relation between
A and B. Moreover, the set of all solutions to the inequality V ◦U 6 Z is the principal ideal of R(A,B) gene-
rated by Z/V. Analogously, the left residual Z\W of Z by W is the greatest solution to the fuzzy relation
inequality U ◦W 6 Z, where U is an unknown fuzzy relation between A and B, and the set of all solutions
to the inequality U ◦W 6 Z is the principal ideal of R(A,B) generated by Z\W.

Consequently, for given families of fuzzy relations {Vi}i∈I ⊆ R(A), {Wi}i∈I ⊆ R(B), and {Zi}i∈I ⊆ R(A,B),
and an unknown fuzzy relation U in R(A,B), the greatest solution to the system Vi ◦U 6 Zi (i ∈ I) is

∧

i∈I

Zi/Vi,
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i.e., the intersection of the greatest solutions to the individual inequalities Vi ◦ U 6 Zi, i ∈ I, and the the
greatest solution to the system U ◦Wi 6 Zi (i ∈ I) is

∧

i∈I

Zi\Wi,

i.e., the intersection of the greatest solutions to the individual inequalities U ◦Wi 6 Zi, i ∈ I.
Define functions φ(t) : R(A,B)→ R(A,B), for 1 6 t 6 6, as follows:

φ(1)(R) =
∧

i∈I

[(Wi ◦ R−1)\Vi]
−1 (24)

φ(2)(R) =
∧

i∈I

(R ◦Wi)/Vi (25)

φ(3)(R) =
∧

i∈I

[(Wi ◦ R−1)\Vi]
−1 ∧ [(Vi ◦ R)\Wi] = φ

(1)(R) ∧ [φ(1)(R−1)]−1 (26)

φ(4)(R) =
∧

i∈I

[(R ◦Wi)/Vi] ∧ [(R−1 ◦ Vi)/Wi]
−1 = φ(2)(R) ∧ [φ(2)(R−1)]−1 (27)

φ(5)(R) =
∧

i∈I

[(R ◦Wi)/Vi] ∧ [(Vi ◦ R)\Wi] = φ
(2)(R) ∧ [φ(1)(R−1)]−1 (28)

φ(6)(R) =
∧

i∈I

[(Wi ◦ R−1)\Vi]
−1 ∧ [(R−1 ◦ Vi)/Wi]

−1 = φ(1)(R) ∧ [φ(2)(R−1)]−1 (29)

for each R ∈ R(A,B). Notice that in the expression “φ(t)(R−1)” (t ∈ {1, 2}) we denote by φ(t) a function from
R(B,A) into itself.

First we show that systems (wl2-1)–(wl2-6) can be represented in equivalent forms, using the functions
φ(t), 1 6 t 6 6, in the following way.

Theorem 4.5. For every t ∈ {1, . . . , 6}, system (w2-t) is equivalent to system

U 6 φ(t)(U), U 6 Z. (30)

Proof. We will prove only the case t = 1. The case t = 2 is dual to the first one, whereas all other assertions
follow by the first two, according to (26)–(29).

For an arbitrary fuzzy relation U ∈ R(A,B) we have that U−1 ◦ Vi 6Wi ◦U−1 if and only if

U−1(b, a) ⊗ Vi(a, a
′) 6 (Wi ◦U−1)(b, a′),

for all a, a′ ∈ A, b ∈ B and i ∈ I. According to the adjunction property, this is equivalent to

U−1(b, a) 6
∧

a′∈A

[Vi(a, a
′)→ (Wi ◦U−1(b, a′))] = ((Wi ◦U−1)\Vi)(b, a)

for all a ∈ A, b ∈ B and i ∈ I, which is further equivalent to

U(a, b) 6
∧

i∈I

[(Wi ◦U−1)\Vi]
−1(a, b) = (φ(1)(U))(a, b)

for all a ∈ A and b ∈ B. Therefore, U is a solution to (wl2-1) if and only if it is a solution to (30).

5. Computing the greatest solutions

Here we show that the method developed in [26], for computing the greatest solutions to homogeneous
weakly linear systems of fuzzy relation inequalities, can be adapted and used for computing the greatest so-
lutions to heterogeneous weakly linear systems. The mentioned method is based on computing the greatest
post-fixed points of an isotone function on the lattice of fuzzy relations.
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Let A and B be non-empty sets and let φ : R(A,B) → R(A,B) be an isotone function, which means that
R 6 S implies φ(R) 6 φ(S), for all R, S ∈ R(A,B). A fuzzy relation R ∈ R(A,B) is called a post-fixed point of
φ if R 6 φ(R). The well-known Knaster-Tarski fixed point theorem (stated and proved in a more general
context, for complete lattices) asserts that the set of all post-fixed points ofφ form a complete lattice (cf. [37]).
Moreover, for any fuzzy relation Z ∈ R(A,B) we have that the set of all post-fixed points of φ contained in
Z is non-empty, because it always contains the least element of R(A,B) (the empty relation), and it is also a
complete lattice. According to Theorem 4.5, our main task is to find an effective procedure for computing
the greatest post-fixed point of the functionφ(t) contained in the given fuzzy relation Z, for each t ∈ {1, . . . , 6}.

Let φ : R(A,B)→ R(A,B) be an isotone function and Z ∈ R(A,B). We define a sequence {Rk}k∈N of fuzzy
relations from R(A,B) by

R1 = Z, Rk+1 = Rk ∧ φ(Rk), for each k ∈N. (31)

The sequence {Rk}k∈N is obviously descending. If we denote by R̂ the greatest post-fixed point ofφ contained
in Z, we can easily verify that

R̂ 6
∧

k∈N

Rk. (32)

Now two very important questions arise. First, under what conditions the equality holds in (32)? Even
more important question is: under what conditions the sequence {Rk}k∈N is finite? If this sequence is finite,
then it is not hard to show that there exists k ∈N such that Rk = Rm, for every m > k, i.e., there exists k ∈N
such that the sequence stabilizes on Rk. We can recognize that the sequence has stabilized when we find the
smallest k ∈ N such that Rk = Rk+1. In this case R̂ = Rk, and we have an algorithm which computes R̂ in a
finite number of steps.

Some conditions under which equality holds in (32) or the sequence is finite were found in [26], in the
case which considers fuzzy relations on a single set. It is not hard to verify that the same results are also
valid when fuzzy relations between two sets are considered. For the sake of completeness we state these
results concerning fuzzy relations between two sets.

A sequence {Rk}k∈N of fuzzy relations fromR(A,B) is called image-finite if the set
⋃

k∈N Im(Rk) is finite, and
it can be easily shown that this sequence is image-finite if and only if it is finite. Furthermore, the function
φ : R(A,B) → R(A,B) is called image-localized if there exists a finite subset K ⊆ L such that for every fuzzy
relation R ∈ R(A,B) we have

Im(φ(R)) ⊆ 〈K ∪ Im(R)〉, (33)

where 〈K ∪ Im(R)〉 denotes the subalgebra of L generated by the set K ∪ Im(R). Such K will be called a
localization set of the function φ.

The following theorem can be proved in the same way as Theorem 5.2 in [26].

Theorem 5.1. Let the function φ be image-localized, let K be its localization set, let Z ∈ R(A,B), and let {Rk}k∈N be
a sequence of fuzzy relations in R(A,B) defined by (31). Then

⋃

k∈N

Im(Rk) ⊆ 〈K ∪ Im(Z)〉. (34)

If, moreover, 〈K ∪ Im(Z)〉 is a finite subalgebra of L, then the sequence {Rk}k∈N is finite.

Further we consider φ(t), for t ∈ {1, . . . , 6}, defined in (24)–(29). We prove the following.

Theorem 5.2. All functionsφ(t), for t ∈ {1, . . . , 6}, are isotone, and if A, B and I are finite sets, then all these functions
are image-localized.
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Proof. We will prove only the statement concerning the function φ(1). The validity of the statement concern-
ing the function φ(2) then follows because of duality with the first one, whereas all other statements follow
by the first two, according to (26)–(29).

Let R1,R2 ∈ R(A,B) such that R1 6 R2, and consider the following systems of fuzzy relation inequalities:

U−1 ◦ Vi 6Wi ◦ R−1
1 , i ∈ I; (35)

U−1 ◦ Vi 6Wi ◦ R−1
2 , i ∈ I, (36)

where U is an unknown fuzzy relation between A and B. As we mentioned earlier, fuzzy relations

φ(1)(R1) =
∧

i∈I

[(Wi ◦ R−1
1 )\Vi]

−1 and φ(1)(R2) =
∧

i∈I

[(Wi ◦ R−1
2 )\Vi]

−1

are respectively the greatest solutions to (35) and (36), and by R1 6 R2 it follows Wi ◦ R−1
1
6 Wi ◦ R−1

2 , for

each i ∈ I, so every solution to (35) is a solution to (36). Consequently, φ(1)(R1) is a solution to (36), which
means that φ(1)(R1) 6 φ(1)(R2). Therefore, φ(1) is an isotone function.

If A, B and I are finite sets, then the set K =
⋃

i∈I(Im(Vi) ∪ Im(Wi)) is also finite, and for each R ∈ R(A,B)
we obviously have that Im(φ(1)(R)) ⊆ 〈K

⋃
Im(R)〉. This means that the function φ(1) is image-localized.

Now we are ready to state and prove one of the main theorems of the paper.

Theorem 5.3. Let A, B and I be finite sets, let φ = φ(t), for some t ∈ {1, . . . , 6}, and let {Rk}k∈N be the sequence of
fuzzy relations from R(A,B) defined by (31).

If 〈Im(Z) ∪
⋃

i∈I( Im(Vi) ∪ Im(Wi) )〉 is a finite subalgebra of L, then the following is true:

(a) the sequence {Rk}k∈N is finite and descending, and there is the least natural number k such that Rk = Rk+1;

(b) Rk is the greatest solution to system (wl2-t).

Proof. Let 〈Im(Z) ∪
⋃

i∈I( Im(Vi) ∪ Im(Wi) )〉 be a finite subalgebra of L.
(a) According to Theorems 5.2 and 5.1, the sequence {Rk}k∈N is finite and descending, so there are k,m ∈N

such that Rk = Rk+m, whence Rk+1 6 Rk = Rk+m 6 Rk+1. Thus, there is k ∈ N such that Rk = Rk+1, and conse-
quently, there is the least natural number having this property.

(b) Let k be the least natural number such that Rk = Rk+1. It is clear that Rk 6 Z. Moreover, we have that
Rk = Rk+1 6 φ(t)(Rk), and according Theorem 4.5 we obtain that Rk is a solution to the system (wl2-t).

Let R be an arbitrary solution to the system (wl2-t). First, we have that R 6 Z = R1. Next, suppose that
R 6 Rm, for some m ∈ N. Then R 6 φ(t)(R) 6 φ(t)(Rm), so R 6 Rm ∧ φ(t)(Rm) = Rm+1. Therefore, by induction
we conclude that R 6 Rm, for every m ∈N, and consequently, R 6 Rk. Hence, we have proved that Rk is the
greatest solution to the system (wl2-t).

Next, we will consider the case when L = (L,∧,∨,⊗,→, 0, 1) is a complete residuated lattice satisfying
the following conditions:

x ∨
(∧

i∈I

yi

)
=

∧

i∈I

(x ∨ yi), (37)

x ⊗
(∧

i∈I

yi

)
=

∧

i∈I

(x ⊗ yi), (38)

for all x ∈ L and {yi}i∈I ⊆ L. Let us note that if L = ([0, 1],∧,∨,⊗,→, 0, 1), where [0, 1] is the real unit interval
and ⊗ is a left-continuous t-norm on [0, 1], then (37) follows immediately by linearity of L, and L satisfies
(38) if and only if⊗ is a continuous t-norm, i.e., if and only ifL is a BL-algebra (cf. [1, 2]). Therefore, conditions
(37) and (38) hold for every BL-algebra on the real unit interval. In particular, the Łukasiewicz, Goguen
(product) and Gödel structures fulfill (37) and (38).

Under these conditions we have the following.
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Theorem 5.4. Letφ = φ(t), for some t ∈ {1, . . . , 6}, let {Rk}k∈N be the sequence of fuzzy relations fromR(A,B) defined
by (31), and let L be a complete residuated lattice satisfying (37) and (38).

Then the fuzzy relation

R =
∧

k∈N

Rk,

is the greatest solution to system (wl2-t).

Proof. We will prove only the case t = 1. All other cases can be proved similarly.
First we recall a claim proved in [13], which says that if (37) is satisfied, then for all descending sequences

{xk}k∈N, {yk}k∈N ⊆ L we have

∧

k∈N

(xk ∨ yk) =
(∧

k∈N

xk

)
∨

(∧

k∈N

yk

)
. (39)

Now, for arbitrary i ∈ I, a ∈ A and b ∈ B we have that

(∧

k∈N

(Wi ◦ R−1
k )

)
(b, a) =

∧

k∈N

(Wi ◦ R−1
k )(b, a) =

∧

k∈N

(∨

b′∈B

Wi(b, b
′) ⊗ R−1

k (b′, a)

)

=
∨

b′∈B

(∧

k∈N

Wi(b, b
′) ⊗ R−1

k (b′, a)

)
(by (39))

=
∨

b′∈B

(
Wi(b, b

′) ⊗
(∧

k∈N

R−1
k (b′, a)

))
(by (38))

=
∨

b′∈B

(
Wi(b, b

′) ⊗ R−1(b′, a)
)
= (Wi ◦ R−1)(b, a),

which means that
∧

k∈N

Wi ◦ R−1
k =Wi ◦ R−1,

for every i ∈ I. The use of condition (39) is justified by the facts that B is finite, and that {R−1
k

(b′, a)}k∈N is a

descending sequence, so {Wi(b, b′) ⊗ R−1
k

(b′, a)}k∈N is also a descending sequence.
Next, for all i ∈ I and k ∈N we have that

R 6 Rk+1 6 φ
(1)(Rk) = [(Wi ◦ R−1

k )\Vi]
−1,

which is equivalent to

R−1 ◦ Vi 6Wi ◦ R−1
k .

As the last inequality holds for every k ∈N, we have that

R−1 ◦ Vi 6

∧

k∈N

Wi ◦ R−1
k =Wi ◦ R−1,

for every i ∈ I. Therefore, R is solution to (wl2-1).
Let S ∈ R(A,B) be an arbitrary fuzzy relation which is solution to (wl2-1). According to Theorem 4.5,

S 6 φ(1)(S) and S 6 Z = R1. By induction we can easily prove that S 6 Rk for every k ∈ N, and therefore,
S 6 R. This means that R is the greatest solution to (wl2-1).

13



In some situations we do not need solutions to systems of fuzzy relation equations and inequalities that
are fuzzy relations, but those that are ordinary crisp relations. Moreover, in cases where our algorithms for
computing the greatest solutions to weakly linear systems fail to terminate in a finite number of steps, it is
reasonable to search for the greatest crisp solutions to these systems. They can be understood as some kind
of “approximations” of the greatest fuzzy solutions. It has been shown in [26] that algorithms for computing
the greatest fuzzy solutions to homogeneous weakly linear systems can be modified to compute the greatest
crisp solutions to these systems. Exactly the same way of modification is also applicable to heterogeneous
weakly linear systems. Nevertheless, for the sake of completeness, we will present the method for computing
the greatest solutions to heterogeneous weakly linear systems.

Let A and B be non-empty finite sets, and letRc(A,B) be the set of all crisp relations fromR(A,B). It is easy
to verify that Rc(A,B) is a complete sublattice of R(A,B), i.e., the meet and the join in R(A,B) of an arbitrary
family of crisp relations from Rc(A,B) are also crisp relations (in fact, they coincide with the ordinary inter-
section and union of crisp relations). Moreover, for any fuzzy relation R ∈ R(A,B) we have that Rc ∈ Rc(A,B),
where Rc denotes the crisp part of a fuzzy relation R (in some sources called the kernel of R), i.e., a function
Rc : A × B→ {0, 1} defined by Rc(a, b) = 1, if R(a, b) = 1, and Rc(a, b) = 0, if R(a, b) < 1, for all a ∈ A and b ∈ B.
Equivalently, Rc is considered as an ordinary crisp relation between A and B given by Rc = {(a, b) ∈ A × B |
R(a, b) = 1}.

For each function φ : R(A,B)→ R(A,B) we define a function φc : Rc(A,B)→ Rc(A,B) by

φc(R) = (φ(R))c, for any R ∈ Rc(A,B).

If φ is isotone, then it can be easily shown that φc is also an isotone function.
We have that the following is true.

Proposition 5.5. Let A and B be non-empty finite sets, let φ : R(A,B) → R(A,B) be an isotone function and let
W ∈ R(A,B) be a given fuzzy relation. A crisp relation ̺ ∈ Rc(A,B) is the greatest crisp solution in R(A,B) to the
system

U 6 φ(U), U 6W, (40)

if and only if it is the greatest solution in Rc(A,B) to the system

ξ 6 φc(ξ), ξ 6Wc, (41)

where U is an unknown fuzzy relation and ξ is an unknown crisp relation.
Furthermore, a sequence {̺k}k∈N ⊆ R(A,B) defined by

̺1 =Wc, ̺k+1 = ̺k ∧ φ
c(̺k), for every k ∈N, (42)

is a finite descending sequence of crisp relations, and the least member of this sequence is the greatest solution to the
system (41) in Rc(A,B).

Taking φ to be any of the functions φ(t), for t ∈ {1, . . . , 6}, Proposition 5.5 gives algorithms for computing
the greatest crisp solutions to heterogeneous weakly linear systems. As we have seen in Proposition 5.5, these
algorithms always terminate in a finite number of steps, independently of the properties of the underlying
structure of truth values, and they could be used in cases when algorithms for computing the greatest fuzzy
solutions do not terminate in a finite number of steps. However, the next example shows that there are cases
when heterogeneous weakly linear systems have non-empty fuzzy solutions, but they do not have non-
empty crisp solutions.

Example 5.6. Let L be the Gödel structure, let A and B be sets with |A| = 3 and |B| = 2, and let fuzzy
relations V1,V2 ∈ R(A), W1,W2 ∈ R(B), and Z ∈ R(A,B) be represented by the following fuzzy matrices:

V1 =




1 0.3 0.4
0.5 1 0.3
0.4 0.6 0.7


 , V2 =



0.5 0.6 0.2
0.6 0.3 0.4
0.7 0.7 1


 , W1 =

[
1 0.6

0.6 0.7

]
, W2 =

[
0.6 0.6
0.7 1

]
, Z =



1 1
1 1
1 1


 .
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Using algorithms based on Theorem 5.3 we obtain that the greatest solutions to (wl2-1)–(wl2-6) are respec-
tively given by the fuzzy matrices

R(1) =




1 0.7
1 0.7

0.6 1


 , R(2) =




1 0.7
1 0.7

0.7 1


 , R(3) =




1 0.6
1 0.6

0.6 1


 , R(4) =




1 0.7
1 0.7

0.7 1


 , R(5) =




1 0.6
1 0.6

0.7 1


 , R(6) =




1 0.7
1 0.7

0.6 1


 .

On the other hand, using the algorithms for computing the greatest crisp solutions, we obtain that there are no
non-empty crisp solutions to (wl2-1)– (wl2-6).

It is worth noting that functions (φ(t))c, for all t ∈ {1, . . . , 6}, can be characterized as follows:

(a, b) ∈ (φ(1))c(̺) ⇔ (∀i ∈ I)(∀a′ ∈ A) Vi(a, a
′) 6 (Wi ◦ ̺

−1)(b, a′),

(a, b) ∈ (φ(2))c(̺) ⇔ (∀i ∈ I)(∀a′ ∈ A) Vi(a
′, a) 6 (̺ ◦Wi)(a

′, b),

(φ(3))c(̺) = (φ(1))c(̺) ∧ [(φ(1))c(̺−1)]−1, (φ(4))c(̺) = (φ(2))c(̺) ∧ [(φ(2))c(̺−1)]−1,

(φ(5))c(̺) = (φ(2))c(̺) ∧ [(φ(1))c(̺−1)]−1, (φ(6))c(̺) = (φ(1))c(̺) ∧ [(φ(2))c(̺−1)]−1,

for all ̺ ∈ Rc(A,B), a ∈ A and b ∈ B.

6. Quotient fuzzy relational systems

Loosely speaking, a relational system is a pair (A,R) consisting of a non-empty set A and a non-empty
familyR of finitary relations on A which may have different arities. Two relational systems (A,R1) and (B,R2)
are considered to be of the same type if a bijective function between R1 and R2 is given that preserves arity.
When we deal only with binary relations, then relational systems (A,R1) and (B,R2) are of the same type if
R1 and R2 can be written as R1 = {Vi}i∈I and R2 = {Wi}i∈I, for some non-empty index set I. In this case, the
bijective function that we have mentioned above is just the function that maps Vi to Wi, for each i ∈ I.

Here we consider relational systems in the fuzzy context, and we work only with binary fuzzy relations.
We define a fuzzy relational system as a pairA = (A, {Vi}i∈I), where A is a non-empty set and {Vi}i∈I is a non-
empty family of fuzzy relations on A, and by fuzzy relational systems of the same type we will mean systems
of the formA = (A, {Vi}i∈I) andB = (B, {Wi}i∈I). To avoid writing multiple indices, the fuzzy relational system
A = (A, {Vi}i∈I) will be sometimes denoted by A = (A, I,Vi). All fuzzy relational systems discussed in the
sequel will be of the same type.

Let A = (A, I,Vi) and B = (B, I,Wi) be two fuzzy relational systems. A function φ : A → B is called an
isomorphism if it is bijective and Vi(a1, a2) =Wi(φ(a1), φ(a2)), for all a1, a2 ∈ A and i ∈ I.

Let A = (A, I,Vi) be a fuzzy relational system and let E be a fuzzy equivalence on A. For each i ∈ I,

define a fuzzy relation VA/E
i

on the quotient (factor) set A/E as follows:

VA/E
i

(Ea1
,Ea2

) = (E ◦ Vi ◦ E)(a1, a2), (43)

for all a1, a2 ∈ A. The right side of (43) can be equivalently written as

(E ◦ Vi ◦ E)(a1, a2) =
∨

a′
1
,a′

2
∈A

E(a1, a
′
1) ⊗ Vi(a

′
1, a
′
2) ⊗ E(a′2, a2) = Ea1

◦ Vi ◦ Ea2
,

and for all a1, a2, a′1, a
′
2
∈ A such that Ea1

= Ea′
1

and Ea2
= Ea′

2
we have that (E◦Vi◦E)(a1, a2) = (E◦Vi◦E)(a′

1
, a′

2
).

Therefore, the fuzzy relation VA/E
i

is well-defined, and A/E = (A/I, I,VA/E
i

) is a fuzzy relational system
of the same type asA, which is called the quotient (or factor) fuzzy relational system ofA, with respect to the
fuzzy equivalence E.

Note that this concept of quotient fuzzy relational system emerges from the theory of fuzzy automata,
namely, it originates from the concept of a factor (quotient) fuzzy automaton. Factor fuzzy automata were
introduced in [12, 13], where they were used to reduce the number of states of fuzzy automata. We will see in
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Section 8 that quotient (fuzzy) relational systems can be also used to reduce the number of nodes of a
(fuzzy) network, while keeping the basic structure of the network. It is also worth noting that quotient crisp
relational systems have been recently defined in the same way in [6].

The following theorem can be conceived as an analogue of the well-known theorems of universal algebra
which establish correspondences between functions and equivalence relations, as well as between homo-
morphisms and congruences (cf. [4, § 2.6]).

Theorem 6.1. LetA = (A, I,Vi) be a fuzzy relational system, E a fuzzy equivalence on A, andA = (A/E, I,VA/E
i

)
the quotient fuzzy relational system ofA with respect to E.

Then a fuzzy relation E♮ ∈ R(A,A/E) defined by

E♮(a1,Ea2
) = E(a1, a2), for all a1, a2 ∈ A, (44)

is a uniform F-function whose kernel is E.

Moreover, E♮ is a solution both to WL2-1(A,A/E, I,Vi,V
A/E
i

) and WL2-2(A,A/E, I,Vi,V
A/E
i

).

Proof. According to Theorem 7.1 [9], E♮ is a uniform F-function of A onto A/E and its kernel is E.
Next, for the sake of simplicity set E♮ = R. Then for all i ∈ I and a1, a2 ∈ A we have that

(R−1 ◦Vi)(Ea1
, a2) =

∨

a3∈A

R−1(Ea1
, a3) ⊗ Vi(a3, a2) =

∨

a3∈A

E(a1, a3) ⊗ Vi(a3, a2) = (E ◦ Vi)(a1, a2)

6 (E ◦ Vi ◦ E)(a1, a2) = (E ◦ Vi ◦ E ◦ E)(a1, a2) =
∨

a4∈A

(E ◦ Vi ◦ E)(a1, a4) ⊗ E(a4, a2)

=
∨

a4∈A

VA/E
i

(Ea1
,Ea4

) ⊗ R−1(Ea4
, a2) = (VA/E

i
◦ R−1)(Ea1

, a2),

(45)

so R = E♮ is a solution to the system WL2-1(A,A/E, I,Vi,V
A/E
i

), and also,

(Vi ◦ R)(a1,Ea2
) =

∨

a3∈A

Vi(a1, a3) ⊗ R(a3,Ea2
) =

∨

a3∈A

Vi(a1, a3) ⊗ E(a3, a2) = (Vi ◦ E)(a1, a2)

6 (E ◦ Vi ◦ E)(a1, a2) = (E ◦ E ◦Vi ◦ E)(a1, a2) =
∨

a4∈A

E(a1, a4) ⊗ (E ◦ Vi ◦ E)(a4, a2)

=
∨

a4∈A

R(a1,Ea4
) ⊗ VA/E

i
(Ea4

,Ea2
) = (R ◦ VA/E

i
)(a1,Ea2

),

(46)

and hence, R = E♮ is a solution to the system WL2-2(A,A/E, I,Vi,V
A/E
i

).

We also have the following.

Theorem 6.2. LetA = (A, I,Vi) be a fuzzy relational system, E a fuzzy equivalence on A, andA = (A/E, I,VA/E
i

)
the quotient fuzzy relational system ofA with respect to E. Then the following conditions are equivalent:

(i) E is a solution to WL1-4(A, I,Vi);

(ii) E♮ is a solution to WL2-3(A,A/E, I,Vi,V
A/E
i

);

(iii) E♮ is a solution to WL2-5(A,A/E, I,Vi,V
A/E
i

).

Proof. (i)⇔(ii). By Theorem 6.1, R = E♮ is a solution to WL2-3(A,A/E, I,Vi,V
A/E
i

) if and only if R◦VA/E
i
6 Vi◦R,

and according to (46), this is valid if and only if E◦Vi ◦E 6 Vi ◦E. On the other hand, since E◦Vi 6 E◦Vi ◦E
and E ◦E = E, we have that E ◦Vi ◦E 6 Vi ◦E is equivalent to E ◦Vi 6 Vi ◦E. Since E is symmetric, we have
that it is a solution to WL1-4(A, I,Vi). Hence, (i)⇔(ii) is true.

In the same way we prove that (i)⇔(iii).
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The next theorem can be conceived as an analogue of the well-known Second Isomorphism Theorem
from universal algebra (cf. [4, § 2.6]).

Theorem 6.3. LetA = (A, I,Vi) be a fuzzy relational system, let E and F be fuzzy equivalences on A such that E 6 F,

and let A/E = (A/E, I,VA/E
i

) be the quotient fuzzy relational system of A with respect to E. Then a fuzzy relation
F/E on A/E defined by

F/E(Ea1
,Ea2

) = F(a1, a2), for all a1, a2 ∈ A, (47)

is a fuzzy equivalence on A/E, and the quotient fuzzy relational systems (A/E)/(F/E) andA/F are isomorphic.

Proof. First we note that F/E is a well-defined fuzzy relation. Indeed, if a1, a′1, a2, a′2 ∈ A such that Ea1
= Ea′

1

and Ea2
= Ea′

2
, then E(a1, a′1) = 1 = E(a2, a′2), so F(a1, a′1) = 1 = F(a2, a′2), and hence, F/E(Ea1

,Ea′
1
) = F/E(Ea2

,Ea′
2
).

It is easy to verify that F/E is a fuzzy equivalence.
For the sake of simplicity set Q = F/E, and define a function φ : A/G → (A/E)/Q by φ(Fa) = QEa

, for
each a ∈ A. For arbitrary a1, a2 ∈ A we have that

Fa1
= Fa2

⇔ F(a1, a2) = 1 ⇔ F/E(Ea1
,Ea2

) = 1 ⇔ Q(Ea1
,Ea2

) = 1 ⇔ QEa1
= QEa2

,

and thus, φ is a well-defined and injective function. It is also clear that φ is a surjective function.
Furthermore, E 6 F yields F ◦ E = E ◦ F = F, and for arbitrary a1, a2 ∈ A and i ∈ I we have that

V(A/E)/Q
i

(φ(Fa1
), φ(Fa2

)) = V(A/E)/Q
i

(QEa1
,QEa2

) = (Q ◦VA/E
i
◦Q)(Ea1

,Ea2
)

=
∨

a3,a4∈A

Q(Ea1
,Ea3

) ⊗ VA/E
i

(Ea3
,Ea4

) ⊗Q(Ea4
,Ea2

)

=
∨

a3,a4∈A

F(a1, a3) ⊗ (E ◦ Vi ◦ E)(a3, a4) ⊗ F(a4, a2)

= (F ◦ E ◦ Vi ◦ E ◦ F)(a1, a2) = (F ◦ Vi ◦ F)(a1, a2) = VA/G
i

(Fa1
, Fa2

),

so we have proved that φ is an isomorphism of fuzzy relational systems (A/E)/(F/E) andA/F.

We also prove an analogue of the Correspondence Theorem from universal algebra (cf. [4, § 2.6]).

Theorem 6.4. LetA = (A, I,Vi) be a fuzzy relational system and let E be fuzzy equivalence on A.
The function Φ : EE(A)→ E(A/E), where EE = {F ∈ E(A) | E ⊆ F}, defined by

Φ(F) = F/E, for all F ∈ EE(A), (48)

is an order embedding of EE(A) into E(A/E), i.e.,

F 6 G ⇔ Φ(F) 6 Φ(G), for all F,G ∈ EE(A). (49)

Proof. For arbitrary F,G ∈ EE(A) we have that

F 6 G ⇔ (∀a1, a2 ∈ A) F(a1, a2) 6 G(a1, a2)

⇔ (∀a1, a2 ∈ A) Φ(F)(Ea1
,Ea2

) 6 Φ(G)(Ea1
,Ea2

) ⇔ Φ(F) 6 Φ(G),

and hence, Φ is an order embedding of EE(A) into E(A/E).

It is worth noting that in the case of Boolean (crisp) relational systems Φ is also surjective, which means
that it is an order isomorphism, and equivalently, a lattice isomorphism of EE(A) into E(A/E). In the case of
fuzzy relational systems we are not able to prove that fact, but this is not so important because in practice
we usually use just the fact that Φ is an order embedding.

The following theorem will be also very useful in our further work.
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Theorem 6.5. LetA = (A, I,Vi) be a fuzzy relational system, let E and F be fuzzy equivalences on A such that E 6 F,

and letA/E = (A/E, I,VA/E
i

) be the quotient fuzzy relational system ofA with respect to E.
A fuzzy relation FE ∈ R(A,A/E) defined by

FE(a1,Ea2
) = F(a1, a2), for all a1, a2 ∈ A, (50)

is a uniform fuzzy relation with the kernel F and the co-kernel F/E.
In addition, if E is a solution to WL1-4(A, I,Vi,W), for some W ∈ R(A), then the following is true:

(a) F is a solution to WL1-4(A, I,Vi,W) if and only if F/E is a solution to WL1-4(A/E, I,VA/E
i
,W/E).

(b) F is the greatest solution to system WL1-4(A, I,Vi,W) if and only if F/E is the greatest solution to system

WL1-4(A/E, I,VA/E
i
,W/E).

(c) F is a solution to WL1-4(A, I,Vi,W) if and only if FE is a solution to WL2-3(A,A/E, I,Vi,V
A/E
i
,WE).

Proof. For the sake of simplicity set FE = G. For arbitrary a1, a2 ∈ A we can easily check that

(G ◦ G−1 ◦ G)(a1,Ea2
) = (F ◦ F−1 ◦ F)(a1, a2) = F(a1, a2) = G(a1,Ea2

),

(G ◦ G−1)(a1, a2) = (F ◦ F−1)(a1, a2) = F(a1, a2),

(G−1 ◦ G)(Ea1
,Ea2

) = (F−1 ◦ F)(a1, a2) = F(a1, a2) = F/E(Ea1
,Ea2

),

which means that G ◦ G−1 ◦ G = G, G ◦ G−1 = F and G−1 ◦ G = F/E. Therefore, G is a uniform fuzzy relation
with the kernel F and the co-kernel F/E.

Next, let E be a solution to WL1−4(A, I,Vi).
(a) According to Theorem 6.4, F 6W if and only if F/E 6W/E. Furthermore, since E 6 F is equivalent to

E ◦ F = F ◦ E = F, for arbitrary a1, a2 ∈ A and i ∈ I we have that

(F/E) ◦VA/E
i

(Ea1
,Ea2

) = (F ◦ E ◦ Vi ◦ E)(a1, a2) = (F ◦ Vi ◦ E)(a1, a2),

VA/E
i
◦ (F/E)(Ea1

,Ea2
) = (E ◦ Vi ◦ E ◦ F)(a1, a2) = (E ◦ Vi ◦ F)(a1, a2),

and as F/E is symmetric, then it is a solution to WL1-4(A/E, I,VA/E
i
,W/E) if and only if

F ◦ Vi ◦ E 6 E ◦ Vi ◦ F, F 6W (51)

for each i ∈ I. Therefore, it remains to prove that F is a solution to WL1-4(A, I,Vi,W) if and only if (51) holds.
Bearing in mind that E is a solution to WL1-4(A, I,Vi,W), if F is also a solution to this system, then F 6 W
and F ◦Vi ◦E 6 Vi ◦F ◦E = Vi ◦F and E ◦Vi ◦F 6 Vi ◦E ◦F = Vi ◦F, so we have that (51) is true. Conversely,
let (51) hold. Then

F ◦ Vi 6 F ◦ Vi ◦ E 6 E ◦ Vi ◦ F 6 Vi ◦ E ◦ F = Vi ◦ F,

for each i ∈ I, which means that F is a solution to WL1-1(A, I,Vi,W).
(b) Let F be the greatest solution to the system WL1-4(A, I,Vi,W). Assume that Q is the greatest solution

to WL1-4(A/E, I,VA/E
i
,W/E), and define a fuzzy relation G on A as follows:

G(a1, a2) = Q(Ea1
,Ea2

), for all a1, a2 ∈ A.

It is easy to check that G is a fuzzy equivalence on A. According to the assertion (a) of this theorem, E/E is

a solution to WL1-4(A/E, I,VA/E
i
,W/E), so E/E 6 Q. Now, for arbitrary a1, a2 ∈ A we have that

E(a1, a2) = E/E(Ea1
,Ea2

) 6 Q(Ea1
,Ea2

) = G(a1, a2),

which means that E 6 G, and consequently, Q = G/E. Next, by the assertion (a) of this theorem we obtain that
G is a solution to WL1-4(A, I,Vi,W), and since F is the greatest solution to this system, then G 6 F. According
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to Theorem 6.4, Q = G/E 6 F/E, and since F/E is a solution to WL1-4(A/E, I,VA/E
i
,W/E) and Q is the greatest

solution to this system, we have that Q = F/E, i.e., F/E is the greatest solution to WL1-4(A/E, I,VA/E
i
,W/E).

Conversely, let F/E be the greatest solution to WL1-4(A/E, I,VA/E
i
,W/E). According to (a), F is a solution

to the system WL1-4(A, I,Vi,W). Let G be the greatest solution to WL1-4(A, I,Vi,W). By Theorem 4.5 [26], G
is a fuzzy equivalence, and we have that E 6 F 6 G. Next, by (a) we obtain that G/E is a solution to

WL1-4(A/E, I,VA/E
i
,W/E), so G/E 6 F/E. But, now by Theorem 6.4 it follows that G 6 F, i.e., G = F, so we

have proved that F is the greatest solution to WL1-4(A, I,Vi,W).
(c) For arbitrary a1, a2 ∈ A and i ∈ I we have that

(F−1
E ◦ Vi)(Ea1

, a2) = (F ◦Vi)(a1, a2), (VA/E
i
◦ F−1

E )(Ea1
, a2) = (E ◦Vi ◦ E ◦ F)(a1, a2) = (E ◦ Vi ◦ F)(a1, a2),

(FE ◦ VA/E
i

)(a1,Ea2
) = (F ◦ E ◦ Vi ◦ E)(a1, a2) = (F ◦ Vi ◦ E)(a1, a2), (Vi ◦ FE)(a1,Ea2

) = (Vi ◦ F)(a1, a2),

so FE is a solution to WL2-3(A,A/E, I,Vi,V
A/E
i
,WE) if and only if F ◦ Vi 6 E ◦ Vi ◦ F and F ◦ Vi ◦ E 6 Vi ◦ F,

for each i ∈ I, and F 6W. It is easy to verify that F ◦ Vi ◦ E 6 Vi ◦ F is equivalent to F ◦ Vi 6 Vi ◦ F even if E
is not a solution to WL1−4(A, I,Vi,W) (using only reflexivity of E and the equality F ◦ E = F). On the other
hand, under assumption that E is a solution to WL1−4(A, I,Vi,W) we obtain that F ◦ Vi 6 E ◦ Vi ◦ F is also
equivalent to F ◦ Vi 6 Vi ◦ F. Thus, we have proved that (c) is true.

7. Relationships between solutions to heterogeneous and homogeneous weakly linear systems

In this section we determine the relationships between solutions to heterogeneous and homogeneous
weakly linear systems. In particular, we show that the kernel and the co-kernel of a solution to a heteroge-
neous weakly linear system are solutions to related homogeneous systems, and we establish the connection
between the greatest solutions to a heterogeneous systems and the related homogeneous systems.

First we prove the following.

Proposition 7.1. Let a fuzzy relation R ∈ R(A,B) be a solution to system WL2-3(A,B, I,Vi,Wi,Z). Then

(a) R ◦ R−1 is a solution to system WL1-4(A, I,Vi,Z ◦ Z−1);

(b) R−1 ◦ R is a solution to system WL1-4(B, I,Wi,Z−1 ◦ Z).

Proof. For each i ∈ I, by R−1 ◦ Vi 6Wi ◦ R−1 and R ◦Wi 6 Vi ◦ R it follows that

R ◦ R−1 ◦ Vi 6 R ◦Wi ◦ R−1
6 Vi ◦ R ◦ R−1 and R−1 ◦ R ◦Wi 6 R−1 ◦ Vi ◦ R 6Wi ◦ R−1 ◦ R,

and by R 6 Z we obtain that R◦R−1
6 Z◦Z−1 and R−1 ◦R 6 Z−1 ◦Z. Since R◦R−1 and R−1 ◦R are symmetric

fuzzy relations, we have that R ◦ R−1 is a solution to WL1-4(A, I,Vi,Z ◦ Z−1) and R−1 ◦ R is a solution to
WL1-4(B, I,Wi,Z−1 ◦ Z).

In the previous proposition we have considered the solution of system (wl2-3) which is an arbitrary
fuzzy relation. In the following theorem we deal with solutions to this system which are uniform fuzzy
relations.

Theorem 7.2. Let R ∈ R(A,B) be a uniform fuzzy relation and let Z ∈ R(A,B) be a fuzzy relation such that R 6 Z.
Then R is a solution to system WL2-3(A,B, I,Vi,Wi,Z) if and only if the following is true:

(i) ER
A

is a solution to system WL1-4(A, I,Vi,Z ◦ Z−1);

(ii) ER
B

is a solution to system WL1-4(B, I,Wi,Z−1 ◦ Z);

(iii) R̃ is an isomorphism of quotient fuzzy relational systemsA/ER
A

and B/ER
B

;

whereA = (A, I,Vi) and B = (B, I,Wi).
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Proof. For the sake of simplicity set ER
A
= E, ER

B
= F and R̃ = φ. By uniformity of R we have that E = R ◦ R−1

and F = R−1 ◦ R.
Let R be a solution to WL2-3(A,B, I,Vi,Wi,Z). By Proposition 7.1, (i) and (ii) hold. According to Theorem

3.4, φ is a bijective function of A/E onto B/F. Moreover, for an arbitrary i ∈ I we have that

E ◦ Vi ◦ E = R ◦ R−1 ◦Vi ◦ R ◦ R−1
6 R ◦Wi ◦ R−1 ◦ R ◦ R−1 = R ◦Wi ◦ R−1

= R ◦Wi ◦ R−1 = R ◦ R−1 ◦ R ◦Wi ◦ R−1
6 R ◦ R−1 ◦ Vi ◦ R ◦ R−1 = E ◦ Vi ◦ E,

and hence, E ◦Vi ◦ E = R ◦Wi ◦ R−1.
Further, for arbitrary a1, a2 ∈ A, i ∈ I and ψ ∈ CR(R) we have that

VA/E
i

(Ea1
,Ea2

) = (E ◦ Vi ◦ E)(a1, a2) = (R ◦Wi ◦ R−1)(a1, a2)

=
∨

b1,b2∈B

R(a1, b1) ⊗Wi(b1, b2) ⊗ R−1(b1, a2) =
∨

b1,b2∈B

F(ψ(a1), b1) ⊗Wi(b1, b2) ⊗ F(b1, ψ(a2))

= (F ◦Wi ◦ F)(ψ(a1), ψ(a2)) =WB/F
i

(Fψ(a1), Fψ(a2)) =WB/F
i

(φ(Ea1
), φ(Ea2

)).

Thus, φ is an isomorphism of fuzzy relational systemsA/E and B/F.
Conversely, let (i), (ii) and (iii) hold. Consider arbitrary ϕ ∈ CR(R), ψ ∈ CR(R−1), a1, a2 ∈ A, b1, b2 ∈ B and

i ∈ I. Then we have that

(E ◦Vi ◦ E)(a1, a2) = VA/E
i

(Ea1
,Ea2

) =WB/F
i

(φ(Ea1
), φ(Ea2

)) =WB/F
i

(Fϕ(a1), Fϕ(a2)) = (F ◦Wi ◦ F)(ϕ(a1), ϕ(a2)),

and similarly,

(F ◦Wi ◦ F)(b1, b2) = (E ◦ Vi ◦ E)(ψ(b1), ψ(b2)).

Now, for arbitrary a ∈ A, b ∈ B, i ∈ I, ϕ ∈ CR(R) and ψ ∈ CR(R−1) we have that

(R−1 ◦Vi)(b, a) = (R−1 ◦ E ◦ Vi)(b, a) 6 (R−1 ◦ Vi ◦ E)(b, a) =
∨

a1,a2∈A

R−1(b, a1) ⊗ Vi(a1, a2) ⊗ E(a2, a)

=
∨

a1,a2∈A

E(ψ(b), a1) ⊗ Vi(a1, a2) ⊗ E(a2, a) = (E ◦ Vi ◦ E)(ψ(b), a) = (F ◦Wi ◦ F)(ϕ(ψ(b)), ϕ(a))

=
∨

b1,b2∈B

F(ϕ(ψ(b)), b1) ⊗Wi(b1, b2) ⊗ F(b2, ϕ(a)),

and since F(ϕ(ψ(b)), b) = R(ψ(b), b) = R−1(b, ψ(b)) = 1 implies F(ϕ(ψ(b)), b1) = Fϕ(ψ(b))(b1) = Fb(b1) = F(b, b1),
we obtain that

∨

b1,b2∈B

F(ϕ(ψ(b)), b1) ⊗Wi(b1, b2) ⊗ F(b2, ϕ(a)) =
∨

b1,b2∈B

F(b, b1) ⊗Wi(b1, b2) ⊗ F(b2, ϕ(a))

= (F ◦Wi ◦ F)(b, ϕ(a)) 6 (Wi ◦ F)(b, ϕ(a)) =
∨

b3∈B

Wi(b, b3) ⊗ F(b3, ϕ(a))

=
∨

b3∈B

Wi(b, b3) ⊗ R−1(b3, a) = (Wi ◦ R−1)(b, a).

Hence, R−1 ◦Vi 6Wi ◦R−1, and in a similar way we prove that R ◦Wi 6 Vi ◦R. This completes the proof of
the theorem.

A natural question which arises here is the relationship between the greatest solution to a heterogeneous
weakly linear system and the greatest solutions to the corresponding homogeneous weakly linear systems.
The following theorem gives an answer to this question.
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Theorem 7.3. Let Z ∈ R(A,B) be a uniform fuzzy relation and let system WL2-3(A,B, I,Vi,Wi,Z) have a uniform
solution.

Then the greatest solution R to WL2-3(A,B, I,Vi,Wi,Z) is a uniform fuzzy relation such that ER
A

is the greatest

solution to WL1-4(A, I,Vi,Z ◦ Z−1) and ER
B

is the greatest solution to WL1-4(B, I,Wi,Z−1 ◦ Z).

Proof. According to Theorem 4.4, R is a partial fuzzy function, and since the system WL2-3(A,B, I,Vi,Wi,Z)
has a uniform solution, this uniform solution is contained in R, so R is also a uniform fuzzy relation.

For the sake of simplicity set ER
A
= E, ER

B
= F and R̃ = φ. By Theorem 7.2 it follows that E is a solution to

WL1-4(A, I,Vi,Z ◦ Z−1), F is a solution to WL1-4(B, I,Wi,Z−1 ◦ Z) and φ is an isomorphism of quotient fuzzy
relational systemsA/E and B/F, whereA = (A, I,Vi) and B = (A, I,Wi).

Furthermore, assume that G is the greatest solution to WL1-4(A, I,Vi,Z◦Z−1) and H is the greatest solution
to WL1-4(B, I,Wi,Z−1 ◦ Z). Let S = GE and T = HF, where GE ∈ R(A,A/E) and HF ∈ R(B,B/F) are fuzzy
relations defined as in (50). According to Theorem 6.5, we have that S and T are uniform fuzzy relations
such that ES

A
= G, ES

A/E
= G/E, ET

B
= H and ET

B/F = H/F. The same theorem asserts that S is a solution

to WL2-3(A,A/E, I,Vi,V
A/E
i
,PE) and T is a solution to WL2-3(B,B/F, I,Wi,W

B/F
i
,QF), where P = Z ◦ Z−1 and

Q = Z−1 ◦ Z. Moreover, if we consider the isomorphism φ as a fuzzy relation between A/E and B/F, then it

is easy to verify that φ is a solution to WL2-3(A/E,B/F, I,VA/E
i
,WB/F

i
, φ).

Now, let a fuzzy relation M ∈ R(A,B) be defined as M = S ◦ φ ◦ T−1. According to Propositions 4.2 (d)
and 4.3, M is a solution to system WL2-3(A,B, I,Vi,Wi,PE ◦ φ ◦Q−1

F ). We will prove that PE ◦ φ ◦Q−1
F = Z.

Consider arbitrary a ∈ A and b ∈ B. First, we have that

(PE ◦ φ ◦Q−1
F )(a, b) =

∨

a1∈A

PE(a,Ea1
) ⊗ (φ ◦Q−1

F )(Ea1
, b).

Moreover, for arbitrary a1 ∈ A and ψ ∈ CR(R) we obtain that

(φ ◦Q−1
F )(Ea1

, b) =
∨

b1∈B

φ(Ea1
, Fb1

) ⊗Q−1
F (Fb1

, b) = Q−1
F (Fψ(a1), b) = QF(b, Fψ(a1)) = Q(b, ψ(a1)),

and since Z is a uniform fuzzy relation and Q = Z−1 ◦ Z = EZ
B , then Q(b, ψ(a1)) = EZ

B(ψ(a1), b) = Z(a1, b),
according to Theorem 3.2. Therefore,

(PE ◦φ ◦Q−1
F )(a, b) =

∨

a1∈A

PE(a,Ea1
)⊗Z(a1, b) =

∨

a1∈A

(Z ◦Z−1)(a, a1)⊗Z(a1, b) = (Z ◦Z−1 ◦Z)(a, b) = Z(a, b),

and we have proved that PE ◦ φ ◦ Q−1
F
= Z. Hence, M is a solution to WL2-3(A,B, I,Vi,Wi,Z), and since R is

the greatest solution to this system, we conclude that M 6 R.
Further, consider arbitrary a ∈ A and ψ ∈ CR(R). Then

M(a, ψ(a)) = (S ◦ φ ◦ T−1)(a, ψ(a)) =
∨

a1∈A

S(a,Ea1
) ⊗ (φ ◦ T−1)(Ea1

, ψ(a))

=
∨

a1∈A

S(a,Ea1
) ⊗

(∨

b∈B

(φ(Ea1
, Fb) ⊗ T−1(Fb, ψ(a))

)
=

∨

a1∈A

S(a,Ea1
) ⊗ T−1(Fψ(a1), ψ(a))

=
∨

a1∈A

G(a, a1) ⊗H(ψ(a), ψ(a1)) > G(a, a) ⊗H(ψ(a), ψ(a)) = 1,

and consequently,

(M ◦M−1)(a, a) =
∨

b∈B

M(a, b) ⊗M−1(b, a) >M(a, ψ(a))⊗M−1(ψ(a), a) = 1.
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Hence, M◦M−1 is reflexive. As G = ES
A
= S◦S−1, we have that G◦M = S◦S−1 ◦S◦φ◦T−1 = S◦φ◦T−1 =M,

and by reflexivity of M ◦M−1 we obtain that G 6 G ◦M ◦M−1 =M ◦M−1
6 R ◦R−1 = E. Since both G and E

are solutions to system WL1-4(A, I,Vi,Z◦Z−1), and G is the greatest one, we conclude that E = G, i.e., E = ER
A

is the greatest solution to WL1-4(A, I,Vi,Z ◦ Z−1).
In the same way we show that F = H, i.e., F = ER

B
is the greatest solution to WL1-4(B, I,Wi,Z−1 ◦ Z). This

completes the proof of the theorem.

Let us note that the fuzzy relation M defined in the proof of the previous theorem can be also represented
as M = G ◦ ψ ◦H, for an arbitrary ψ ∈ CR(R).

A result similar to Theorem 7.2 can be also obtained for system (wl2-5).

Theorem 7.4. Let R ∈ R(A,B) be a uniform fuzzy relation and Z ∈ R(A,B) is a fuzzy relation such that R 6 Z.
Then R is a solution to system WL2-5(A,B, I,Vi,Wi,Z) if and only if the following is true:

(i) ER
A

is a solution to system WL1-4(A, I,Vi,Z ◦ Z−1);

(ii) ER
B

is a solution to system WL1-5(B, I,Wi,Z−1 ◦ Z);

(iii) R̃ is an isomorphism of quotient fuzzy relational systemsA/ER
A

and B/ER
B ;

whereA = (A, I,Vi) and B = (B, I,Wi).

Proof. For the sake of simplicity set ER
A
= E, ER

B
= F and R̃ = φ. By uniformity of R we have that E = R ◦ R−1

and F = R−1 ◦ R.
Let R be a solution to WL2-5(A,B, I,Vi,Wi,Z). Due to reflexivity of E and F, for each i ∈ I we have

E ◦ Vi 6 E ◦ Vi ◦ E = R ◦ R−1 ◦ Vi ◦ R ◦ R−1 = R ◦ R−1 ◦ R ◦Wi ◦ R−1

= R ◦Wi ◦ R−1 = Vi ◦ R ◦ R−1 = Vi ◦ E,

Wi ◦ F 6 F ◦Wi ◦ F = R−1 ◦ R ◦Wi ◦ R−1 ◦ R = R−1 ◦ Vi ◦ R ◦ R−1 ◦ R

= R−1 ◦ Vi ◦ R = R−1 ◦ R ◦Wi = F ◦Wi,

and by symmetry of E and F we obtain that E is a solution to WL1-4(A, I,Vi,Z ◦ Z−1) and F is a solution to
WL1-5(B, I,Wi,Z−1 ◦Z). As we have shown above, E◦Vi ◦E = R◦Wi ◦R−1, for every i ∈ I, and as in the proof
of Theorem 7.2 we prove that φ is an isomorphism of fuzzy relational systemsA/E and B/F.

Conversely, let (i), (ii) and (iii) hold. As in the proof of Theorem 7.2 we show that

(E ◦ Vi ◦ E)(a1, a2) = (F ◦Wi ◦ F)(ϕ(a1), ϕ(a2)), (F ◦Wi ◦ F)(b1, b2) = (E ◦ Vi ◦ E)(ψ(b1), ψ(b2)),

for all a1, a2 ∈ A, b1, b2 ∈ B, i ∈ I, ϕ ∈ CR(R) and ψ ∈ CR(R−1). Thus, for all a ∈ A, b ∈ B and i ∈ I we have that

(Vi ◦ R)(a, b) = (Vi ◦ E ◦ R)(a, b) = (E ◦ Vi ◦ E ◦ R)(a, b) = (E ◦ Vi ◦ R)(a, b)

=
∨

a1∈A

(E ◦ Vi)(a, a1) ⊗ R(a1, b) =
∨

a1∈A

(E ◦ Vi)(a, a1) ⊗ E(a1, ψ(b)) = (E ◦ Vi ◦ E)(a, ψ(b))

= (F ◦Wi ◦ F)(ϕ(a), ϕ(ψ(b))) =
∨

b1∈B

(F ◦Wi)(ϕ(a), b1) ⊗ F(b1, ϕ(ψ(b))) = (F ◦Wi ◦ F)(ϕ(a), b)

= (F ◦Wi)(ϕ(a), b) =
∨

b2∈B

F(ϕ(a), b2) ⊗Wi(b2, b) =
∨

b2∈B

R(a, b2) ⊗Wi(b2, b) = (R ◦Wi)(a, b).

Therefore, Vi◦R = R◦Wi, for each i ∈ I, and we have proved that R is a solution to WL2-5(A,B, I,Vi,Wi,Z).

It is an open question whether the analogue of Theorem 7.3 is valid for the system (wl2-5). The method-
ology used in Theorem 7.3 does not give results when it works with this system.
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8. Some applications

Fuzzy relational systems have many natural interpretations and important applications. We will mention
two of them, and we will also point to applications of weakly linear systems related to these interpretations.

First, a fuzzy relational systemA = (A, I,Vi) can be interpreted as the system of fuzzy transition relations
of some fuzzy transition system [5] or a fuzzy automaton (when fuzzy sets of initial and terminal states are also
fixed) [10–13, 42] with A as the set of states and I as the input alphabet (set of labels). In this interpretation, the
concept of a quotient fuzzy relational system corresponds to the concept of a quotient (factor) fuzzy auto-
maton or fuzzy transition system which has been introduced in [12, 13]. Quotient fuzzy automata have
been used in [12, 13, 42] to reduce the number of states of a fuzzy automaton, and from this aspect, there are
interesting those quotient fuzzy automata which are language-equivalent to the original fuzzy automaton.
In particular, the language-equivalence is achieved when the quotient fuzzy automaton is made by means
of fuzzy equivalences which are solutions to homogeneous weakly linear systems (wl1-4) and (wl1-5) (or
(wl1-1) and (wl1-2)), and the best such reductions are attained by means of the greatest solutions to these
systems. Let us note that in these cases the fuzzy relation W is taken to be the greatest fuzzy equivalence
such that the fuzzy set of terminal states or the fuzzy set of initial states is extensional with respect to it.

On the other hand, heterogeneous weakly linear systems (wl2-1)–(wl2-6) have been studied in the context
of fuzzy automata in [10, 11] (see also [7]), with the fuzzy relation Z given in terms of fuzzy sets of initial and
terminal states, and certain additional constraints given also in terms of fuzzy sets of initial and terminal
states. Solutions to (wl2-1) and (wl2-2) are called simulations (respectively forward and backward simulations),
and solutions to (wl2-3)–(wl2-6) are called bisimulations (respectively forward, backward, backward-forward
and forward-backward bisimulations). All types of bisimulations realize the language-equivalence between
fuzzy automata, and forward and backward bisimulations which are uniform fuzzy relations are used to
model structural equivalence between fuzzy automata. More information on fuzzy automata with mem-
bership values in complete residuated lattices, state reduction, simulation, bisimulation and equivalence
can be found in [10–13, 42].

In another interpretation of the fuzzy relational systemA = (A, I,Vi), A is taken to be a set of individuals
and {Vi}i∈I is a system of fuzzy relations between these individuals. Such a fuzzy relational system is called a
fuzzy social network, or just a fuzzy network, since concepts of social network analysis share many common
properties with other types of networks and its methods are applicable to the analysis of networks in gen-
eral. In large and complex networks it is impossible to understand the relationship between each pair of
individuals, but to a certain extent, it may be possible to understand the system, by classifying individuals
and describing relationships on the class level. In networks, for instance, individuals in the same class
can be considered to occupy the same position, or play the same role in the network. The main aim of the
positional analysis of networks is to find similarities between individuals which have to reflect their posi-
tion in a network. These similarities have been formalized first by Lorrain and White [29] by the concept of
a structural equivalence. Informally speaking, two individuals are considered to be structurally equivalent
if they have identical neighborhoods. However, in many situations this concept has shown oneself to be
too strong. Weakening it sufficiently to make it more appropriate for modeling social positions, White and
Reitz [43] have introduced the concept of a regular equivalence, where two individuals are considered to
be regularly equivalent if they are equally related to equivalent others. In the context of fuzzy relations,
regular equivalences correspond to fuzzy equivalences which are solutions to the homogeneous weakly
linear system (wl1-6) (or (wl1-3)). Making the quotient fuzzy relational system with respect to a regular
fuzzy equivalence we reduce the number of nodes in the original network, while preserving essential
relations between nodes. Fuzzy relations which are solutions to systems (wl2-1)–(wl2-6) also have natural
interpretations when dealing with bipartite networks, which will be the topic of our further research. More
information on various aspects of the network analysis and its applications can be found in [3, 18, 20, 24, 30].

9. Concluding remarks

New types of fuzzy relation inequalities and equations, called weakly linear, have been recently intro-
duced and studied in [26]. They are composed of fuzzy relations on a single set and are called homogeneous. In
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this paper we have introduced and studied heterogeneous weakly linear systems, which are composed of fuzzy
relations on two possible different sets, and an unknown is a fuzzy relation between these two sets. We
have proved that every heterogeneous weakly linear system has the greatest solution, and we define isotone
and image-localized functions φ(i) (i = 1, . . . , 6) on the lattice of fuzzy relations between A and B such that
each of the six heterogeneous weakly linear systems can be represented in an equivalent form U 6 φ(i)(U),
U 6 Z. Such representation enables us to reduce the problem of computing the greatest solution to a hetero-
geneous weakly linear system to the problem of computing the greatest post-fixed point, contained in the
fuzzy relation Z, of the functionφ(i). For this purpose we use the iterative method developed in [26], adapted
to the heterogeneous case. Besides, we introduce the concept of the quotient fuzzy relational system with
respect to a fuzzy equivalence, we proved several theorems analogous to the well-known homomorphism,
isomorphisms and correspondence theorems from universal algebra, and using this concept we establish
natural relationships between solutions to heterogeneous and homogeneous weakly linear systems.

Weakly linear systems originate from research in the theory of fuzzy automata. Solutions to homoge-
neous weakly linear systems have been used in [12, 13, 42] for reduction of the number of states, and
solutions to the heterogeneous systems have been used in [10, 11] in the study of simulations and bisimu-
lations between fuzzy automata. In our further work both homogeneous and heterogeneous weakly linear
systems will be used in the study of fuzzy social networks. Besides, methodology developed in the study of
weakly linear systems will be generalized and applied to a much wider class of fuzzy relation inequalities
and equations, as well as to matrix inequalities and equations over max-algebras.
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[11] M. Ćirić, J. Ignjatović, I. Jančić, N. Damljanović, Algorithms for computing the greatest simulations and bisimulations between
fuzzy automata, submitted to Fuzzy Sets and Systems.
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[25] U. Höhle, Commutative, residuated ℓ-monoids, in: U. Höhle and E. P. Klement (Eds.), Non-Classical Logics and Their Applica-
tions to Fuzzy Subsets, Kluwer Academic Publishers, Boston, Dordrecht, 1995, pp. 53–106.
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[39] E. Sanchez, Resolution of composite fuzzy relation equations, Information and Control 30 (1976) 38–48.
[40] E. Sanchez, Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic, in: M. M.

Gupta, G. N. Saridis, B. R. Gaines (Eds.), Fuzzy Automata and Decision Processes, North-Holland, Amsterdam, 1977, pp. 221–234.
[41] E. Sanchez, Resolution of eigen fuzzy sets equations, Fuzzy Sets and Systems 1 (1978) 69–74.
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